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Introduction to quantum chemistry

Electronic Hamiltonian, SI and atomic units

• We work within the Born–Oppenheimer approximation where the electronic structure is described for
fixed nuclei positions.

• A physical N -electron wavefunction Ψ ≡ Ψ(r1, r2, . . . , rN ) is a function of the electron positions

ri ≡ (xi, yi, zi) [spin will be introduced later on] that fulfils the Schrödinger equation ĤΨ = EΨ .

• The N -electron Hamiltonian operator can be written as

Ĥ = T̂ + Ŵee + V̂ne

T̂ ≡
N∑
i=1

−
~2

2me
∇2

ri
=

N∑
i=1

−
~2

2me

(
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

)
→ kinetic energy

Ŵee =
1

2

N∑
i 6=j

ŵee(i, j) with ŵee(i, j) ≡
e2

4πε0rij
× → electron-electron repulsion

V̂ne =

N∑
i=1

v̂ne(i) with v̂ne(i) ≡ −
nuclei∑

A

ZAe
2

4πε0|ri −RA|
× → electron-nuclei attraction
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Introduction to quantum chemistry

Electronic Hamiltonian, SI and atomic units

• Hydrogen atom (N = 1):

Ĥ → −
~2

2me

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
−

e2

4πε0
√
x2 + y2 + z2

× ,

E → En = −
EI

n2
where the ionization energy equals EI =

mee4

2(4πε0)2~2
≈ 13.6 eV.

The ground-state wavefunction (n = 1) equals Ψ1s(x, y, z) =
1

√
πa

3/2
0

e−
√

x2+y2+z2/a0 where

Bohr’s radius equals a0 =
4πε0~2

mee2
≈ 0.529 Å.

• Working with so-called "atomic units" simply consists in using unitless energies Ẽ = E/(2EI)

and coordinates x̃ = x/a0, ỹ = y/a0, z̃ = z/a0.

• The ground-state energy of the hydrogen atom is therefore −0.5 in atomic units.
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Introduction to quantum chemistry

• Returning to the general N -electron problem, the Schrödinger equation in atomic units is obtained

from
ĤΨ

2EI
= ẼΨ where the change of variables ri = a0r̃i (i = 1, 2, . . . , N) is made [see the

complements].

• Eventually, r̃i and Ẽ will simply be denoted ri and E, respectively, thus leading to

ĤΨ = EΨ,

where

Ĥ ≡ −
1

2

N∑
i=1

∇2
ri

+
1

2

N∑
i 6=j

1

rij
× +

N∑
i=1

vne(ri)×

rij = |ri − rj | and vne(ri) = −
nuclei∑

A

ZA

|ri −RA|
.

• We will systematically normalize the solutions, i.e., we impose the following normalization condition:

〈Ψ|Ψ〉 =

∫
dr1 . . .

∫
drN |Ψ(r1, r2, . . . , rN )|2 = 1.
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Introduction to quantum chemistry

Connecting theory to experiment

• The quantities we will mainly focus on are the ground-state E0 and excited-state {EI}I>0 energies.

• In the following, we will assume (for simplicity) that the ground state is not degenerate like, for
example, in the helium atom:

E0 1s2

E1 = E2 = E3 1s2s (triplet)
E4 1s2s (singlet)

• Electronic excitation energies ωI = EI − E0 can be measured (UV/visible spectroscopy).

• The ground-state energy E0 is also interesting in itself. Indeed, it gives access to equilibrium
geometries, vibrational frequencies, static response properties (polarizabilities, magnetic
susceptibilities, ...)
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Vibrational frequencies in diatomics

• Let us consider the more general molecular problem where both nuclei and electrons are treated
quantum-mechanically. For simplicity, we will ignore rotation and assume that the mass M of
nucleus B is much larger than the mass m of nucleus A (m << M ) thus leading to the Schrödinger
equation for the molecule

ĤmolΨmol(R,q) = EmolΨmol(R,q)

where the molecular Hamiltonian equals in atomic units

Ĥmol ≡ −
1

2m

∂2

∂R2
+
ZAZB

R
+ Ĥ(R).

R is the distance between A and B, Ĥ(R) is the electronic Hamiltonian (simply referred to as Ĥ on
the previous slides) that depends explicitly on R, and the positions of all the electrons are collected
in q ≡ (r1, r2, . . . , rN ).

• Within the Born-Oppenheimer approximation, the molecular wavefunction is decomposed as
follows, Ψmol(R,q) = χ(R)Ψ(R,q), where

Ĥ(R)Ψ(R,q) = E(R)Ψ(R,q)
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Introduction to quantum chemistry

• Within the so-called adiabatic approximation, derivatives of the electronic wavefunction with
respect to nuclear displacements are neglected: ∂Ψ(R,q)/∂R ≈ 0 ≈ ∂2Ψ(R,q)/∂R2.

• Such an approximation is in principle relevant when the molecule is close to equilibrium.

• Therefore, the nuclear wavefunction fulfills the following Schrödinger equation[
−

1

2m

d2

dR2
+ V (R)×

]
χ(R) = Emolχ(R),

where V (R) = E(R) +
ZAZB

R
.

• V (R) is the potential interaction energy between the two nuclei in the field of the electrons.

• From a classical mechanics point of view, the force F (R) = −dV (R)/dR is applied to nucleus A.

• The equilibrium distance R0 is such that F (R) < 0 when R > R0 and F (R) > 0 when R < R0.

• F (R) being continuous implies F (R0) = 0 =
dV (R)

dR

∣∣∣∣
R=R0

= 0 ← equilibrium structure!
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Introduction to quantum chemistry

• Note that an equilibrium structure is obtained when R0 minimizes V (R).

• In the general case (larger molecules), R will be a reaction coordinate and maxima of V (R) will
correspond to transition states. Once a transition state is reached, the molecule will switch to another
equilibrium state that corresponds to a local minimum of V (R).

• Let us consider fluctuations x = R−R0 around the equilibrium bond distance R0. From the Taylor
expansion through second order in x,

V (R) = V (R0 + x) ≈ V (R0) +
1

2

(
d2V (R)

dR2

∣∣∣∣
R=R0

)
x2,

we recover the Schrödinger equation for the harmonic oscillator with frequency

ω =

√
1

m

d2V (R)

dR2

∣∣∣∣
R=R0

or, equivalently, with spring constant k =
d2V (R)

dR2

∣∣∣∣
R=R0

,

[
−

1

2m

d2

dx2
+

1

2
mω2x2×

]
ϕ(x) = Evib × ϕ(x)

where ϕ(x) = χ(R0 + x) and Evib = Emol − V (R0).

• This approximation is known as the harmonic approximation.
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Introduction to quantum chemistry

• The exact solutions to this problem are known:

Evib ≡ ω
(
n+

1

2

)
⇔ Emol ≡ Emol

n = V (R0) + ω

(
n+

1

2

)
, where n = 0, 1, 2, . . .

• The vibrational frequency ω can be measured by infrared spectroscopy.

• The equilibrium bond distance R0 can be measured, for example, by microwave spectroscopy
(rotational spectroscopy).

• When the molecule is in its ground vibrational state (n = 0) its energy equals

Emol
0 = V (R0) +

ω

2︸︷︷︸
zero point energy (ZPE)

• The binding energy can then be decomposed as follows:

D0 = V (+∞)− V (R0)︸ ︷︷ ︸−ω2
De
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Introduction to quantum chemistry

(Rayleigh–Ritz) variational principle for the ground state

• Let {ΨI}I=0,1,2,... denote the exact orthonormal electronic ground-state (I = 0) and excited-state
(I > 0) wavefunctions:

Ĥ|ΨI〉 = EI |ΨI〉, 〈ΨI |ΨJ 〉 = δIJ .

• We assume for clarity that the ground state is non-degenerate: EI > E0 when I > 0.

• In this course, we will always use real algebra: 〈Ψ|Φ〉 = 〈Φ|Ψ〉∗ = 〈Φ|Ψ〉.

• The exact ground-state energy can be expressed as E0 = min
Ψ
〈Ψ|Ĥ|Ψ〉 = 〈Ψ0|Ĥ|Ψ0〉

where the minimization is restricted to normalized wavefunctions Ψ.

Proof: ∀Ψ, |Ψ〉 =
∑
I

CI |ΨI〉 and 〈Ψ|Ĥ|Ψ〉 − E0〈Ψ|Ψ〉 =
∑
I

C2
I

(
EI − E0

)
≥ 0.

• Note that, if Ψ 6= Ψ0, then 〈Ψ|Ĥ|Ψ〉 > E0 .
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Introduction to quantum chemistry

Schrödinger equation for two-electron systems

• Two-electron wavefunction: Ψ(r1, r2)

where r1 ≡ (x1, y1, z1) and r2 ≡ (x2, y2, z2) are the space coordinates of electron 1 and 2,
respectively.

• Schrödinger equation: ĤΨ(r1, r2) = EΨ(r1, r2)

where the two-electron Hamiltonian equals Ĥ = T̂ + V̂ + Ŵee, with

T̂ ≡ −
1

2
∇2

r1
−

1

2
∇2

r2
←− kinetic energy operator

V̂ ≡
(
v(r1) + v(r2)

)
× ←− nuclear attraction potential operator

Ŵee ≡
1

|r1 − r2|
× ←− electron-electron repulsion operator
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Schrödinger equation for two-electron systems

• For an atom with atomic number Z: v(r) = −
Z

r

• For the H2 molecule: v(r) = −
1

|r−RA|
−

1

|r−RB |

Institut de Chimie, Strasbourg, France Page 13



Introduction to quantum chemistry

Particular case of "non-interacting" electrons

• Let us assume that electrons do not repel each other (!) −→ Ŵee ≡ 0.

• If one can solve the following one-electron Schrödinger equation,

(
−

1

2
∇2

r + v(r)
)
ϕ(r) = εϕ(r),

then a trivial solution to the Schrödinger equation for two electrons is

Ψ(r1, r2) = ϕ(r1)ϕ(r2) and E = 2ε .

Proof:

(
T̂ + V̂

)
ϕ(r1)ϕ(r2) = ϕ(r2)

[(
−

1

2
∇2

r1
+ v(r1)

)
ϕ(r1)

]
+ ϕ(r1)

[(
−

1

2
∇2

r2
+ v(r2)

)
ϕ(r2)

]

= ϕ(r2)εϕ(r1) + ϕ(r1)εϕ(r2)

= 2εϕ(r1)ϕ(r2)
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Introduction to quantum chemistry

Returning to interacting electrons...

• Describing interacting electrons (Ŵee 6≡ 0) is more complicated. Indeed, in this case, any exact
solution Ψ(r1, r2) to the Schrödinger equation cannot be written as ϕ(r1)ϕ(r2):

Ψ(r1, r2) 6= ϕ(r1)ϕ(r2).

Proof : Let us assume that we can find an orbital ϕ(r) such that Ĥ
(
ϕ(r1)ϕ(r2)

)
= Eϕ(r1)ϕ(r2)

for any r1 and r2 values. Consequently,

Ŵee

(
ϕ(r1)ϕ(r2)

)
= Eϕ(r1)ϕ(r2)−

(
T̂ + V̂

)
ϕ(r1)ϕ(r2).

Using the definition of the operators and dividing by ϕ(r1)ϕ(r2) leads to

1

|r1 − r2|
= E +

1

2

∇2
r1
ϕ(r1)

ϕ(r1)
+

1

2

∇2
r2
ϕ(r2)

ϕ(r2)
− v(r1)− v(r2).

In the limit r2 → r1 = r, it comes ∀ r, E +
∇2

rϕ(r)

ϕ(r)
− 2v(r)→ +∞ absurd!
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Hartree–Fock approximation for two electrons

• A Hartree product Φ(r1, r2) = ϕ(r1)ϕ(r2) can be used as an approximation to the exact
ground-state wavefunction.

• The "best" ϕ(r) orbital is obtained by applying the variational principle and by restricting the
minimization to Hartree products. Thus we obtain an approximate ground-state energy which is
known as the Hartree–Fock (HF) energy:

EHF = min
ϕ
〈Φ|Ĥ|Φ〉

• Note that ϕ(r) should be normalized [i.e.
∫
R3 dr |ϕ(r)|2 = 1] so that Φ(r1, r2) is normalized.

It can be shown that:

(1) 〈Φ|Ĥ|Φ〉 = 2

(
−

1

2

∫
R3

drϕ(r)∇2
rϕ(r) +

∫
R3

dr v(r)ϕ2(r)

)
+

∫
R3

∫
R3

dr dr′
ϕ2(r)ϕ2(r′)

|r− r′|
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Hartree–Fock approximation for two electrons

(2) The minimizing HF orbital ϕHF(r) fulfills the following self-consistent equation:

(
−

1

2
∇2

r + v(r) +

∫
R3

dr′
ϕ2

HF(r′)

|r− r′|

)
ϕHF(r) = εHFϕHF(r).

(3) EHF = 2 εHF −
∫
R3

∫
R3

drdr′
ϕ2

HF(r)ϕ2
HF(r′)

|r− r′|
←− EHF 6= 2 εHF!

• In practice, the HF equation is solved approximately by decomposing the trial orbital ϕ(r) in a finite
basis of non-orthogonal (gaussian) atomic orbitals (AO)

{
χp(r)

}
p=1,...,M

:

ϕ(r) =

M∑
p=1

C̃p χp(r).

The so-called molecular orbital (MO) coefficients
{
C̃p
}
p=1,...,M

are then optimized variationally.
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Electron correlation

• Let us stress that HF is an approximate method. In the following, we shall refer to the difference
between the exact ground-state energy E0 and the HF energy as the correlation energy Ec:

Ec = E0 − EHF < 0.

• "Modelling electron correlation" means "going beyond the HF approximation".

• The doubly-occupied HF orbital ϕHF ≡ ϕ0 is an eigenfunction of the so-called Fock operator:

f̂ ≡ −
1

2
∇2

r +

(
v(r) +

∫
R3

dr′
ϕ2

HF(r′)

|r− r′|

)
×

• Of course, this operator has many other eigenfunctions
{
ϕi(r)

}
i=1,2,...

with energies{
εi

}
i=1,2,...

that are higher than εHF ≡ ε0: f̂ϕi(r) =
i≥0

εiϕi(r) . The orbitals labeled as i > 0 are

referred to as virtual orbitals (or just virtuals).

• Frontier orbitals: ϕHF(r) is referred to as the HOMO (Highest Occupied Molecular Orbital)
and ϕ1(r) is the LUMO (Lowest Unoccupied Molecular Orbital).
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Electron correlation
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Electron correlation

• Virtual orbitals can actually be used as a basis for modelling electron correlation, thus leading to the
following (better) approximation to the exact ground-state wavefunction:

Ψ0(r1, r2) ≈ ϕHF(r1)ϕHF(r2) ←− HF wavefunction

+
∑
i≥1

Ci

(
ϕHF(r1)ϕi(r2) + ϕi(r1)ϕHF(r2)

)
←− single excitation

+
∑

j≥i≥1

Cij

(
ϕi(r1)ϕj(r2) + ϕj(r1)ϕi(r2)

)
←− double excitation

• The coefficients Ci and Cij can be optimized variationally.

• If the distribution of ALL the electrons (two here) in ALL the orbitals (occupied and virtuals) is
considered, the method is referred to as Full Configuration Interaction (FCI).

• The FCI method is exact in a given finite basis of atomic orbitals. In this case, the FCI wavefunction is
of course not equal to the true exact ground-state wave function Ψ0(r1, r2). The latter can only be
reached, in principle, by using an infinite-dimension orbital (i.e., one-electron wave function) basis.
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Complements
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Electronic Hamiltonian, SI and atomic units

• Change of variables in the wavefunction:

Ψ(r1, r2, . . . , rN ) = Ψ(a0r̃1, a0r̃2, . . . , a0r̃N ) = Ψ̃(r̃1, r̃2, . . . , r̃N ) = Ψ̃

(
r1

a0
,
r2

a0
, . . . ,

rN

a0

)

Using Ψ̃ rather than Ψ and the relations 2EI =
~2

mea2
0

=
e2

4πε0a0
leads to

T̂ /2EI ≡
N∑
i=1

−
a2

0

2

(
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

)
≡

N∑
i=1

−
1

2

(
∂2

∂x̃2
i

+
∂2

∂ỹ2
i

+
∂2

∂z̃2
i

)
,

Ŵee/2EI ≡
1

2

N∑
i 6=j

a0

rij
× =

1

2

N∑
i 6=j

1

r̃ij
×,

V̂ne/2EI ≡
N∑
i=1

−
ZAa0

|ri −RA|
× =

N∑
i=1

−
ZA

|̃ri − R̃A|
×

• In the following we will simply drop the "tilde" symbol and denote T̂ /2EI as T̂ , Ŵee/2EI as Ŵee,
V̂ne/2EI as V̂ne, and Ĥ/2EI as Ĥ .
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Hellmann–Feynman theorem
• Let us consider the electronic Schrödinger equation

Ĥ(Q)|Ψ(Q)〉 = E(Q)|Ψ(Q)〉

where Q = (Q1, Q2, . . .) is a collection of parameters (which, of course, does not include q!).

• The Q-dependent eigenvector |Ψ(Q)〉 is normalized for any Q: 〈Ψ(Q)|Ψ(Q)〉 = 1 .

• The Hellmann–Feynman theorem states that
dE(Q)

dQi
=

〈
Ψ(Q)

∣∣∣∣∣∂Ĥ(Q)

∂Qi

∣∣∣∣∣Ψ(Q)

〉
.

Proof:

dE(Q)

dQi
=

〈
Ψ(Q)

∣∣∣∣∣∂Ĥ(Q)

∂Qi

∣∣∣∣∣Ψ(Q)

〉
+

〈
∂Ψ(Q)

∂Qi

∣∣∣∣Ĥ(Q)

∣∣∣∣Ψ(Q)

〉
+

〈
Ψ(Q)

∣∣∣∣Ĥ(Q)

∣∣∣∣∂Ψ(Q)

∂Qi

〉
︸ ︷︷ ︸

E(Q)
d

dQi

[
〈Ψ(Q)|Ψ(Q)〉

]
= 0
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• Application to the calculation of molecular forces: Q = {RB}B ← position vectors of the nuclei !

The electronic Hamiltonian equals (in atomic units)

Ĥ(Q) ≡
N∑
i=1

−
1

2
∇2

ri
+

1

2

N∑
i6=j

1

|ri − rj |
× −

N∑
i=1

nuclei∑
B

ZB

|ri −RB |
×

thus leading to

∂Ĥ(Q)

∂RA
≡ −

N∑
i=1

ZA(ri −RA)

|ri −RA|3
× .

The total energy (including nuclear-nuclear repulsions) reads

V (Q) = E(Q) +

nuclei∑
B<C

ZBZC

|RB −RC |

so that, according to the Hellmann–Feynman theorem, the force applied to nucleus A equals

FA(Q) = −
dV (Q)

dRA
=

〈
Ψ(Q)

∣∣∣∣∣
N∑
i=1

ZA(ri −RA)

|ri −RA|3
×

∣∣∣∣∣Ψ(Q)

〉
+

nuclei∑
B 6=A

ZAZB(RA −RB)

|RA −RB |3
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• Note that

one-electron operator

〈
Ψ(Q)

∣∣∣∣∣∣∣∣
︷ ︸︸ ︷
N∑
i=1

ZA(ri −RA)

|ri −RA|3
×

∣∣∣∣∣∣∣∣Ψ(Q)

〉

=

∫
dr1 . . .

∫
drN Ψ∗(Q, r1, . . . , rN )

N∑
i=1

ZA(ri −RA)

|ri −RA|3
×
︷ ︸︸ ︷
Ψ(Q, r1, . . . , rN )

=

N∑
i=1

∫
dri (−1)×

[∏
j 6=i

∫
drj |Ψ(Q, r1, . . . , rN )|2

]
︸ ︷︷ ︸

ZA
RA − ri

|ri −RA|3

density of charge for electron i at position ri

electronic wavefunction
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Stationarity condition

• Let us consider a function f : x 7→ f(x) and the Taylor expansion around x0 through first order
in δx = x− x0:

f(x) = f(x0 + δx) = f(x0) +
df(x)

dx

∣∣∣∣
x=x0

× δx + . . .

• We denote δf(x0) the expansion of f(x0 + δx)− f(x0) through first order in δx:

δf(x0) =
df(x)

dx

∣∣∣∣
x=x0

× δx .

• x0 is a stationary point for f if δf(x0) = 0 for any value of δx.

• In this example, where f is a function, the stationarity condition reads
df(x)

dx

∣∣∣∣
x=x0

= 0.

• Extrema of f (minima or maxima) are, for example, stationary points.
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• Let us now consider the energy functional E : Ψ 7→ E[Ψ] = 〈Ψ|Ĥ|Ψ〉which applies to
normalized wavefunctions Ψ only.

• Note that the electronic wavefunction Ψ is a function of the electron coordinates. The energy is a
"function" of Ψ,

E[Ψ] =

∫
dr1 . . .

∫
drN Ψ∗(r1, . . . , rN )ĤΨ(r1, . . . , rN ),

hence the name functional.

• The normalization condition 〈Ψ|Ψ〉 = 1 implies 〈Ψ|Ĥ − E[Ψ]|Ψ〉 = 0 .

• If we consider infinitesimal variations Ψ→ Ψ + δΨ around Ψ that preserve normalization, we have
δ〈Ψ|Ĥ − E[Ψ]|Ψ〉 = 0, thus leading to δE[Ψ] = 2〈δΨ|Ĥ − E[Ψ]|Ψ〉. Therefore

δE[Ψ] = 0 ⇔ Ĥ|Ψ〉 = E[Ψ]|Ψ〉

• Important conclusion: both ground- and excited-state wavefunctions are stationary points for the
energy functional.
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Mathematical interlude: Lagrangian

• Rather than taking into account the normalization constraint 1− 〈Ψ|Ψ〉 = 0 explicitly in the
derivation of the stationarity condition, it is more convenient to introduce the so-called lagrangian
functional (or simply Lagrangian),

L[Ψ, E] = E[Ψ] + E
(
1− 〈Ψ|Ψ〉

)
,

where E , which is referred to as Lagrange multiplier, is a number that has to be determined.

• The stationarity condition can then be rewritten as

∂L[Ψ, E]

∂E
= 0 → 1− 〈Ψ|Ψ〉 = 0 normalization condition !

AND

δL[Ψ, E] = 0 → 2〈δΨ|Ĥ − E|Ψ〉 = 0 for any δΨ (no constraint)

• Note that, when Ψ is stationary, E = E[Ψ].
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Variational principle for the excited states

• Note that the first excited-state energy E1 can be obtained variationally under normalization
(〈Ψ|Ψ〉 = 1) and orthogonality (〈Ψ|Ψ0〉 = 0) constraints:

E1 = min
Ψ⊥Ψ0

〈Ψ|Ĥ|Ψ〉 = 〈Ψ1|Ĥ|Ψ1〉

Proof:

Since 〈Ψ|Ψ0〉 = 0 = C0, |Ψ〉 =
∑
I>0

CI |ΨI〉 and

〈Ψ|Ĥ|Ψ〉 − E1〈Ψ|Ψ〉 =
∑
I>0

C2
I

(
EI − E1

)
≥ 0.

• Additional orthogonality constraints (〈Ψ|Ψ1〉 = 0, ...) enable to reach second and higher
excited-state energies.
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