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Electronic Hamiltonian in (so-called) first quantization

N -electron Hamiltonian within the Born-Oppenheimer approximation:
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where (i) = —Evri kinetic energy

nuclei

where Ope(i) = — Z electron-nuclei attraction

where Wee(,j) = —— electron-electron repulsion




Quantum theory of a single electron

Let us start with Schridinger’s theory: the quantum state of a single electron is described by a wave

function (referred to as orbital) | ¥ = W(r) |which is a function of the electronic space coordinates r.

In Pauli’s theory, the spin o = «, B (also denoted o =t, |) of the electron is an additional degree of

freedom. The quantum state of a single electron is now described by a wave function | ¥ = ¥(r, o)

which is a function of both space coordinates and spin.

In the following we denote X = (r,o) and | ¥ = V(X)) |

Normalization condition:

(Uo)y=1= >»" /dr|\IJ(r,a)|2 notation /dX|\If(X)|2

o=a,f

In the non-relativistic case, a single electron will have a spin g which is either up or down. The

corresponding wave function ¥, can then be written as a spin-orbital | U4, (r,0) = ¥(r)dsoq |




Quantum theory of two electrons

The quantum state of two electrons is described by the following wave function:

VU = \P(Xl,XQ),

where X and X> are the space-spin coordinates of the first and second electron,

Normalization condition:

/XmdeQ U(X1, X2)|? =1.

Electrons are indistinguishable particles:

real algebra

respectively.

U (X1, X2)|? = |[¥(X2, X1)|? = U(X1,Xo) = +¥(Xo, X1)

Electrons are fermionic particles. Therefore, they fulfill Pauli’s exclusion principle

(X, X))> =0

Conclusion: a physical two-electron wave function must fulfill the anti-symmetrization principle

U(X1,X2) = —U(X2, X1)




Slater determinants

Let {gp x (X) } K denote an orthonormal basis of (molecular) spin-orbitals. Two electrons that

occupy the spin-orbitals ¢;(X) and ¢ ;(X) will be described by the (normalized) Slater
determinant

1 er(X er(X 1 Di .
I ( 1) I ( 2) irac notation
©I7(X1,X2)_— — —
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Note that Slater determinants and, consequently, linear combinations of Slater determinants are
anti-symmetric.

Therefore, Slater determinants are convenient "building blocks" for computing the electronic
wavefunction.

Still, we may wonder if we really need this complicated expression obtained from the determinant
(obviously things get worse for a larger number of electrons).

Another drawback of the current formulation: Both Slater determinant and Hamiltonian expressions

depend on the number of electrons.




Many-electron wave functions and Dirac notation

e An N-electron system will be described by the following wave function:

\IJE\IJ(Xl,XQ,...,XN).

e In this (more general) case, the anti-symmetrization principle reads as

XZ'<—>X'

U(X1, X0, o, Xiy ooy Xjye) DX, X, X, X, )

e One may decompose U in a basis of Slater determinants {®; }:

\Ij(Xl,XQ, ce 7XN) = ch Q)&,()('l,)<27 o 7XN) Dirac notation

g 7

representation of |®g¢ )




“What is occupied?” rather than “Who occupies what?”

Since electrons are indistinguishable, there is no need to know that electron 1 occupies ¢; and
electron 2 occupies ¢ or the other way around...

The important information is that spin-orbitals ¢ ; and ¢ ; are occupied and the remaining ones are
empty.

Second quantization is a formalism that relies on this idea. Let me tell you a story...

At the beginning there was “nothing”:  |vac) <— normalized “vacuum state”, i.e., (vac|vac) = 1.

Then came the idea of introducing the quantum operator &; that creates an electron occupying ¢r:
&; [vac) = |pr).

We can also annihilate an electron occupying ¢; with the quantum operator ar, which is the adjoint
o
of a;.
I
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“What is occupied?” rather than “Who occupies what?”

e Applying to the vacuum two creation operators successively leads to another representation of a

two-electron Slater determinant:

alal|vac) = |®1s) = lerey).

e If we interpret &}d 1 as the occupation operator for the spin-orbital 7, then we should have

arlvac) =0 (rulel)

(Vac|&}d1|vac> =0 &

e In order to have a representation that is equivalent to the one used in first quantization, we only

need two more rules:

VI,J, arjay= (rule 2)

VI,J, ajal, =85 —alar| (rule3)




“What is occupied?” rather than “Who occupies what?”
Rule 2 describes the indistinguishability of the electrons,

and Pauli’s principle, d}&} [vac) = 0.

Rule 3 ensures that you can only annihilate what has already been created:

&I&Tj\va@ = d77|vac) — &E&ﬂvac) = 47 7|vac).

It is now very easy to generate representations of Slater determinants for an arbitrary number /V of
electrons through products of creation operators!

) =al al ...al  al |vac) det [{or, (X))} jen ]| = ®e(X1, -, Xn)

1
vV N

second quantization first quantization

In the following, we will use the notation




EXERCISE: | (1) Show that |I11>...Ix_1Ix) is normalized.

(2) Let us consider another state |J1J2 ... Jy_1Jn) and assume that at least one of the occupied
spin-orbitals (let us denote it ¢ 5, ) is not occupied in |I1 15 ... Iy _1In). Show that the two states are
orthogonal.

(3) The "counting” operator N isdefinedas N = Z ny where ny = &}& 7. Show that
I

arlhils.. . IN_1IN)=|Lis.. . In_1In) if I=1, 1<k<N

=0 otherwise

and conclude that | N|I1 Iz ... In_1In) = N|I1 Iz ... In_1In) |

(4) Explain why states corresponding to different numbers of electrons are automatically orthogonal.

(5) Explain why any normalized state | V) fulfills the condition | 0 < (U|n;|¥) <1 |




One-electron operators in second quantization

e Let i denote a one-electron operator (£ + ne for example): it acts on the one-electron states |¢;).

e Resolution of the identity: Z o) (er| =1,

which leads to the conventional representation (orlhles) e o] .

e Second-quantized representation:

Indeed,

(Z(thﬁﬂd a ) oK) = ( (prlhlps)ata )d}d‘fa@ = (Z(WMSOJ)&} 5JK> [vac)
I,

I,J J I,J

= (erlhler)ler) = hlek)
I




e What is convenient is that this second-quantized representation is valid for any number N of
electrons:

N
> h(i) > lerlhlegyata, = h

i=1 I,J

The information about /V has been completely transferred to the states. It does not appear in the
operator anymore.

EXERCISE: | Let us consider another orthonormal basis {gb x(X) } « of spin-orbitals that we
decompose in the current basis as follows, |pp) = Z Ugprleg)-
Q

(1) Show that the matrix U is unitary (UT = U~1).

(2) Explain why &}; = Z Ugp dg and show that Z(@ﬂﬁhﬁﬂ&}&j = h.
Q I,J

(3) Show that the diagonalization of & in the one-electron space leads automatically to the diagonalization
in the N-electron space (see the previous exercise).




Two-electron contributions to the second-quantized Hamiltonian

e The total electronic Hamiltonian reads in second quantization as follows [see the complements],

5 | ) e
H=> (prlhlps)alas + 5 > (proglieelwrr) atalarax
IJ [JKL

\ 7

=Wee

where  (pr|hlps) = /dX w1(X) X (fzgoj)(X) <+ one-electron integrals

(prog|ee|lprer) = //Xmng 07 (X1)p5(X2) X (weegngoL)(Xl,Xg) +two-electron integrals

e Note that this expression is also valid for a relativistic Hamiltonian. Two or four-component spinors
should be used rather than spin-orbitals in conjunction with the Dirac (Breit) Coulomb Hamiltonian.

e The standard (non-relativistic) Hamiltonian will be used in the following.




EXERCISE:

At the non-relativistic level, real algebra can be used, ¢;(X) = @is(r,7) = ¢i(r)d5r,

« 1 1
h N V% _|_ Une (I‘) X and wee = ——X .
2 Ir; — ra|

Show that the Hamiltonian, that is here a spin-free operator, can be rewritten in the basis of the molecular
orbitals {gbp(r)} as follows
p

where £, = Zd;,a&q,m hpg = ($p|hlde) and
g

(prlgs) = //drldrg Op(r1)or(r2) ———

Po—— Pq(r1)9s(r2) = (pqlrs).




EXERCISE:

For any normalized N-electron wavefunction ¥, we define the one-electron (1) and two-electron (2)
reduced density matrices (RDM) as follows,

(1) Show that the 1IRDM is symmetric and that Vp, the occupation n, = Dy, of the orbital p fulfills the
inequality 0 < n, < 2. Show that the trace of the IRDM equals N.

(2) Explain why the expectation value for the energy (¥U|H|¥) can be determined from the 2RDM.

1
Hint: show that D,, = N1 Z Dypgrr.

N/2
(3) Let us consider the particular case |V) — |®) = H H j . Explain why both density matrices

are non-zero only in the occupied-orbital space.

Show that D;; = 26;; and Dk = 40;;011 — 25jk57;l and ...




.. deduce the corresponding energy expression:

N/2 N/2
(P|H|P) —2Zhu+ > (2<w|zy <z‘j|jz'>>-

1,7=1

(4) Let ¢,5 and a,b denote occupied and unoccupied (virtuals) orbitals in & , respectively. Explain
why FE,; and EaiEAb ; are referred to as single excitation and double excitation operators, respectively.

1 1 .

Hint: derive simplified expressions for |[®¢) = — Fq;|®) and |<I>§jb) = iEmEbjkD) with

V2

1< 7, a<b.




Why “second” quantization?

e Let us focus on the (one-electron) electron-nuclei local potential operator which, in second
N
quantization, reads = Vpe = Une (1) = Z((p I|tnelpg)a } aj Wwhere
i=1

(o1lonel ) = / AX o (1)} (X)) (X),

thus leading to

Ve = /dX Vne(r) (Z X)aI> (Z or(X ) = /drvne(r)z Ul (r,0)¥(r,0) = Vae

1

\ A 7
TV TV

Ut (X) U(X)  « field operators

e For a single electron occupying the spin-orbital ¥(X) = ¥(r, o), the corresponding expectation
value for the electron-nuclei potential energy equals

<\If|”f)ne|\11> — /dX Une(r)qj*(X)\I/(X) :/




Complements




Two-electron operators in second quantization

e Let w denote a two-electron operator: it acts on two-electron states |prps) = |1: ¢1,2: @ ).

e A complete anti-symmetrized basis should be used for describing the two electrons:

1 At .
10) = —=(leres) = lpser)) = ajalvac)  with 1<

\/_

Consequently, any two-electron anti-symmetrized state |¥) shoud fulfill the condition

P4|U) = |¥) where Py = Z | 1J)Y(1J| +— projection operator!
I1<J

e Projection of the two-electron operator onto the space of anti-symmetrized states:

> (IJ|B|KL) [IJ)(KL|
I<J K<L




Two-electron operators in second quantization

1
EXERCISE: | Prove that .4 = _ > Aereglblerxer) atalapar

I1JKL

hint: apply w4 and the proposed second-quantized representation to | PQ) = d;dg lvac) (P < Q).
Conclude.

e What is convenient is that this second-quantized representation is valid for any number N of
electrons and includes the projection onto anti-symmetrized states:

N
1 NN | A statara ;
52 (i, j) = 3 > " (ereslblexer) dalarax = o
ij IJKL




e Physical interpretation of the field operators:

1 (X)lvac) = > @h(X)aflvac) = > @H(X)ler) = D len){erl X) =| 1X) = ¥ () vac)
1 I I

A

which means that Uf(X) = U (r, o) creates an electron at position r with spin o.

e Consequently, the density operator reads in second quantization | n(r) = Z Ul (r,o)¥(r,o)
(o2

and the electron density associated with the normalized N-electron wavefunction ¥ is simply
calculated as follows,

ny (r) = (V|a(r)|¥).

e Anticommutation rules: [\if(X), @(X’)] (X)er(X")[ay,ar], =0 and

+ IJ

B (X), W)

> es(X)eH(X) |asal] =3 e (X)ei(X)o1s
IJ * IJ

D (Xl {er|X') = (X|X') = §(X — X").
1




Model Hamiltonians: example of the Hubbard Hamiltonian

h"LJ — —t(5¢,j_1 +6’i,j—|—1) —I_gl(s’bj

A
A

EinEj — 0k By — hify — Ny

where n,; = Ezz = 'ﬁ!iT + ’fLN/ so that n;n; = Q’ﬁ,?ﬁﬁ,ii/ + n;

_tz Z &;'r,adj,a + UZ?%‘TTALQ + Zgz”fli
et N —

Ve

T (hopping) on-site repulsion local potential







