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Standard (first quantization) formalism

Atomic orbitals, molecular spin-orbitals, Slater determinants.

Second quantization formalism

Vacuum state, creation operators, annihilation operators,

excitation operators, one- and two-electron Hamiltonian operators.


Why “second” quantization?

Field operators, density operator, one-electron reduced density matrix, 

and one-electron Green function.
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(Gaussian) atomic orbitals 



(Gaussian) atomic orbitals 
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χ(r) s orbital∼ e−α(x2+y2+z2)

χ(r) px orbital∼ x e−α(x2+y2+z2)

χ(r)
dyz orbital

∼ yz e−α(x2+y2+z2)

z

M

O

x

y
⃗OM = r ≡ (x, y, z)



Atomic orbital basis 
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O

x

y

z

M

χA(r) = χ (r−RA)

RA

RB
r

“Paving space with atomic orbitals”

χA χB

χB(r) = χ (r−RB)



Atomic orbital basis 
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O

x

y

z

M

χA(r) = χ (r−RA)

RA

RB
r

“Paving space with atomic orbitals”

χA χB

px orbital∼ (x−XA) e−α((x−XA)2 + (y−YA)2 + (z−ZA)2)



Atomic orbital basis 
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O

x

y

z

M

χA(r) = χ (r−RA)

RA

RB
r

“Paving space with atomic orbitals”

χA χB

χB(r) = χ (r−RB)

⟨χA |χB⟩ = ∫ dr χA(r) χB(r) ≠ 0

Non-orthonormal  
basis!

Overlap



Molecular orbitals 
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O

x

y

z

M

φp(r) = CAp χA(r) + CBp χB(r)

RA

RB
r

χA χB

Label of the  
molecular orbital 

(bonding, anti-bonding,  
HOMO, LUMO, etc…)

Coefficients of the Molecular  
Orbital (CMOs)



Molecular orbitals 
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O

x

y

z

M

notation≡ ∑
μ

Cμp χμ(r)

RA

RB
r

χA χB

φp(r) = CAp χA(r) + CBp χB(r)



Molecular orbitals 
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O

x

y

z

M

RA

RB
r

χA χB

⟨φp |φq⟩ = ∫ dr φp(r)φq(r) = δpq

Eigenfunctions 
of some hermitian operator 
(Fock operator, for example)

Orthonormal  
basis!

Kronecker delta  
(=1 if � , 0 otherwise)p = q



Molecular spin-orbitals 
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φp(r) φp,α(r, σ) = φp(r) × δσα

φp

φp

φp,β(r, σ) = φp(r) × δσβ φp

Spin variable



Molecular spin-orbitals 
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φp,α(r, σ) = φα
p (r) × δσα φα

p

φp,β(r, σ) = φβ
p(r) × δσβ φβ

p

Unrestricted formalism



Molecular spin-orbitals 
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φP(x) notation≡ φp,τ(r, σ)

x notation≡ (r, σ)

∫ dx notation≡ ∑
σ=α,β

∫ dr

⟨φP |φQ⟩ = ∫ dx φ*P (x)φQ(x) = δPQ

Orthonormal  
basis!

τ = α or β



Two-electron wave functions 
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φP

φQ

1

2 φP(x1)φQ(x2)



Two-electron wave functions 
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φP

φQ

1

2 φP(x1)φQ(x2)

I distinguish the first electron 
from the second one

Hartree product
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φP

φQ

1

2 φP(x1)φQ(x2)

φP

φQ

1 2

φP(x1)φP(x2) ≠ 0

Two-electron wave functions 
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φP

φQ

1

2 φP(x1)φQ(x2)

φP

φQ

1 2

φP(x1)φP(x2) ≠ 0

Two-electron wave functions 

Violates the Pauli principle!



Two-electron wave functions 
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φP

φQ

1

2 φP(x1)φQ(x2)

Unphysical!



Slater determinants 

!20

1

2 (φP(x1)φQ(x2) − φP(x2)φQ(x1))
φP

φQ

1

2

φP

φQ

2

1
or

≡

φP

φQ
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1

2 (φP(x1)φQ(x2) − φP(x2)φQ(x1))
φP

φQ

1

2

φP

φQ

2

1
or

≡

φP

φQ

=

1

2

φP(x1) φP(x2)
φQ(x1) φQ(x2)

Slater determinant

Slater determinants 
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1

2 (φP(x1)φQ(x2) − φP(x2)φQ(x1))
φP

φQ

φP

φQ
0

Slater determinants 
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1

2 (φP(x1)φQ(x2) − φP(x2)φQ(x1))
φP

φQ

φP

φQ
0

Pauli principle fulfilled!

Slater determinants 
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1

2 (φP(x1)φQ(x2) − φP(x2)φQ(x1))
φP

φQ

Slater determinants 

φQ

φP

P ↔ Q

−
1

2 (φP(x1)φQ(x2) − φP(x2)φQ(x1))
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1

2 (φP(x1)φQ(x2) − φP(x2)φQ(x1))
φP

φQ

Slater determinants 

φQ

φP

P ↔ Q

−
1

2 (φP(x1)φQ(x2) − φP(x2)φQ(x1))

antisymmetric



Outline 
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Standard (first quantization) formalism

Atomic orbitals, molecular spin-orbitals, Slater determinants.

Second quantization formalism

Vacuum state, creation operators, annihilation operators,

excitation operators, one- and two-electron Hamiltonian operators.


Why “second” quantization?

Field operators, density operator, one-electron reduced density matrix, 

and one-electron Green function.
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1

2 (φP(x1)φQ(x2) − φP(x2)φQ(x1))

From first to second quantization 

φP

φQ

Representation 

in first quantization
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1

2 (φP(x1)φQ(x2) − φP(x2)φQ(x1))

From first to second quantization 

φP

φQ

Representation 

in first quantization

̂a†
P ̂a†

Q |vac⟩

Representation 

in second quantization
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Deciphering the second quantisation formalism 

̂a†
P ̂a†

Q |vac⟩

Read from right to left
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Deciphering the second quantisation formalism 

̂a†
P ̂a†

Q |vac⟩

Vacuum state
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Deciphering the second quantisation formalism 

̂a†
P ̂a†

Q |vac⟩

“zero electron” state

⟨vac |vac⟩ = 1

This is not the zero vector (whose square norm is zero) 
of the Hilbert space of many-electron quantum states
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Deciphering the second quantisation formalism 

̂a†
P ̂a†

Q |vac⟩

“zero electron” state

⟨vac |vac⟩ = 1

This is not the zero vector (whose square norm is zero) 
of the Hilbert space of many-electron (zero, one, two, three, etc.)  

quantum states
Fock space
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Deciphering the second quantisation formalism 

̂a†
P ̂a†

Q |vac⟩

Creation operator
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Deciphering the second quantisation formalism 

̂a†
P ̂a†

Q |vac⟩

Creation operator

Creates an electron  
that occupies the spin-orbital �  φQ
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Deciphering the second quantisation formalism 

̂a†
P ̂a†

Q |vac⟩

Another creation operator

Creates an electron  
that occupies the spin-orbital �  φP
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Deciphering the second quantisation formalism 

̂a†
P ̂a†

Q |vac⟩ = ̂a†
P( ̂a†

Q |vac⟩)

The product of two creation operators describes the composition 
of two creations (one after the other)
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Exploring the Fock space 

Encoding a Slater determinant for an arbitrary number N of electrons:

̂a†
P1

̂a†
P2

… ̂a†
PN−1

̂a†
PN

|vac⟩

φP1

φP2

φP3

φP4

…
φPN−1

φPN
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Anti-commutation rules 

̂a†
P ̂a†

Q = − ̂a†
Q ̂a†

P

P ↔ Q
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Anti-commutation rules 

̂a†
P ̂a†

Q = − ̂a†
Q ̂a†

P

P ↔ Q

̂a†
P ̂a†

Q |vac⟩ = − ̂a†
Q ̂a†

P |vac⟩
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Anti-commutation rules 

̂a†
P ̂a†

Q = − ̂a†
Q ̂a†

P

P ↔ Q

̂a†
P ̂a†

Q |vac⟩ = − ̂a†
Q ̂a†

P |vac⟩

P = Q

2 ̂a†
P ̂a†

P |vac⟩ = 0 Zero vector  
of the Fock space
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Anti-commutation rules 

̂a†
P ̂a†

Q = − ̂a†
Q ̂a†

P

P ↔ Q

̂a†
P ̂a†

Q |vac⟩ = − ̂a†
Q ̂a†

P |vac⟩

P = Q

̂a†
P ̂a†

P |vac⟩ = 0 Pauli principle!



!42

Annihilation operators 

̂a†
P Creation operator
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Annihilation operators 

̂a†
P Creation operator

“dagger” symbol 

�  is the adjoint of the operator �  ̂a†
P ̂aP
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Annihilation operators 

̂a†
P Creation operator

“dagger” symbol 

�  is the adjoint of the operator �  ̂a†
P ̂aP

⟨ ̂a†
PΨ |Φ⟩ = ⟨Ψ | ̂aPΦ⟩

Bra Ket
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Annihilation operators 

̂a†
P Creation operator

What is the physical meaning of � ?̂aP



!46

Annihilation operators 

̂a†
P Creation operator

1 = ⟨φP |φP⟩

Exercise:
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Annihilation operators 

̂a†
P Creation operator

≡ ⟨ ̂a†
Pvac | ̂a†

Pvac⟩

Exercise:

First quantization Second quantization

1 = ⟨φP |φP⟩
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Annihilation operators 

̂a†
P Creation operator

≡ ⟨ ̂a†
Pvac | ̂a†

Pvac⟩

Exercise:

First quantization Second quantization

1 = ⟨φP |φP⟩ = ⟨vac | ̂aP ̂a†
Pvac⟩

⟨ ̂a†
PΨ |Φ⟩ = ⟨Ψ | ̂aPΦ⟩

ΦΨ Ψ Φ

Mathematical definition 
of the adjoint
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Annihilation operators 

̂a†
P Creation operator

≡ ⟨ ̂a†
Pvac | ̂a†

Pvac⟩

Exercise:

First quantization Second quantization

1 = ⟨φP |φP⟩ = ⟨vac | ̂aP ̂a†
Pvac⟩ = 1 = ⟨vac |vac⟩
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Annihilation operators 

̂a†
P Creation operator

≡ ⟨ ̂a†
Pvac | ̂a†

Pvac⟩

Exercise:

First quantization Second quantization

1 = ⟨φP |φP⟩ = ⟨vac | ̂aP ̂a†
Pvac⟩ = 1 = ⟨vac |vac⟩
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Annihilation operators 

̂a†
P Creation operator

Conclusion:

⟨vac | ̂aP ̂a†
Pvac⟩ = ⟨vac |vac⟩
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Annihilation operators 

̂a†
P Creation operator

⟨vac | ̂aP ̂a†
Pvac⟩ = ⟨vac |vac⟩

Conclusion:

̂aP Annihilation operator

Removes an electron  
that occupies the spin-orbital �  φP
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Annihilation operators 

Zero vector  
of the Fock space

̂aP |vac⟩ = 0
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Anti-commutation rules 

̂a†
P ̂a†

Q = − ̂a†
Q ̂a†

P

P ↔ Q

̂aP ̂aQ = − ̂aQ ̂aP

P ↔ Q

Creation/creation operators Annihilation/annihilation operators
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Anti-commutation rules 

̂a†
P ̂a†

Q = − ̂a†
Q ̂a†

P

P ↔ Q

̂aP ̂aQ = − ̂aQ ̂aP

P ↔ Q

We need one more rule:

Annihilation/creation operators
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Anti-commutation rules 

̂a†
P ̂a†

Q = − ̂a†
Q ̂a†

P

P ↔ Q

̂aP ̂aQ = − ̂aQ ̂aP

P ↔ Q

We need one more rule: ̂aP ̂a†
Q = δPQ − ̂a†

Q ̂aP

Annihilation/creation operators
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Anti-commutation rules 

̂aP ̂a†
Q = δPQ − ̂a†

Q ̂aP

“You can only annihilate what has been created”
Second quantization, 20th century AD.
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Anti-commutation rules 

̂aP ̂a†
Q = δPQ − ̂a†

Q ̂aP

Exercise:

̂aP ̂a†
Q |vac⟩ = (δPQ − ̂a†

Q ̂aP) |vac⟩ = δPQ |vac⟩ − ̂a†
Q ̂aP |vac⟩ = δPQ |vac⟩

Second quantization, 20th century AD.

“You can only annihilate what has been created”
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Anti-commutation rules 

̂aP ̂a†
Q = δPQ − ̂a†

Q ̂aP

̂aP ̂a†
Q |vac⟩ P≠Q= 0

̂aP ̂a†
P |vac⟩ = |vac⟩

Conclusion:

Second quantization, 20th century AD.

“You can only annihilate what has been created”
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Anti-commutation rules 

̂aP ̂a†
Q = δPQ − ̂a†

Q ̂aP

This has something to do with the 
 orthonormality of the spin-orbital basis
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Anti-commutation rules 

̂aP ̂a†
Q = δPQ − ̂a†

Q ̂aP

Exercise:

⟨φP |φQ⟩ = ⟨ ̂a†
Pvac | ̂a†

Qvac⟩ = ⟨vac | ̂aP ̂a†
Qvac⟩

= δPQ⟨vac |vac⟩ − ⟨vac | ̂a†
Q ̂aPvac⟩

= δPQ

1 0
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Anti-commutation rules 

̂aP ̂a†
Q = δPQ − ̂a†

Q ̂aP

Exercise:

⟨φP |φQ⟩ = ⟨ ̂a†
Pvac | ̂a†

Qvac⟩ = ⟨vac | ̂aP ̂a†
Qvac⟩

= δPQ⟨vac |vac⟩ − ⟨vac | ̂a†
Q ̂aPvac⟩

= δPQ

1 0
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Summary of what you should memorise 

̂aP ̂a†
Q + ̂a†

Q ̂aP ≡ δPQ

⟨vac |vac⟩ = 1

̂aP |vac⟩ = 0

̂aP ̂aQ + ̂aQ ̂aP = ̂a†
P ̂a†

Q + ̂a†
Q ̂a†

P ≡ 0
Anti-commutation 

rules
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Encoding a many-body wave function in second quantisation 

Ĥ |Ψ⟩ = E |Ψ⟩

We want to solve the electronic Schrödinger equation:
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Encoding a many-body wave function in second quantisation 

Ĥ |Ψ⟩ = E |Ψ⟩

We want to solve the electronic Schrödinger equation:

|Ψ⟩ ≈ ∑
P1<P2<…<PN

CP1P2…PN
̂a†
P1

̂a†
P2

… ̂a†
PN−1

̂a†
PN

|vac⟩

Slater determinants

used as basis

Configuration Interaction 

(CI) coefficient

to be determined!
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Two-electron configuration interaction (CI) 

φ1

φ2

φ3

φ4

…
φM−1

φM � : dimension of the spin-orbital basisM

Reference Slater determinant  
(typically Hartree-Fock) |Φ0⟩ = ̂a†

1 ̂a†
2 |vac⟩
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Two-electron configuration interaction (CI) 

φ1

φ2

φ3

φ4

…
φM−1

φM

1 ≤ I, J ≤ 2 occupied orbitals

3 ≤ A, B ≤ M virtual orbitals

Reference
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Two-electron configuration interaction (CI) 

φ1

φ2

φ3

φ4

…
φM−1

φM

|Φ0⟩ = ̂a†
1 ̂a†

2 |vac⟩

φ1

φ2

φ3

φ4

…
φM−1

φM

|Φ4
2⟩ = ̂a†

4 ̂a2 |Φ0⟩

Reference Single excitation
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Two-electron configuration interaction (CI) 

φ1

φ2

φ3

φ4

…
φM−1

φM

|Φ0⟩ = ̂a†
1 ̂a†

2 |vac⟩

φ1

φ2

φ3

φ4

…
φM−1

φM

|Φ34
12⟩ = ̂a†

3 ̂a2 ̂a†
4 ̂a1 |Φ0⟩

Reference Double excitation
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Ĥ |Ψ⟩ = E |Ψ⟩

We want to solve the electronic Schrödinger equation:

Configuration interaction (CI) expansion of many-body wave functions  

|Ψ⟩ ≈ 1 + ∑
I,A

CA
I ̂a†

A ̂aI + ∑
I<J,A<B

CAB
IJ ̂a†

B ̂aJ ̂a†
A ̂aI + … |Φ0⟩

“singles” “doubles”

“triples”,  
“quadruples",  

…
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Ĥ |Ψ⟩ = E |Ψ⟩

We want to solve the electronic Schrödinger equation:

Configuration interaction (CI) expansion of many-body wave functions  

|Ψ⟩ ≈ 1 + ∑
I,A

CA
I ̂a†

A ̂aI + ∑
I<J,A<B

CAB
IJ ̂a†

B ̂aJ ̂a†
A ̂aI + … |Φ0⟩

to-be-determined CI coefficients
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 Electronic Hamiltonian in first quantisation (in atomic units)

Ĥ ≡
N

∑
i=1

ĥ(i) +
1
2

N

∑
i≠j

̂g(i, j)

ĥ(i) ≡ −
1
2

∇2
ri

+ vext(ri) ×

One-electron part Two-electron part

̂g(i, j) ≡
1

ri − rj
×

Kinetic energy+nuclear attraction Electronic repulsion
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One-electron Hamiltonian in second quantisation

 Let’s show that �  can be expressed in terms of creation and annihilation operators. ĥ
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Matrix representation of the one-electron Hamiltonian

ĥ ≡ {hPR} ≡

⟨φ1 | ĥ |φ1⟩

⟨φ2 | ĥ |φ1⟩

⟨φ1 | ĥ |φ2⟩

⟨φ3 | ĥ |φ1⟩

⋮

…
⟨φ2 | ĥ |φR⟩⟨φ2 | ĥ |φ2⟩

⟨φ1 | ĥ |φR⟩

⟨φ3 | ĥ |φ2⟩ ⟨φ3 | ĥ |φR⟩

⋮
⟨φP | ĥ |φR⟩…

…
…

⋮…

⋮
⟨φP | ĥ |φ1⟩ ⟨φP | ĥ |φ2⟩

…

…

…
…
…

⋮ ⋮ … …

⟨φP | ĥ |φR⟩ = ∫ dx φ*P (x) ĥφR(x)one-electron integrals
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Matrix representation of the one-electron Hamiltonian

ĥ |φR⟩ = ∑
P

⟨φP | ĥ |φR⟩ |φP⟩

ĥ ≡ {hPR} ≡

⟨φ1 | ĥ |φ1⟩

⟨φ2 | ĥ |φ1⟩

⟨φ1 | ĥ |φ2⟩

⟨φ3 | ĥ |φ1⟩

⋮

…
⟨φ2 | ĥ |φR⟩⟨φ2 | ĥ |φ2⟩

⟨φ1 | ĥ |φR⟩

⟨φ3 | ĥ |φ2⟩ ⟨φ3 | ĥ |φR⟩

⋮
⟨φP | ĥ |φR⟩…

…
…

⋮…

⋮
⟨φP | ĥ |φ1⟩ ⟨φP | ĥ |φ2⟩

…

…

…
…
…

⋮ ⋮ … …
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One-electron Hamiltonian in second quantisation

Exercise:

ĥ |φR⟩ = ∑
P

⟨φP | ĥ |φR⟩ |φP⟩
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One-electron Hamiltonian in second quantisation

Exercise:

ĥ |φR⟩ = ∑
P

⟨φP | ĥ |φR⟩ |φP⟩ = ∑
PQ

⟨φP | ĥ |φQ⟩ δQR |φP⟩
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One-electron Hamiltonian in second quantisation

Exercise:

ĥ |φR⟩ = ∑
P

⟨φP | ĥ |φR⟩ |φP⟩ = ∑
PQ

⟨φP | ĥ |φQ⟩ δQR |φP⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ δQR ̂a†
P |vac⟩
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One-electron Hamiltonian in second quantisation

Exercise:

ĥ |φR⟩ = ∑
P

⟨φP | ĥ |φR⟩ |φP⟩ = ∑
PQ

⟨φP | ĥ |φQ⟩ δQR |φP⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ δQR ̂a†
P |vac⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P δQR |vac⟩
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One-electron Hamiltonian in second quantisation

Exercise:

ĥ |φR⟩ = ∑
P

⟨φP | ĥ |φR⟩ |φP⟩ = ∑
PQ

⟨φP | ĥ |φQ⟩ δQR |φP⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ δQR ̂a†
P |vac⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P δQR |vac⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ( ̂aQ ̂a†

R + ̂a†
R ̂aQ) |vac⟩

Anti-commutation rule
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One-electron Hamiltonian in second quantisation

Exercise:

ĥ |φR⟩ = ∑
P

⟨φP | ĥ |φR⟩ |φP⟩ = ∑
PQ

⟨φP | ĥ |φQ⟩ δQR |φP⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ δQR ̂a†
P |vac⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P δQR |vac⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ( ̂aQ ̂a†

R + ̂a†
R ̂aQ) |vac⟩

0
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One-electron Hamiltonian in second quantisation

Exercise:

ĥ |φR⟩ = ∑
P

⟨φP | ĥ |φR⟩ |φP⟩ = ∑
PQ

⟨φP | ĥ |φQ⟩ δQR |φP⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ δQR ̂a†
P |vac⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P δQR |vac⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ( ̂aQ ̂a†

R + ̂a†
R ̂aQ) |vac⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ ̂a†

R |vac⟩
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One-electron Hamiltonian in second quantisation

Exercise:

ĥ |φR⟩ = ∑
P

⟨φP | ĥ |φR⟩ |φP⟩ = ∑
PQ

⟨φP | ĥ |φQ⟩ δQR |φP⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ δQR ̂a†
P |vac⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P δQR |vac⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ( ̂aQ ̂a†

R + ̂a†
R ̂aQ) |vac⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ ̂a†

R |vac⟩

|φR⟩
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One-electron Hamiltonian in second quantisation

Exercise:

ĥ |φR⟩ = ∑
P

⟨φP | ĥ |φR⟩ |φP⟩ = ∑
PQ

⟨φP | ĥ |φQ⟩ δQR |φP⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ δQR ̂a†
P |vac⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P δQR |vac⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ( ̂aQ ̂a†

R + ̂a†
R ̂aQ) |vac⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ ̂a†

R |vac⟩

= ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ |φR⟩ĥ |φR⟩
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One-electron Hamiltonian in second quantisation

= ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQĥ
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One-electron Hamiltonian in second quantisation

ĥ = ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ ≡

N

∑
i=1

ĥ(i)

Valid over the entire Fock space!
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Two-electron repulsion operator in second quantisation

1
2

N

∑
i≠j

̂g(i, j) ≡
1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂a†
P ̂a†

Q ̂aS ̂aR

N

∑
i=1

ĥ(i) ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ One-electron operator

Two-electron operator
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Two-electron repulsion operator in second quantisation

1
2

N

∑
i≠j

̂g(i, j) ≡
1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂a†
P ̂a†

Q ̂aS ̂aR

N

∑
i=1

ĥ(i) ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ One-electron operator

Two-electron operator
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Two-electron repulsion operator in second quantisation

1
2

N

∑
i≠j

̂g(i, j) ≡
1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂a†
P ̂a†

Q ̂aS ̂aR

Two-electron integrals ≡ (PR, QS)
in Vincent Robert's lecture

∫ dx1 ∫ dx2 φ*P (x1)φ*Q(x2)
1

|r1 − r2 |
φR(x1)φS(x2)
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Total Hamiltonian in second quantisation

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂a†
P ̂a†

Q ̂aS ̂aR



Outline 
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Standard (first quantization) formalism

Atomic orbitals, molecular spin-orbitals, Slater determinants.

Second quantization formalism

Vacuum state, creation operators, annihilation operators,

excitation operators, one- and two-electron Hamiltonian operators.


Why “second” quantization?

Field operators, density operator, one-electron reduced density matrix, 

and one-electron Green function.
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Why “second” quantisation?

ĥ = ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ

Exercise:
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Why “second” quantisation?

ĥ = ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ

Exercise:

= ∑
PQ

∫ dx φ*P (x)(−
1
2

∇2
r + vext(r)) φQ(x) ̂a†

P ̂aQ

one-electron integrals
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Why “second” quantisation?

ĥ = ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ

Exercise:

= ∑
PQ

∫ dx φ*P (x)(−
1
2

∇2
r + vext(r)) φQ(x) ̂a†

P ̂aQ

= ∫ dx ∑
P

φ*P (x) ̂a†
P (−

1
2

∇2
r + vext(r))∑

Q

φQ(x) ̂aQ
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Why “second” quantisation?

ĥ = ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ

Exercise:

= ∫ dx ∑
P

φ*P (x) ̂a†
P (−

1
2

∇2
r + vext(r))∑

Q

φQ(x) ̂aQ

= ∫ dx Ψ̂†(x)(−
1
2

∇2
r + vext(r)) Ψ̂(x)

= ∑
PQ

∫ dx φ*P (x)(−
1
2

∇2
r + vext(r)) φQ(x) ̂a†

P ̂aQ

Notation
Notation
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Why “second” quantisation?

ĥ = ∫ dx Ψ̂†(x)(−
1
2

∇2
r + vext(r)) Ψ̂(x)
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Why “second” quantisation?

⟨Ψ | ĥ |Ψ⟩ = ∫ dx Ψ*(x)(−
1
2

∇2
r + vext(r)) Ψ(x)

We learn in textbooks that, for a single electron, 

ĥ = ∫ dx Ψ̂†(x)(−
1
2

∇2
r + vext(r)) Ψ̂(x)
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Why “second” quantisation?

Ψ(x)
Wave function 

(complex number)

Ψ̂(x)
(so-called) field operator 

Quantum theory

of a single particle 

“Quantised” version of

the single particle

 quantum theory

= ∑
Q

φQ(x) ̂aQ
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n(x) = Ψ*(x)Ψ(x)
Density of probability 

(real number)

̂n(x) = Ψ̂†(x)Ψ̂(x)
Density operator 

Quantum theory

of a single particle 

Density operator

“Quantised” version of

the single particle

 quantum theory
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Electron density

If �  is a many-body wave function encoded in second quantization,

its density can be evaluated as follows: 

Φ

nΦ(x) = ⟨Φ | ̂n(x) |Φ⟩ = ⟨Φ |Ψ̂†(x)Ψ̂(x) |Φ⟩
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nΦ(x) = ⟨Φ | ̂n(x) |Φ⟩ = ⟨Φ |Ψ̂†(x)Ψ̂(x) |Φ⟩

Electron density

If �  is a many-body wave function encoded in second quantization,

its density can be evaluated as follows: 

Φ

= ∑
P

φ*P (x)φQ(x) ⟨Φ | ̂a†
P ̂aQ |Φ⟩

Ψ̂(x) = ∑
Q

φQ(x) ̂aQ

If we return to the spin-orbital basis…
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nΦ(x) = ⟨Φ | ̂n(x) |Φ⟩ = ⟨Φ |Ψ̂†(x)Ψ̂(x) |Φ⟩

Density operator

If �  is a many-body wave function encoded in second quantization,

its density can be evaluated as follows: 

Φ

= ∑
P

φ*P (x)φQ(x) ⟨Φ | ̂a†
P ̂aQ |Φ⟩

One-electron reduced  
density matrix elements

γPQ
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One-electron reduced density matrix (in real space)

If �  is a many-body wave function encoded in second quantization,

its density matrix can be evaluated as follows: 

Φ

γ(x1, x2) = ⟨Φ |Ψ̂†(x1)Ψ̂(x2) |Φ⟩
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Ψ̂†(x1)

One-electron Green function (in real space)

Ψ̂†(1) ≡ Ψ̂†(x1, t1) = eiĤt1 Ψ̂†(x1) e−iĤt1
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Ψ̂†(x1)

One-electron Green function (in real space)

Ψ̂†(1) ≡ Ψ̂†(x1, t1) = eiĤt1 Ψ̂†(x1) e−iĤt1

i2 = − 1
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Ψ̂†(x1)

One-electron Green function (in real space)

Ψ̂†(1) ≡ Ψ̂†(x1, t1) = eiĤt1 Ψ̂†(x1) e−iĤt1

Ψ̂(x2) Ψ̂(2) ≡ Ψ̂(x2, t2) = eiĤt2 Ψ̂(x2) e−iĤt2

⟨Φ |Ψ̂†(1)Ψ̂(2) |Φ⟩
t1>t2≡ − iG(2, 1)γ(x1, x2)

Time-ordered one-electron 
Green function
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Ψ̂†(x1)

One-electron Green function (in real space)

Ψ̂†(1) ≡ Ψ̂†(x1, t1) = eiĤt1 Ψ̂†(x1) e−iĤt1

Ψ̂(x2) Ψ̂(2) ≡ Ψ̂(x2, t2) = eiĤt2 Ψ̂(x2) e−iĤt2

⟨Φ |Ψ̂†(1)Ψ̂(2) |Φ⟩
t1>t2≡ − iG(2, 1)γ(x1, x2)


