Emmanuel Fromager

Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg / CNRS

M2 lecture, Strasbourg, France.

YouTube video: https://www.youtube.com/watch?v=c-48MoitBBU

Slides used in the video (part 2): https://quantique.u-strasbg.fr/ISTPC/lib/exe/fetch.php?media=istpc2021:istpc2021_mc_quantum_chem.pdf

Variational and non-variational approximations

• The exact electronic ground state Ψ_0 and its energy E_0 can be obtained two ways:

$$E_0 = \min_{\Psi} \frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\langle \Psi_0 | \hat{H} | \Psi_0 \rangle}{\langle \Psi_0 | \Psi_0 \rangle}$$

$$\hat{H}|\Psi_0\rangle = E_0|\Psi_0\rangle$$

• Approximate parametrized ground-state wave function: $\Psi(\lambda_0)$

where λ_0 denotes the complete set of optimized parameters.

Variational calculation

Non-variational calculation

$$\frac{\partial}{\partial \boldsymbol{\lambda}} \frac{\langle \Psi(\boldsymbol{\lambda}) | \hat{H} | \Psi(\boldsymbol{\lambda}) \rangle}{\langle \Psi(\boldsymbol{\lambda}) | \Psi(\boldsymbol{\lambda}) \rangle} \bigg|_{\boldsymbol{\lambda} = \boldsymbol{\lambda}_0} = 0$$

$$\hat{H}|\Psi(\lambda)\rangle - E(\lambda)|\Psi(\lambda)\rangle = 0$$
 for $\lambda = \lambda_0$

 \downarrow

Hartree-Fock (HF)
Configuration Interaction (CI)

Many-Body Perturbation Theory (MBPT)
Coupled Cluster (CC)

Multi-Configurational Self-Consistent Field (MCSCF)

Short-range dynamical correlation

LUMO — LUMO — LUMO

Ground-state configuration singly-excited conf. doubly-excited conf.

Static correlation

Static correlation

• H₂ in the equilibrium geometry:

$$|\Psi_0\rangle = C_0|1\sigma_g^\alpha 1\sigma_g^\beta\rangle + \dots$$
 where $|C_0|^2 = 98\%$ no static correlation

• In the dissociation limit: $H_A...H_B$ and not $H_A^-...H_B^+$ or $H_A^+...H_B^-$

$$\phi_{1\sigma_g}(\mathbf{r}) = \frac{1}{\sqrt{2}} \left(\phi_{1s_A}(\mathbf{r}) + \phi_{1s_B}(\mathbf{r}) \right) \quad \text{and} \quad \phi_{1\sigma_u}(\mathbf{r}) = \frac{1}{\sqrt{2}} \left(\phi_{1s_A}(\mathbf{r}) - \phi_{1s_B}(\mathbf{r}) \right)$$
$$|1\sigma_g^{\alpha} 1\sigma_g^{\beta}\rangle = \frac{1}{2} \left(|1s_A^{\alpha} 1s_B^{\beta}\rangle + |1s_B^{\alpha} 1s_A^{\beta}\rangle + |1s_A^{\alpha} 1s_A^{\beta}\rangle + |1s_B^{\alpha} 1s_B^{\beta}\rangle \right)$$
$$-|1\sigma_u^{\alpha} 1\sigma_u^{\beta}\rangle = \frac{1}{2} \left(|1s_A^{\alpha} 1s_B^{\beta}\rangle + |1s_B^{\alpha} 1s_A^{\beta}\rangle - |1s_A^{\alpha} 1s_A^{\beta}\rangle - |1s_B^{\alpha} 1s_B^{\beta}\rangle \right)$$

$$|\Psi_0\rangle = \frac{1}{\sqrt{2}} \left(|1\sigma_g^{\alpha} 1 \sigma_g^{\beta}\rangle - |1\sigma_u^{\alpha} 1 \sigma_u^{\beta}\rangle \right)$$

strong static correlation

H₂ in a minimal basis

EXERCISE:

(1) Show that the Hamiltonian matrix for H_2 can be written in the basis of the two single-determinant states $|1\sigma_g^{\alpha}1\sigma_g^{\beta}\rangle$ and $|1\sigma_u^{\alpha}1\sigma_u^{\beta}\rangle$ as follows,

$$[\hat{H}] = \left[egin{array}{cc} E_g & K \ K & E_u \end{array}
ight], \quad ext{where}$$

for
$$i = g, u$$
, $E_i = 2h_{ii} + \langle 1\sigma_i 1\sigma_i | 1\sigma_i 1\sigma_i \rangle$, $h_{ii} = \langle 1\sigma_i | \hat{h} | 1\sigma_i \rangle$, $K = \langle 1\sigma_u 1\sigma_u | 1\sigma_g 1\sigma_g \rangle$.

- (2) In the following, we use the minimal basis consisting of the two 1s atomic orbitals. Explain why, in the dissociation limit, $E_g=E_u$ and $K=\frac{1}{2}\langle 1s1s|1s1s\rangle>0$.
- (3) Conclude that, in the dissociation limit, the ground state is multiconfigurational and does correspond to two neutral hydrogen atoms with energy $(E_g K)$.

Multi-Configurational Self-Consistent Field model (MCSCF)

• The MCSCF model consists in performing a CI calculation with a *reoptimization of the orbitals*:

$$|\Psi(\kappa, \mathbf{C})\rangle = e^{-\hat{\kappa}} \left(\sum_{\xi} C_{\xi} | \det_{\xi} \rangle \right)$$
 where $\mathbf{C} \equiv \{C_{\xi}\}$ and $\kappa \equiv \{\kappa_{pq}\}.$

- The parameters \mathbf{C} and $\boldsymbol{\kappa}$ are optimized *variationally* i.e. by minimizing $\frac{\langle \Psi(\boldsymbol{\kappa}, \mathbf{C}) | \hat{H} | \Psi(\boldsymbol{\kappa}, \mathbf{C}) \rangle}{\langle \Psi(\boldsymbol{\kappa}, \mathbf{C}) | \Psi(\boldsymbol{\kappa}, \mathbf{C}) \rangle}$.
- The MCSCF model is a *multiconfigurational extension of HF* which aims at describing *static correlation*: a limited number of determinants should be sufficient.
- Short-range dynamical correlation is treated afterwards (post-MCSCF models).
- Choice of the determinants: *active space*

H...H 2 electrons in 2 orbitals
$$(1\sigma_q, 1\sigma_u)$$
 \longrightarrow 2/2

Be 2 electrons in 4 orbitals $(2s, 2p_x, 2p_y, 2p_z) \longrightarrow 2/4$

Multi-Configurational Self-Consistent Field model (MCSCF)

 $\bullet \ \ \text{Complete Active Space (CAS) for Be:} \ \ |1s^22s^2\rangle, |1s^22p_x^2\rangle, |1s^22p_y^2\rangle, |1s^22p_z^2\rangle,$

if all the determinants are included in the MCSCF calculation \longrightarrow CASSCF

if a Restricted Active Space (RAS) is used \longrightarrow

• The orbital space is now divided in three:

doubly occupied molecular orbitals (inactive) ϕ_i, ϕ_i, \dots 1s

active molecular orbitals ϕ_u, ϕ_v, \dots $2s, 2p_x, 2p_y, 2p_z$

unoccupied molecular orbitals (virtuals) ϕ_a, ϕ_b, \dots $3s, 3p, 3d, \dots$

RASSCF

Multi-Configurational Self-Consistent Field model (MCSCF)

EXERCISE: In order to illustrate with H_2 the fact that active orbitals can be partially occupied, show that the active part of the density matrix ${}^{A}\mathbf{D}$, defined as

$${}^{A}\mathbf{D}_{vw} = \langle \Psi | \hat{E}_{vw} | \Psi \rangle,$$

where
$$|\Psi\rangle = \frac{1}{\sqrt{1+c^2}} \Big(|1\sigma_g^{\alpha} 1 \sigma_g^{\beta}\rangle - c|1\sigma_u^{\alpha} 1 \sigma_u^{\beta}\rangle \Big)$$
,

equals

$${}^{A}\mathbf{D} = \begin{bmatrix} \frac{2}{1+c^2} & 0\\ 0 & \frac{2c^2}{1+c^2} \end{bmatrix}.$$

<u>Note</u>: In the particular case of a single determinantal wave function (c = 0) the active density matrix

reduces to
$$\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$
.

Multi-Reference Perturbation Theory (MRPT)

• *General perturbative energy expression through second order:*

$$E_0 pprox \langle \Psi_{
m MC} | \hat{H} | \Psi_{
m MC}
angle + \sum_{\mathcal{P}}^{
m perturbers} rac{\langle \Psi_{\mathcal{P}} | \hat{H} | \Psi_{
m MC}
angle^2}{\mathcal{E}_{
m MC} - \mathcal{E}_{\mathcal{P}}}$$

• Multi-reference extension of MP2:

unperturbed wave function
$$|\Phi_{\rm HF}\rangle \longrightarrow |\Psi_{\rm MC}\rangle$$
 unperturbed energy
$$E^{(0)} = 2\sum_{i}\varepsilon_{i} \longrightarrow \mathcal{E}_{\rm MC} =???$$
 perturbers
$$|D\rangle \longrightarrow |\Psi_{\mathcal{P}}\rangle =??? \stackrel{\rm NEVPT2^{b}}{\longleftarrow} \hat{H}|\Psi_{\rm MC}\rangle$$
 zeroth-order excited energies
$$E^{(0)} + \varepsilon_{a} + \varepsilon_{b} - \varepsilon_{i} - \varepsilon_{j} \longrightarrow \mathcal{E}_{\mathcal{P}} =???$$
 unperturbed Hamiltonian
$$\hat{H}_{0} = \hat{F} \longrightarrow \mathcal{E}_{\rm MC}|\Psi_{\rm MC}\rangle\langle\Psi_{\rm MC}| + \sum_{\mathcal{P}} \mathcal{E}_{\mathcal{P}}|\Psi_{\mathcal{P}}\rangle\langle\Psi_{\mathcal{P}}| =???$$

• Standard approaches are $CASPT2^a$ and N-electron valence state PT2 (NEVPT2) b .

^a K. Andersson, P. Å. Malmqvist, and B. O. Roos, J.Chem. Phys. 96, 1218 (1992). ^b C. Angeli, R. Cimiraglia, and J.P. Malrieu, J. Chem. Phys. 117, 9138 (2002).

Schematics of a photochemical process

State-averaged MCSCF approach

• Gross–Oliveira–Kohn (GOK) variational principle for an ensemble of ground and excited states:

For any set $\{\Psi_I\}_{I=1,\mathcal{N}}$ of \mathcal{N} orthonormal states, the following inequality holds [Phys. Rev. A 37, 2805 (1988)],

$$\sum_{I=1}^{\mathcal{N}} w_I \langle \Psi_I | \hat{H} | \Psi_I \rangle \ge \sum_{I=1}^{\mathcal{N}} w_I E_I$$

where $E_1 \leq E_2 \leq \ldots \leq E_N$ are the N lowest exact eigenvalues of \hat{H} , and the weights are ordered as follows,

$$w_1 \geq w_2 \geq \ldots \geq w_{\mathcal{N}} > 0.$$

- The state-averaged MCSCF model consists in using a MCSCF parameterization for each Ψ_I .
- All the states are usually described with the *same* set of (so-called *state-averaged*) molecular orbitals.
- Short-range dynamical correlation is usually recovered within multi-reference perturbation theory (multi-state CASPT2 or NEVPT2, for example).

• Iterative optimization of the orbital rotation vector κ and the CI coefficients C_i :

Iterative optimization of the orbital rotation vector
$$\kappa$$
 and the CI coefficients C_i :
$$|\Psi^{(0)}\rangle = \sum_i C_i^{(0)}|i\rangle \qquad \qquad \qquad \text{normalized starting wave function}$$

$$|\Psi(\pmb{\lambda})\rangle = e^{-\hat{\kappa}} \; \frac{|\Psi^{(0)}\rangle + \hat{Q}|\pmb{\delta}\rangle}{\sqrt{1 + \langle \pmb{\delta}|\hat{Q}|\pmb{\delta}\rangle}} \qquad \leftarrow \qquad \text{convenient parametrization} \quad \pmb{\lambda} = \begin{bmatrix} \vdots \\ \kappa_{pq} \\ \vdots \\ \delta_i \\ \vdots \end{bmatrix} \; p > q$$

$$\hat{Q} = 1 - |\Psi^{(0)}\rangle\langle\Psi^{(0)}|, \qquad |\pmb{\delta}\rangle = \sum_i \delta_i |i\rangle, \qquad \langle\Psi^{(0)}|\hat{Q}|\pmb{\delta}\rangle = 0, \qquad \langle\Psi(\pmb{\lambda})|\Psi(\pmb{\lambda})\rangle = 1$$

- MCSCF energy expression: $E(\lambda) = \langle \Psi(\lambda) | \hat{H} | \Psi(\lambda) \rangle$
- $\left| E_{\lambda_{+}}^{[1]} = \left| \frac{E_{\lambda_{+}}^{o[1]}}{E_{\lambda_{-}}^{o[1]}} \right| = 0 \right| \quad \text{where} \quad \left| E_{\lambda_{+}}^{o[1]} = \frac{\partial E(\lambda)}{\partial \kappa} \right|_{\lambda_{+}}$ Variational optimization:

and
$$E_{\lambda_{+}}^{\mathrm{c[1]}} = \left. \frac{\partial E(\lambda)}{\partial \delta} \right|_{\lambda_{+}}$$

• Newton method:

$$E(\lambda) \approx E(0) + \lambda^{T} E_{0}^{[1]} + \frac{1}{2} \lambda^{T} E_{0}^{[2]} \lambda \quad \rightarrow \quad E_{\lambda_{+}}^{[1]} \approx E_{0}^{[1]} + E_{0}^{[2]} \lambda_{+} = 0 \quad \rightarrow \quad E_{0}^{[2]} \underbrace{\lambda_{+}}_{\bullet} = -E_{0}^{[1]}$$

Newton step

• Convergence reached when $E_0^{[1]} = 0$

EX7: Show that
$$E_{0,pq}^{o[1]} = \langle \Psi^{(0)} | [\hat{E}_{pq} - \hat{E}_{qp}, \hat{H}] | \Psi^{(0)} \rangle$$
 and $E_{0}^{c[1]} = 2 \Big(\mathbf{H}^{CAS} - E(0) \Big) \mathbf{C}^{(0)}$

where
$$\mathbf{H}_{ij}^{\mathrm{CAS}} = \langle i|\hat{H}|j \rangle$$
 and $\mathbf{C}^{(0)} = \begin{bmatrix} \vdots \\ C_i^{(0)} \\ \vdots \end{bmatrix}$

Note: $E_0^{o[1]} = 0$ is known as generalized Brillouin theorem.

EXERCISE: Prove GOK's theorem in the particular case of two states by using Theophilou's variational principle: $\langle \Psi_1 | \hat{H} | \Psi_1 \rangle + \langle \Psi_2 | \hat{H} | \Psi_2 \rangle \geq E_1 + E_2$. **Hint**: Show that

$$w_1 \langle \Psi_1 | \hat{H} | \Psi_1 \rangle + w_2 \langle \Psi_2 | \hat{H} | \Psi_2 \rangle = w_2 \left[\langle \Psi_1 | \hat{H} | \Psi_1 \rangle + \langle \Psi_2 | \hat{H} | \Psi_2 \rangle \right] + (w_1 - w_2) \langle \Psi_1 | \hat{H} | \Psi_1 \rangle$$

EXERCISE: Proof of Theophilou's variational principle for two states

(1) Let $\Delta = \langle \Psi_1 | \hat{H} | \Psi_1 \rangle + \langle \Psi_2 | \hat{H} | \Psi_2 \rangle - E_1 - E_2$. We consider the complete basis of the exact eigenvectors $\{\tilde{\Psi}_I\}_{I=1,2,...}$ of \hat{H} with eigenvalues $\{E_I\}_{I=1,2,...}$ Both trial wavefunctions can be expanded in that basis as follows,

$$|\Psi_K\rangle = \sum_I C_{KI} |\tilde{\Psi}_I\rangle, \qquad K = 1, 2.$$

Show that
$$\Delta = \sum_{I=1}^{2} (p_I - 1)E_I + \sum_{I>2} p_I E_I$$
 where $p_I = C_{1I}^2 + C_{2I}^2$.

(2) Show that
$$\Delta = \sum_{I=1}^{2} (1 - p_I)(E_2 - E_I) + \sum_{I>2} p_I(E_I - E_2)$$
. Hint: prove first that $\sum_I p_I = 2$.

(3) Let us now decompose the two first eigenvectors (I = 1, 2) in the basis of the trial wavefunctions and the orthogonal complement: $|\tilde{\Psi}_I\rangle = C_{1I}|\Psi_1\rangle + C_{2I}|\Psi_2\rangle + \hat{Q}_{12}|\tilde{\Psi}_I\rangle$ where

$$\hat{Q}_{12}=1-\sum_{K=1}^{2}|\Psi_{K}\rangle\langle\Psi_{K}|.$$
 Explain why $p_{I}\leq1$ when $I=1,2$ and conclude.

State-averaged MCSCF approach

- State-averaged MCSCF model: simultaneous optimization of the ground and the lowest $\mathcal{N}-1$ excited states at the MCSCF level.
- Iterative procedure: N initial orthonormal states are built from the same set of orbitals.

$$|\Psi_I^{(0)}\rangle = \sum_i C_{I,i}^{(0)} |i\rangle, \qquad I = 1, \dots, \mathcal{N}$$

• Double-exponential parametrization:

$$|\Psi_{I}(\boldsymbol{\kappa}, \mathbf{S})\rangle = e^{-\hat{\boldsymbol{\kappa}}} e^{-\hat{\boldsymbol{S}}} |\Psi_{I}^{(0)}\rangle \qquad \text{where} \qquad \hat{\boldsymbol{S}} = \sum_{J=1}^{\mathcal{N}} \sum_{K>J} S_{KJ} \Big(|\Psi_{K}^{(0)}\rangle \langle \Psi_{J}^{(0)}| - |\Psi_{J}^{(0)}\rangle \langle \Psi_{K}^{(0)}| \Big)$$

and
$$\sum_i |i\rangle\langle i| = \sum_K |\Psi_K^{(0)}\rangle\langle\Psi_K^{(0)}|$$

State-averaged MCSCF approach

• State-averaged energy:
$$E(\kappa, \mathbf{S}) = \sum_{I=1}^{N} w_I \langle \Psi_I(\kappa, \mathbf{S}) | \hat{H} | \Psi_I(\kappa, \mathbf{S}) \rangle$$

where w_I are arbitrary weights. In the so-called "equal weight" state-averaged MCSCF calculation $w_I = \frac{1}{N}$.

- Variational optimization: $\frac{\partial E(\kappa, \mathbf{S})}{\partial \kappa} = \frac{\partial E(\kappa, \mathbf{S})}{\partial \mathbf{S}} = 0$
- Note that, in contrast to the exact theory, converged individual energies (and therefore excitation energies) may vary with the weights. This is due to the orbital optimization.