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Variational and non-variational approximations

e The exact electronic ground state ¥ and its energy Eg can be obtained two ways:

Eo = min e 1Y) (YolH Do) H|Vo) = Eo| o)
v (P|W) (Wo|Wo)

e Approximate parametrized ground-state wave function: W(Ao)

where Ao denotes the complete set of optimized parameters.

Variational calculation Non-variational calculation

0 (T(N)|H|T(N))

X (T[T HIT(A) — EQ)[W(A)) =0 for A= Xg

A=X\g
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Multi-Configurational Self-Consistent Field (MCSCF)
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Short-range dynamical correlation

Ground-state configuration singly-excited conf. doubly-excited conf.




Static correlation




Static correlation

e Hos in the equilibrium geometry:

W) = Co|1a§‘105> +...| where |Cy|? = 98% no static correlation

e In the dissociation limit: H4...Hp and not H,... HE or Hj;. . Hg

610, (0) = T (010, + 0105 @) and G101 = = (6104 () — b0, ()

1
10510f) = = (1155 1s) + |15 1s5)+[1s5155) + [1s315%))

1
o108 = - (11s%1sB) + 15 1s5) —[1s5155) — [1s315%))

(| loy 105 ) — 169107 >) strong static correlation




H, in a minimal basis

EXERCISE:

(1) Show that the Hamiltonian matrix for Ho can be written in the basis of the two single-determinant

states |1a‘g)‘105 )and |10 105) as follows,

B, K
[H]| = ,  where
K By

for i=g,u, F;=2hy+ (loslo;|loslo;), hi = (log|hlloy), K = (loylou|logloy).

(2) In the following, we use the minimal basis consisting of the two 1s atomic orbitals. Explain why, in the

1
dissociation limit, E, = FE, and K = 5(1513\1513> > 0.

(3) Conclude that, in the dissociation limit, the ground state is multiconfigurational and does correspond
to two neutral hydrogen atoms with energy (£, — K).
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Multi-Configurational Self-Consistent Field model (MCSCEF)

The MCSCF model consists in performing a CI calculation with a reoptimization of the orbitals:

¥ (k, C)) (ZCg\detg ) where C={C:} and k= {kpq}-

(¥(~,C)|H|¥(~,C))
(U (r,C)[¥(x,C)) -

The parameters C and « are optimized variationally i.e. by minimizing

The MCSCF model is a multiconfigurational extension of HF which aims at describing static correlation:
a limited number of determinants should be sufficient.

Short-range dynamical correlation is treated afterwards (post-MCSCF models).

Choice of the determinants: active space
H...H 2 electrons in 2 orbitals (1og, 1o,) — 2/2

Be 2 electrons in 4 orbitals (2s, 2p., 2py, 2p2) — 2/4




Multi-Configurational Self-Consistent Field model (MCSCF)

o Complete Active Space (CAS) for Be: [1s°2s?), [1s%2p2), |1s%2p7), |1s%2p7),
if all the determinants are included in the MCSCEF calculation — CASSCF

if a Restricted Active Space (RAS) is used RASSCF

The orbital space is now divided in three:

doubly occupied molecular orbitals (inactive) DiyDjy .. 1s
active molecular orbitals buy Pvsy - - 2s,2py, 2py, 2p2

unoccupied molecular orbitals (virtuals) ba, Db, - - - 3s,3p, 3d, . ..
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Multi-Configurational Self-Consistent Field model (MCSCF)

EXERCISE: | In order to illustrate with Ha the fact that active orbitals can be partially occupied, show

that the active part of the density matrix 4D, defined as
ADyw = (¥|Eyw | 1),

1

g

2

0
1+ c2

2¢2
1+ c?

Note: In the particular case of a single determinantal wave function (c = 0) the active density matrix

2 0
reduces to )
0O 0
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Multi-Reference Perturbation Theory (MRPT)

e General perturbative enerqy expression through second order:

perturbers

Eo ~ (Unc|H[Wme) + )
)

(Up|H|WUpc)?
Emc — Ep

e Multi-reference extension of MP2:

unperturbed wave function | Pur) | Unic)
unperturbed energy E© =2 Z €i Evc =777

NEVPT2
A

b .
perturbers | D) | Wp) =777 H|¥nc)

zeroth-order excited energies E© 4 Ea T b —€; — € Ep =777

perturbers
unperturbed Hamiltonian Ho=F — &uc|¥uc)(Tucl+ D Epl|¥p)(Tp| =777
P

e Standard approaches are CASPT2¢ and N-electron valence state PT2 (NEVPT2)P.

@ K. Andersson, P. A. Malmgqvist, and B. O. Roos, ].Chem. Phys. 96, 1218 (1992). b C. Angeli, R. Cimiraglia, and J.P. Malrieu, J. Chem. Phys. 117, 9138 (2002).
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Schematics of a photochemical process
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State-averaged MCSCF approach

e Gross—Oliveira—-Kohn (GOK) variational principle for an ensemble of ground and excited states:

For any set {¥;};_; » of N orthonormal states, the following inequality holds [prys. Reo. 4 37,2805 (1989)],

N X N
> wp(U|H|Y) > Y wikr
=1 =1

where F; < Ey <...< Ej arethe N lowest exact eigenvalues of H, and the weights are
ordered as follows,

e The state-averaged MCSCF model consists in using a MCSCF parameterization for each Wy.
e All the states are usually described with the same set of (so-called state-averaged) molecular orbitals.

e Short-range dynamical correlation is usually recovered within multi-reference perturbation theory
(multi-state CASPT2 or NEVPT2, for example).




Complements




e Iterative optimization of the orbital rotation vector « and the CI coefficients C;:

(@ (0)y) = Z CZ.(O) |7) +—  normalized starting wave function

(T(A)) =e ® +—  convenient parametrization A\ =

1+ (81018)

Q=1-[¢O)y@®|, |5 =3"5l), (POQ5) =0, (TA)|T()) =1

e MCSCEF energy expression:  E(\) = (F(A\)|H|¥(N))

e Variational optimization: = = where

and EC[”




e Newton method:

1
E(0)+ ATEMN + §>\TE([)2])\ — BV ~Bll+ BN =0 - Ef' A, =-E[
~—

Newton step

e Convergence reached when E([)l] =0

Show that Egll = (WO)|[Eyy — Eqp, H[W©) and  Ef = z(HCAS - E(O))c<0>

where H%Asz(iufﬂj) and C0O) = C’i(o)

Note: Ej =0 isknown as generalized Brillouin theorem.




EXERCISE: | Prove GOK’s theorem in the particular case of two states by using Theophilou’s
variational principle: (W1 |H|W1) + (Vo|H|¥s) > E1 4+ FE>. Hint: Show that

w1 (V1 |H|W1) + wa (Vo | H|T2) = wo [(‘Pllm‘ﬂﬁ + <‘1’2|ﬁ|‘112>] + (w1 — w2) (U1 |H|¥q)




EXERCISE: | Proof of Theophilou’s variational principle for two states

(1) Let A = (U1 |H|W¥1) + (Uo|H| W) — E1 — Eo. We consider the complete basis of the exact

eigenvectors {\~If I} of H with eigenvalues { F1} I=12..

I1=1,2,...
Both trial wavefunctions can be expanded in that basis as follows,

Vi) =) Ckil¥r), K=1,2.
I

2
Show that A = Z(pI —DE; + ZPIEI where p; = C%I + CSI.
I=1 I>2

2
(2) Show that A = Z(l —pr)(E2 — Er) + ZPI(EI — F2).  Hint: prove first that ij = 2.
I=1 I1>2 1

(3) Let us now decompose the two first eigenvectors (I = 1, 2) in the basis of the trial wavefunctions and

the orthogonal complement:  |U;) = C17|¥1) + Cor|¥2) + Q12|¥;)  where

2
Qra=1-— Z W) (U] Explainwhy pr<1 when [=1,2 and conclude.
K=1




State-averaged MCSCF approach

State-averaged MCSCF model: simultaneous optimization of the ground and the lowest A/ — 1
excited states at the MCSCEF level.

[terative procedure: N initial orthonormal states are built from the same set of orbitals.

o =S" 0l iy,

Double-exponential parametrization:

Uy (k,8)) = e " e 51wl

and Z i) (il = > o (W)

K




State-averaged MCSCF approach

N
e State-averaged energy: FE(k,S) = Z wr (U7 (k, S)|H|¥;(k,S))
=1

where wy are arbitrary weights. In the so-called "equal weight" state-averaged MCSCF calculation
1

wr = N
OE(k,S) OE(k,S)
ok N 0S

e Variational optimization:

e Note that, in contrast to the exact theory, converged individual energies (and therefore excitation
energies) may vary with the weights. This is due to the orbital optimization.




