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Schrodinger equation for the ground state




N-electron Schrodinger equation for the ground state

HUo = Eq¥g

where \IJQE\I/()(Xl,XQ,...,XN), X,L'E(I‘i,ai)E(:Ci,yi,zi,gi::lz%) for iZl,Q,...,N,

—  umniversal kinetic energy operator

—  universal two-electron repulsion operator

—  local nuclear potential operator




(Fictitious) non-interacting electrons
e Solving the Schrodinger equation for non-interacting electrons is easy.

e You “just” have to solve the Schrodinger equation for a single electron.

N

. 1
(T—I—Zv(ri) X)CIDO =Py < {—§Vf+v(r)x} wi(x) =egp0i(x), 1=1,2,...
i=1

Proof: a simple solution to the N-electron non-interacting Schrodinger equation is

N
Dy = p1(x1) X pa(x2) X ... X pN(xN) = H ©w;(x;) < Hartree product!




(Real) interacting many-electron problem
Before addressing the true (interacting) problem we should keep in mind that electrons are fermions.

Consequently, they should be described by Siater determinants instead of Hartree products.

Therefore, in the particular case of two electrons, we have

p1(x1)p2(x2) —> Po = = % [@1(X1)<P2(X2) - 801(X2)S02(X1)]-

1
V2| pa(x1)  pa(x2)

p1(x1)  @1(x2) ‘

When computing the two-electron repulsion energy <<I>0 ‘ Wee (I>0> we describe the so-called Hartree

(i.e. electrostatic) and exchange energies.

Finally, ®¢ cannot be the exact solution to the interacting Schrodinger equation [whatever choice is
made for the spin-orbitals {¢;(x)},_; 5 ]

The energy contribution that is missing is referred to as correlation energy.




Mapping the interacting problem onto a non-interacting one

Is it possible to extract the exact (interacting) ground-state energy Ey from a non-interacting system?
If yes, then it would lead to a huge simplification of the problem.

Nevertheless, the question sounds a bit weird since the two-electron repulsion is completely ignored
in a non-interacting system.

One way to establish a connection between interacting and non-interacting worlds is to use the
electron density as basic variable (instead of the wavefunction).

Electron density for a non-interacting system:  ng,(r)

Electron density for an interacting system:

mag () =N 37 [ dxa . [ dx [ Bo(r,o0xan o xn)l?

a::I:%

The so-called Kohn—Sham non-interacting system (from which Egy can be determined) is such that
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Density-functional theory (DFT)

The Nobel Prize in Chemistry
1998
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It is in principle unnecessary to know

the ground-state many-electron wave function ¥,

for evaluating the exact ground-state energy E.
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development of the density-functional
theory" and John A. Pople "for his
development of computational methods in
quantum chemistry."
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An important observation to make before we start...

The one-electron potential energy is an explicit functional of the density:

N notation
<\If Zv(ri)x \I!> = /]1%3 dro(r)ng(r) = (v|nyg)

=1




Levy’s constrained search formalism

E, = min(¥ |H|¥)
b Y




Levy’s constrained search formalism

min{¥ | H | ¥)
b Y

min { 'min (¥ | H| ¥)

n Yon

Levy M (1979) Proc Natl Acad Sci USA 76(12):6062
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Levy’s constrained search formalism

min(¥ | H | ¥)
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Levy’s constrained search formalism
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Levy’s constrained search formalism

E, = min(¥ |H|¥)
b Y

:min{min (V| |T)}

n Yon

= min {Iql;lin {(T | T+ VAVee |¥) + Jdr v(r)n\P(r)} }




Levy’s constrained search formalism

E, = min(¥ |H|¥)
b Y

{min (‘P|H|‘P)}
Yon

= min
n

-

min { (¥|T+ W_|¥P) + [drv(r)

\
-

L

min { (¥|7T+ W_.|'¥P) +Jdrv(r)




Levy’s constrained search formalism

E, = min(¥ |H|¥)
b Y

—mm{mm (\P|H|\P)}

= mm {mm (P|T+ W |P)+ Jdr v(r)n\P(r)} }

(‘P|T+ ee|‘I’)} + [a’rv(r)n(r)}

{F [n] + dr v(r)n(r) }




Levy’s constrained search formalism

Ey=min { F[n] + Ja’r v(r)n(r)

n

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)




Kohn-Sham DFT formalism

Kohn-Sham
Fln] = min (¥ | T+ W__ | ¥) > Ti[r] = min (P|T|Y)
Yon —hn

Interacting universal functional Non-interacting
(kinetic energy) functional

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).




Kohn-Sham DFT formalism

Fln] — T [n] = £y, [n]

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).




Kohn-Sham DFT formalism

Fln] — T [n] = £y, [n]

= Eyln| + E, 1]

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).




Kohn-Sham DFT formalism

Hartree density functional

n(r)n(r,)

T — 1, |

Eyln] = %Jdrl Jdrz

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).




Kohn-Sham DFT formalism

Hartree density functional

n(r)n(r,)

T — 1, |

Eyln] = %Jdrl Jdrz

Exchange-correlation (xc) density functional

E. |n] = F[n] — T [n]—Ey[n]

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
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Kohn-Sham DFT formalism

Hartree density functional

1 n(r)n(r,) |
EH[n] = — dl’l dl’2 e Electrostatics
2 | ry—nr | (evaluated with quantum
electron densities)

Exchange-correlation (xc) density functional

— 999  EEEEE— Quantum
Exc[n] ot many-electron effects

The exact xc functional is uniquely defined but

many (many) approximations
can be found in the literature (LDA, PBE, B3LYP, SCAN, ...).

| e—
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E, = min {F [n] + [dr v(r)n(r)}

n

= min { T [n]+Ey, [n]+ [dr v(r)n(r) }

n

}
= min {min { (V| T V) } + Eyp, [n]+ Jdr v(r)n(r) }

n Yon

-

min { min { (V| T] WY+ Eyy g+ [dr v(r)nw(r)} }

n Yon

min {4 min {(‘PULAI— Wee | ‘P)+EHXC[n\p]} }
n Yon

min { (V| H- Wee | V) +Eyy ] }
P




Comparing variational principles

Ey = min { (¥ A11%) | = min { Q0| A=W | W)+ Ey g}
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Comparing variational principles

Ey = min { (¥ A1) | = min { Q0| A=W | W)+ Ey g}




Comparing wave function theory (WFT) with KS-DFT

By = min {(\IJ|T+ v+ Wee|\11)} = min {(cI>|T+ V|®) + EHXC[nq)]}

| WFT | DFT

\Q:Q)HF—|—ZC;€detk S = |pips ... o |
k

2

\ 7
-~

\ 7
Vo

multideterminantal wave function single determinant




DFT for N-electron ground states

VZ
[_TF + v(r) + Vch(r)] @(r) = €ip,r)

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).




DFT for N-electron ground states

VZ
[-71‘ () + vHXC<r>] P1) = D)

N
ny) = ) o)
i=1

exact ground-state
density

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).




DFT for N-electron ground states

2
—7" + V() + Vg () | (1) = €,04T)
N

0Ly, [1]
on(r)

N
ny(r) = ) |pr) | Viie(T) =
i=1

n=ng

exact ground-state

. Hartree-exchange-correlation
density

local (multiplicative) potential

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).




Standard density-functional approximations (DFASs)

Local and semi-local functionals

n

LDA (uniform electron gas)
E. [n] = |dre,, (n(l')) X n(r) S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58 (8): 1200-1211 (1980).

J

E [n] = |dr gxc(n(r), | Vn(r) | ) X n(r)  Generalized gradient approximations (GGAs):
) LYP, PBE, ...

. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 57:785, (1988).
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).

Hybrid functionals

E [n] = aEMT[@]4 (1—a)EP™[ng] + EP™[ng] B3LYP

A. D. Becke, J. Chem. Phys. 98, 1372 (1993).

E [n] ~ E}f’HF[CI)] + E;r’DFA[nq)] + ECD F A[nq)] Range-separated hybrids
CAM-B3LYP

7 _— 1l 178
Wee - Were + W;ﬁ

! !

\ 4
Long-range short-range

Yanai, T.; Tew, D. P; Handy, N. C., Chem. Phys. Lett., 393, 51-57 (2004).
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DFT, us (humans), and the machines
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ARTICLE

Bypassing the Kohn-Sham equations with machine
learning

Felix Brockherde!?, Leslie Vogt 3 LiLi® 4 Mark E. Tuckerman3>¢, Kieron Burke®’ & Klaus-Robert Miiller!82

Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional
theory to solve electronic structure problems in a wide variety of scientific fields. Machine
learning holds the promise of learning the energy functional via examples, bypassing the need
to solve the Kohn-Sham equations. This should yield substantial savings in computer
time, allowing larger systems and/or longer time-scales to be tackled, but attempts to
machine-learn this functional have been limited by the need to find its derivative. The present
work overcomes this difficulty by directly learning the density-potential and energy-density
maps for test systems and various molecules. We perform the first molecular dynamics
simulation with a machine-learned density functional on malonaldehyde and are able to
capture the intramolecular proton transfer process. Learning density models now allows the
construction of accurate density functionals for realistic molecular systems.

Nature Communications 8, Article number: 872 (2017)




Teaching the HK theorem to a machine

One can feach the functional Tg[n] to a machine.

But then it needs to find the value of §7s[n]/dn(r) by itself ...

... in order to determine ny, variationally from v = vpe (i.¢, the nuclear potential energy of the
molecule under study).

What about learning the ground-state density map v — no[v] directly?*

If we have vpe, the machine will tell us directly what the ground-state density ny, = ng [Une] is.

We can also teach the machine how to compute the energy:

Elny,] = Ts[ng,] + Euxc[nwy] + (Vnelnw,)-

* Brockherde, Felix, Vogt, Leslie, Li ,Li, Tuckerman, Mark E, Burke, Kieron and Muller, Klaus-Robert, Nature Communications 8, 872 (2017).




Teaching the HK theorem to a machine

e Lxpansion of densities in an orthonormal basis of functions {¢;(r)}; <, :

L
nofv](r) =Y ul[v] x ¢(r).
=1

e Kernel Ridge Regression (KRR) method:

where {v; }, — j< s are the potentials the machine will learn from.

Brockherde, Felix, Vogt, Leslie, Li Li, Tuckerman, Mark E, Burke, Kieron and Muller, Klaus-Robert, Nature Communications 8, 872 (2017).




Teaching the HK theorem to a machine

e The machine will learn about each ground-state density (M densities will be considered in total)

L
ni(r) =Y ul) x ¢y (r)
=1

that has been calculated for a given potential v;(r). The learning process relies on the previously
introduced KRR method:

nolvi|(r Zu(l) [v;] X ¢ (r)

Ejﬂ”xk@mw>

o) - 00|

202

k(vi,v;) = exp

e The paramaters to be optimized (learning process) are 3 = { Bj(.l) }1< o Af1<I<L
<j<M,1<I<




Teaching the HK theorem to a machine

e The machine will learn about each ground-state density (M densities will be considered in total)

L

ni(r) =3 [ul? | x ¢y (r)

=1

that has been calculated for a given potential v;(r). The learning process relies on the previously
introduced KRR method:

novi](r) ulDvi] | x u(r)
=1

M
u(l)[vi] = Zﬁy) X | k(vi,v;)
j=1

 drfoi(r) = v; (0)]

202

k (Ui,’Uj)

e Naive learning process:  k (vi,vj) = 0;; = Bi(l) = ugl).




Teaching the HK theorem to a machine

e(B)

orthonormal basis
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Fig. 5 Energy errors of ML-HK along ab initio MD and ML-generated trajectories. a Energy errors of ML-HK along a 0.25 ps ab initio MD trajectory of
malonaldehyde. PBE values in blue, ML-HK values in red. The ML model correctly predicts energies during proton transfer in frames 7-15 without explicit
inclusion of these geometries in the training set. b Energy errors of ML-HK along a 1ps MD trajectory of malonaldehyde generated by the ML-HK model.
ML-HK values in red, PBE values of trajectory snapshots in blue

Nature Communications 8, Article number: 872 (2017)




