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Introduction to density-functional theory

Schrödinger equation for the ground state
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N -electron Schrödinger equation for the ground state
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⇥ �! universal two-electron repulsion
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|r�RA| �! local nuclear potential operator
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Introduction to density-functional theory

N -electron Schrödinger equation for the ground state

ĤΨ0 = E0Ψ0

where Ψ0 ≡ Ψ0(x1,x2, . . . ,xN ), xi ≡ (ri, σi) ≡ (xi, yi, zi, σi = ± 1
2

) for i = 1, 2, . . . , N,

and Ĥ = T̂ + Ŵee + V̂ .

T̂ ≡ −1

2

N∑

i=1

∇2
ri

= −1

2

N∑

i=1

(
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

)
−→ universal kinetic energy operator

Ŵee ≡
N∑

i<j

1

|ri − rj |
× −→ universal two-electron repulsion operator

V̂ ≡
N∑

i=1

v(ri)× where v(r) = −
nuclei∑

A

ZA

|r−RA|
−→ local nuclear potential operator
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Introduction to density-functional theory

(Fictitious) non-interacting electrons
• Solving the Schrödinger equation for non-interacting electrons is easy.

• You “just" have to solve the Schrödinger equation for a single electron.

(
T̂ +

N∑

i=1

v(ri)×
)

Φ0 = E0Φ0 ⇔
[
−1

2
∇2

r + v(r)×
]
ϕi(x) = εiϕi(x), i = 1, 2, . . . , N.

Proof: a simple solution to the N -electron non-interacting Schrödinger equation is

Φ0 ≡ ϕ1(x1)× ϕ2(x2)× . . .× ϕN (xN ) =

N∏

j=1

ϕj(xj) ← Hartree product!

since
(
T̂ +

N∑

i=1

v(ri)×
)

Φ0 =
N∑

i=1

N∏

j 6=i
ϕj(xj)×

[
−1

2
∇2

ri
+ v(ri)×

]
ϕi(xi) =

(
N∑

i=1

εi

)
Φ0.
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Introduction to density-functional theory

(Real) interacting many-electron problem

• Before addressing the true (interacting) problem we should keep in mind that electrons are fermions.

• Consequently, they should be described by Slater determinants instead of Hartree products.

• Therefore, in the particular case of two electrons, we have

ϕ1(x1)ϕ2(x2) −→ Φ0 ≡
1√
2

∣∣∣∣∣∣
ϕ1(x1) ϕ1(x2)

ϕ2(x1) ϕ2(x2)

∣∣∣∣∣∣
=

1√
2

[
ϕ1(x1)ϕ2(x2)− ϕ1(x2)ϕ2(x1)

]
.

• When computing the two-electron repulsion energy
〈

Φ0

∣∣∣Ŵee

∣∣∣Φ0

〉
we describe the so-called Hartree

(i.e. electrostatic) and exchange energies.

• Finally, Φ0 cannot be the exact solution to the interacting Schrödinger equation [whatever choice is
made for the spin-orbitals {ϕi(x)}i=1,2,...].

• The energy contribution that is missing is referred to as correlation energy.

Institut de Chimie, Strasbourg, France Page 5



Introduction to density-functional theory

Mapping the interacting problem onto a non-interacting one

• Is it possible to extract the exact (interacting) ground-state energy E0 from a non-interacting system?

• If yes, then it would lead to a huge simplification of the problem.

• Nevertheless, the question sounds a bit weird since the two-electron repulsion is completely ignored
in a non-interacting system.

• One way to establish a connection between interacting and non-interacting worlds is to use the
electron density as basic variable (instead of the wavefunction).

• Electron density for a non-interacting system: nΦ0 (r) =
∑

σ=± 1
2

N∑

i=1

|ϕi(r, σ)|2

• Electron density for an interacting system:

nΨ0
(r) = N

∑

σ=± 1
2

∫
dx2 . . .

∫
dxN |Ψ0(r, σ,x2, . . . ,xN )|2

• The so-called Kohn–Sham non-interacting system (from which E0 can be determined) is such that

nΦ0 (r) = nΨ0 (r) .
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Density-functional theory (DFT)
25/11/2021 20'32The Nobel Prize in Chemistry 1998
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The Nobel Prize in Chemistry
1998

Walter Kohn
John Pople
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1998

Photo from the Nobel
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Walter Kohn
Prize share: 1/2

Photo from the Nobel
Foundation archive.

John A. Pople
Prize share: 1/2

The Nobel Prize in Chemistry 1998 was
divided equally between Walter Kohn "for his
development of the density-functional
theory" and John A. Pople "for his
development of computational methods in
quantum chemistry."

To cite this section 
MLA style: The Nobel Prize in Chemistry 1998. NobelPrize.org. Nobel Prize Outreach AB 2021. Thu. 25 Nov 2021.
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It is in principle unnecessary to know

 the ground-state many-electron wave function � 


 for evaluating the exact ground-state energy � .
Ψ0

E0
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It is in principle unnecessary to know

 the ground-state many-electron wave function � 


 for evaluating the exact ground-state energy � .
Ψ0

E0

The ground-state density �  is sufficient.n0
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Introduction to density-functional theory

An important observation to make before we start...

The one-electron potential energy is an explicit functional of the density:

〈
Ψ

∣∣∣∣∣
N∑

i=1

v(ri)×
∣∣∣∣∣Ψ
〉

=

∫

R3
dr v(r)nΨ(r)

notation≡ (v|nΨ)
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Introduction to density-functional theory

Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

Institut de Chimie, Strasbourg, France Page 10



Introduction to density-functional theory

Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

Pre-minimisation over wave functions � 

that have the same density �  


Ψ
nΨ(r) = n(r)

Levy M (1979) Proc Natl Acad Sci USA 76(12):6062
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Introduction to density-functional theory

Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

Minimisation over densities �  
n

Levy M (1979) Proc Natl Acad Sci USA 76(12):6062
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Introduction to density-functional theory

Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

Ψ1
Ψ2

Ψ3

Ψ4

Ψ5

Ψ′�1Ψ′�2

Ψ′�3

Ψ′�′�1
Ψ′�′�2Ψ′�′�3

Ψ′�′�4Space of � -electron wave functionsN
Levy M (1979) Proc Natl Acad Sci USA 76(12):6062
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Introduction to density-functional theory

Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

Ψ1
Ψ2

Ψ3Ψ4

Ψ5

n

Ψ′�1
Ψ′�2

Ψ′�3

n′�

Ψ′�′�1
Ψ′�′�2

Ψ′�′�3
Ψ′�′�4

n′�′�

Levy M (1979) Proc Natl Acad Sci USA 76(12):6062
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Introduction to density-functional theory

Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

= min
n {min

Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩ + ∫ dr v(r)nΨ(r)}}
Ĥ = ̂T + Ŵee +

N

∑
i=1

v(ri) ×

̂T ≡
N

∑
i=1

− 1
2 ∇2

ri

Ŵee ≡ 1
2

N

∑
i≠j

1
|ri − rj |

×
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Introduction to density-functional theory

Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

= min
n

min
Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩ + ∫ dr v(r)nΨ(r)}

= min
n

min
Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩}+∫ dr v(r)n(r)
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Introduction to density-functional theory

Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

= min
n {min

Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩ + ∫ dr v(r)nΨ(r)}}
= min

n {min
Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩} + ∫ dr v(r)n(r)}

= min
n {F[n] + ∫ dr v(r)n(r)}
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Introduction to density-functional theory

Levy’s constrained search formalism

E0 = min
n {F[n] + ∫ dr v(r)n(r)}

We recover the Hohenberg-Kohn variational principle of DFT!

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)
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Introduction to density-functional theory

Kohn-Sham DFT formalism

F[n] = min
Ψ→n

⟨Ψ | ̂T+Ŵee |Ψ⟩

Interacting universal functional Non-interacting  
(kinetic energy) functional

Ts[n] = min
Ψ→n

⟨Ψ | ̂T |Ψ⟩
Kohn-Sham

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
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Introduction to density-functional theory

Kohn-Sham DFT formalism

F[n] = min
Ψ→n

⟨Ψ | ̂T + Ŵee |Ψ⟩

Interacting universal functional Non-interacting  
(kinetic energy) functional

Ts[n] = min
Ψ→n

⟨Ψ | ̂T |Ψ⟩
Kohn-Sham

F[n] − Ts[n] = EHxc[n]

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
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Introduction to density-functional theory

Kohn-Sham DFT formalism

F[n] = min
Ψ→n

⟨Ψ | ̂T + Ŵee |Ψ⟩

Interacting universal functional Non-interacting  
(kinetic energy) functional

Ts[n] = min
Ψ→n

⟨Ψ | ̂T |Ψ⟩
Kohn-Sham

F[n] − Ts[n] = EHxc[n]
= EH[n] + Exc[n]

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
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Introduction to density-functional theory

Kohn-Sham DFT formalism

EH[n] = 1
2 ∫ dr1 ∫ dr2

n(r1)n(r2)
|r1 − r2 |

Electrostatics  
(evaluated with quantum 

electron densities)

Hartree density functional

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
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Introduction to density-functional theory

Kohn-Sham DFT formalism

Exc[n] = F[n] − Ts[n]−EH[n]

EH[n] = 1
2 ∫ dr1 ∫ dr2

n(r1)n(r2)
|r1 − r2 |

Electrostatics  
(evaluated with quantum 

electron densities)

Hartree density functional

Exchange-correlation (xc) density functional

Quantum 
many-electron effects 

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
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Introduction to density-functional theory

Kohn-Sham DFT formalism

Exc[n] = ???

EH[n] = 1
2 ∫ dr1 ∫ dr2

n(r1)n(r2)
|r1 − r2 |

Electrostatics  
(evaluated with quantum 

electron densities)

Hartree density functional

Exchange-correlation (xc) density functional

Quantum 
many-electron effects 

The exact xc functional is uniquely defined but  
many (many) approximations  

can be found in the literature (LDA, PBE, B3LYP, SCAN, …). 
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Introduction to density-functional theory

Variational principle  
in Kohn-Sham DFT

= min
n {min

Ψ→n {⟨Ψ | ̂T |Ψ⟩} + EHxc[n]+∫ dr v(r)n(r)}
= min

n
min
Ψ→n {⟨Ψ | ̂T |Ψ⟩+EHxc[nΨ]+∫ dr v(r)nΨ(r)}

E0 = min
n {F[n] + ∫ dr v(r)n(r)}

= min
n {Ts[n]+EHxc[n]+∫ dr v(r)n(r)}

= min
n

min
Ψ→n {⟨Ψ | Ĥ−Ŵee |Ψ⟩+EHxc[nΨ]}

= min
Ψ {⟨Ψ | Ĥ−Ŵee |Ψ⟩+EHxc[nΨ]}
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Introduction to density-functional theory

Comparing variational principles

E0 = min
Ψ {⟨Ψ | Ĥ |Ψ⟩} = min

Ψ {⟨Ψ | Ĥ−Ŵee |Ψ⟩+EHxc[nΨ]}
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Introduction to density-functional theory

Comparing variational principles

E0 = min
Ψ {⟨Ψ | Ĥ |Ψ⟩} = min

Ψ {⟨Ψ | Ĥ−Ŵee |Ψ⟩+EHxc[nΨ]}

Pure wave function theory (WFT)
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Introduction to density-functional theory

Comparing variational principles

E0 = min
Ψ {⟨Ψ | Ĥ |Ψ⟩} = min

Ψ {⟨Ψ | Ĥ−Ŵee |Ψ⟩+EHxc[nΨ]}

Kohn-Sham DFT
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Introduction to density-functional theory

Comparing variational principles

E0 = min
Ψ {⟨Ψ | Ĥ |Ψ⟩} = min

Ψ {⟨Ψ | Ĥ−Ŵee |Ψ⟩+EHxc[nΨ]}

Explicit two-electron repulsions  
are removed from the Hamiltonian…
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Introduction to density-functional theory

Comparing variational principles

E0 = min
Ψ {⟨Ψ | Ĥ |Ψ⟩} = min

Ψ {⟨Ψ | Ĥ−Ŵee |Ψ⟩+EHxc[nΨ]}

… and treated implicitly as functionals  
of the density.

Explicit two-electron repulsions  
are removed from the Hamiltonian…
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Introduction to density-functional theory

Comparing variational principles

E0 = min
Ψ {⟨Ψ | Ĥ |Ψ⟩} = min

Ψ {⟨Ψ | Ĥ−Ŵee |Ψ⟩+EHxc[nΨ]}

Explicit two-electron repulsions  
are removed from the Hamiltonian…

The one-electron picture is made exact in KS-DFT!
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Introduction to density-functional theory

Comparing wave function theory (WFT) with KS-DFT

E0 = min
Ψ

{
〈Ψ|T̂ + V̂ + Ŵee|Ψ〉

}
= min

Φ

{
〈Φ|T̂ + V̂ |Φ〉+ EHxc[nΦ]

}

↓WFT ↓ DFT

Ψ = ΦHF +
∑

k

Ckdetk

︸ ︷︷ ︸
Φ = |ϕ2

1ϕ
2
2 . . . ϕ

2
N
2

|
︸ ︷︷ ︸

multideterminantal wave function single determinant

Institut de Chimie, Strasbourg, France Page 32



Introduction to density-functional theory

DFT for � -electron ground states  N

[− ∇2
r

2 + v(r) + vHxc(r)] φi(r) = εiφi(r)

i = N−1
i = N

i = N+1LUMO

HOMO

i = N−2

i = 2
i = 1

i = N+2

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
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Introduction to density-functional theory

DFT for � -electron ground states  N

n0(r) =
N

∑
i=1

|φi(r) |2

exact ground-state 
density

i = N−1
i = N

i = N+1LUMO

HOMO

i = N−2

i = 2
i = 1

i = N+2

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

[− ∇2
r

2 + v(r) + vHxc(r)] φi(r) = εiφi(r)
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Introduction to density-functional theory

DFT for � -electron ground states  N

vHxc(r) = δEHxc [n]
δn(r)

n=n0

Hartree-exchange-correlation  
local (multiplicative) potential

n0(r) =
N

∑
i=1

|φi(r) |2

exact ground-state 
density

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

[− ∇2
r

2 + v(r) + vHxc(r)] φi(r) = εiφi(r)
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Introduction to density-functional theory

Standard density-functional approximations (DFAs)


…
Exc[n] ≈ ∫ dr εxc(n(r)) × n(r)

Exc[n] ≈ ∫ dr εxc(n(r), |∇n(r) |) × n(r) Generalized gradient approximations (GGAs):

Local and semi-local functionals

LDA (uniform electron gas)
S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58 (8): 1200–1211 (1980).

� J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).
� C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 57:785, (1988).

LYP, PBE, …

Exc[n] ≈ αEHFx [Φ] + (1−α)EDFAx [nΦ] + EDFAc [nΦ]

Exc[n] ≈ Elr,HFx [Φ] + Esr,DFAx [nΦ] + EDFAc [nΦ]

…

Hybrid functionals

B3LYP

Range-separated hybrids

Hartree-Fock-like 

exchange energy (evaluated with KS orbitals)

Ŵee = Ŵlree + Ŵsree

Long-range short-range

CAM-B3LYP

A. D. Becke, J. Chem. Phys. 98, 1372 (1993).

Yanai, T.; Tew, D. P.; Handy, N. C., Chem. Phys. Lett., 393, 51-57 (2004).
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DFT, us (humans), and the machines
Exact scaling relations for Ts [n] and Ex[n]

We want to see how (some) universal density functionals are a↵ected by the
uniform coordinate scaling.

We start with the simplest one, namely the Hartree functional EH[n].

EXERCISE

Show that the following scaling relation is fulfilled,

EH[n� ] = �EH[n].

It can also be shown that the non-interacting kinetic energy and exact exchange
energy functionals fulfill the following scaling relations:

Ts [n� ] = �2Ts [n] ,

Ex[n� ] = �Ex[n].
EXERCISE

For that purpose, write the variational principle for the KS Hamiltonian

T̂ +
PN

i=1 vKS[n](ri)⇥, consider trial wavefunctions  with density n [we denote

 ! n] and conclude that Ts [n] = min
 !n

h |T̂ | i. Deduce that �KS
� [n] = �KS[n� ].

Emmanuel Fromager (UdS) EUR: Theory of extended systems 4 / 6

Uniform coordinate scaling in wavefunctions and densities

Let � > 0 be a scaling factor.

Applying a uniform coordinate scaling consists in multiplying each space
coordinate by �:

r ⌘ (x, y, z) ! �r ⌘ (�x, �y, �z)

dr = dxdydz ! �3dr

Uniform coordinate scaling applied to the density:

n(r) ! n�(r) = �3n(�r)

Uniform coordinate scaling applied to an N -electron wavefunction [spin is
una↵ected by the scaling]:

 (r1, r2, . . . , rN ) !  �(r1, r2, . . . , rN ) = �
3N
2  (�r1, �r2, . . . , �rN )

Emmanuel Fromager (UdS) EUR: Theory of extended systems 2 / 6
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Last year, at least 30,000 scientific papers used the Kohn–Sham scheme of density functional

theory to solve electronic structure problems in a wide variety of scientific fields. Machine

learning holds the promise of learning the energy functional via examples, bypassing the need

to solve the Kohn–Sham equations. This should yield substantial savings in computer

time, allowing larger systems and/or longer time-scales to be tackled, but attempts to

machine-learn this functional have been limited by the need to find its derivative. The present

work overcomes this difficulty by directly learning the density-potential and energy-density

maps for test systems and various molecules. We perform the first molecular dynamics

simulation with a machine-learned density functional on malonaldehyde and are able to

capture the intramolecular proton transfer process. Learning density models now allows the

construction of accurate density functionals for realistic molecular systems.
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Teaching the HK theorem to a machine

• One can teach the functional Ts[n] to a machine.

• But then it needs to find the value of δTs[n]/δn(r) by itself ...

• ... in order to determine nΨ0
variationally from v = vne (i.e, the nuclear potential energy of the

molecule under study).

• What about learning the ground-state density map v → n0[v] directly?∗

• If we have vne, the machine will tell us directly what the ground-state density nΨ0 = n0[vne] is.

• We can also teach the machine how to compute the energy:

E[nΨ0
] = Ts[nΨ0

] + EHxc[nΨ0
] + (vne|nΨ0

).

∗Brockherde, Felix, Vogt, Leslie, Li ,Li, Tuckerman, Mark E, Burke, Kieron and Muller, Klaus-Robert, Nature Communications 8, 872 (2017).
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Teaching the HK theorem to a machine

• Expansion of densities in an orthonormal basis of functions {φl(r)}1≤l≤L:

n0[v](r) =

L∑

l=1

u(l)[v]× φl(r).

• Kernel Ridge Regression (KRR) method:

u(l)[v] =

M∑

j=1

β
(l)
j × k (v, vj)

k(v, vi) = exp


−

∫
dr
∣∣∣v(r)− vi(r)

∣∣∣
2

2σ2




where {vj}1≤j≤M are the potentials the machine will learn from.

Brockherde, Felix, Vogt, Leslie, Li ,Li, Tuckerman, Mark E, Burke, Kieron and Muller, Klaus-Robert, Nature Communications 8, 872 (2017).
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Teaching the HK theorem to a machine

• The machine will learn about each ground-state density (M densities will be considered in total)

ni(r) =

L∑

l=1

u
(l)
i × φl(r)

that has been calculated for a given potential vi(r). The learning process relies on the previously
introduced KRR method:

n0[vi](r) =

L∑

l=1

u(l)[vi]× φl(r)

u(l)[vi] =
M∑

j=1

β
(l)
j × k (vi, vj)

k(vi, vj) = exp


−

∫
dr
∣∣∣vi(r)− vj(r)

∣∣∣
2

2σ2




• The paramaters to be optimized (learning process) are β ≡
{
β

(l)
j

}
1≤j≤M,1≤l≤L

.
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Teaching the HK theorem to a machine

• The machine will learn about each ground-state density (M densities will be considered in total)

ni(r) =

L∑

l=1

u
(l)
i × φl(r)

that has been calculated for a given potential vi(r). The learning process relies on the previously
introduced KRR method:

n0[vi](r) =

L∑

l=1

u(l)[vi] × φl(r)

u(l)[vi] =

M∑

j=1

β
(l)
j × k (vi, vj)

k (vi, vj) = exp


−

∫
dr
∣∣∣vi(r)− vj(r)

∣∣∣
2

2σ2




• Naive learning process: k (vi, vj) ≈ δij ⇒ β
(l)
i = u

(l)
i .
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Teaching the HK theorem to a machine

• Cost function to be minimized with respect to β:

e (β) =
M∑

i=1

∫
dr
∣∣∣ni(r)− n0[vi](r)

∣∣∣
2

orthonormal basis
=

M∑

i=1

L∑

l=1

∣∣∣∣∣u
(l)
i − u(l)[vi]

∣∣∣∣∣

2

=

M∑

i=1

L∑

l=1

∣∣∣∣∣u
(l)
i −

M∑

j=1

β
(l)
j × k (vi, vj)

∣∣∣∣∣

2
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is the average of tautomer atomic positions. For the test set, we
use snapshots from a computationally expensive
Born–Oppenheimer ab initio MD trajectory at 300 K. Figure 5a
shows that the ML-HK map is able to predict DFT energies
during a proton transfer event (MAE of 0.27 kcal/mol) despite
being trained on classical geometries that did not include these
intermediate points.

We show, finally, that the ML-HK map can also be used to
generate a stable MD trajectory for malonaldehyde at 300 K
(Fig. 5b). In principle, analytic gradients could be obtained for

each timestep, but for this first proof-of-concept trajectory, a
finite-difference approach was used to determine atomic forces.
The ML-HK-generated trajectory samples the same molecular
configurations as the ab inito MD simulation (see Fig. 6 and
Supplementary Table 1) with a mean absolute energy error of
0.77 kcal/mol, but it typically underestimates the energy for out-
of-plane molecular fluctuations at the extremes of the classical
training set (maximum error of 5.7 kcal/mol, see Supplementary
Fig. 4). Even with the underestimated energy values, however, the
atomic forces are sufficiently large to return the molecule to the
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Fig. 4 The precision of our density predictions using the Fourier basis for the molecular plane of benzene. The plots show a the difference between the
valence density of benzene when using PBE and LDA functionals at the PBE-optimized geometry. b Error introduced by using the Fourier basis
representation. c Error introduced by the nML[v] density fitting (a–c on same color scale). d The total PBE valence density. e The density differences along a
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