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Schrodinger equation for the ground state




N-electron Schrodinger equation for the ground state

HUo = Eq¥g

where \IJQE\I/()(Xl,XQ,...,XN), X,L'E(I‘i,ai)E(:Ci,yi,zi,gi::lz%) for iZl,Q,...,N,

—  umniversal kinetic energy operator

—  universal two-electron repulsion operator

—  local nuclear potential operator




The Nobel Prize in Chemistry 1998
John Pople - Facts

John A. Pple

Born: 31 October 1925, Burnham-on-Sea, United Kingdom

Died: 15 March 2004, Chicago, IL, USA

Affiliation at the time of the award: Northwestern University, Evanston, IL, USA

Prize motivation: "for his development of computational methods in quantum chemistry"
Field: theoretical chemistry

Prize share: 1/2




(Fictitious) non-interacting electrons
e Solving the Schrodinger equation for non-interacting electrons is easy.

e You “just” have to solve the Schrodinger equation for a single electron.

N

. 1
(T—I—Zv(ri) X)CIDO =Py < {—§Vf+v(r)x} wi(x) =egp0i(x), 1=1,2,...
i=1

Proof: a simple solution to the N-electron non-interacting Schrodinger equation is

N
Dy = p1(x1) X pa(x2) X ... X pN(xN) = H ©w;(x;) < Hartree product!




(Real) interacting many-electron problem
Before addressing the true (interacting) problem we should keep in mind that electrons are fermions.

Consequently, they should be described by Siater determinants instead of Hartree products.

Therefore, in the particular case of two electrons, we have

p1(x1)p2(x2) —> Po = = % [@1(X1)<P2(X2) - 801(X2)S02(X1)]-

1
V2| pa(x1)  pa(x2)

p1(x1)  @1(x2) ‘

When computing the two-electron repulsion energy <<I>0 ‘ Wee (I>0> we describe the so-called Hartree

(i.e. electrostatic) and exchange energies.

Finally, ®¢ cannot be the exact solution to the interacting Schrodinger equation [whatever choice is
made for the spin-orbitals {¢;(x)},_; 5 ]

The energy contribution that is missing is referred to as correlation energy.




Mapping the interacting problem onto a non-interacting one

Is it possible to extract the exact (interacting) ground-state energy from a non-interacting system?
If yes, then it would lead to a huge simplification of the problem.

Nevertheless, the question sounds a bit weird since the two-electron repulsion is completely ignored
In a non-interacting system.

One way to establish a connection between interacting and non-interacting worlds is to use the
electron density as basic variable (instead of the wavefunction).

N
Electron density for a non-interacting system: ng,(r) = Z Z i (r, 0)]?

11 2=1
J—:i:2 v

Electron density for an interacting system:

mag () =N 37 [ dxa . [ dx [ Bolr,o0xanxn)l?

o=+1




Mapping the interacting problem onto a non-interacting one

There is of course no reason to believe that these two densities are equal.

However, we may assume that it is possible to adjust the local potential in the non-interacting system
such that the two densities become equal.

This “magical” potential is known as the Kohn—-Sham (KS) potential.

In summary:

interacting problem non-interacting KS problem

A

Wee 0
v(r) v 3(r)

ny, (r) MgKs (r)

Questions to be answered:
(1) If v¥5(r) exists, is it unique?  ves!

(2) Does the knowledge of ng,(r) gives access (in principle) to Eg?  yes!




Wave function theory

> NZ JdXZ [dXN |\P0(r’ U,XZ, --"XN) |2

o

Eo — <\P0|FI|‘P0>

[dxl dez... JdXN PEX, X, .., Xy) X HY (X}, Xy, ..., Xy)




Wave function theory Density functional theory

Hohenberg-Kohn theorem
- ny(r)

Eo — <\P0|FI|T0>




Wave function theory Density functional theory

1 ()

Eo — <\P0|FI|T0>




Wave function theory Density functional theory

1 ()

|
EO — <\PO|FI| T0> = F [(I)(I)<S] <; — NZ Idxz...[de | DKS(r, 6, %y, ..., Xy) |

Kohn-Sham DFT




Wave function theory Density functional theory

1 ()

|
EO — <\PO|FI| lIJ()) = F [(I)(I)<S] <; — NZ Idxz...[de | DKS(r, 6, %y, ..., Xy) |

Kohn-Sham DFT

Note that E, # (OKS| H|OK5)!
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Two things to remember before we start ...

e The following expression for the expectation value of the one-electron potential energy in terms of the
electron density will be used intensively in the rest of this lecture:

N
<\IJ ;v(ri)x > = /]1%3 dr v(r)ng(r) = (v|nyg)

e Note that a constant shift v(r) — v(r) — p in the local potential does not affect the ground-state
wavefunction (and therefore it does not atfect the ground-state density):




First Hohenberg—Kohn theorem
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First Hohenberg—Kohn theorem

e Notethat v — ¥y — Ej

— N = Ny,

e HK1: Hohenberg and Kohn* have shown that, in fact, the ground-state electron density fully
determines (up to a constant) the local potential v. Therefore

no —->v— VYo — Ep

e In other words, the ground-state energy is a functional of the ground-state density: Eg = E[no].

Proof (part 1):

Let us consider two potentials v and v’ that differ by more than a constant, which means that v(r) — v/ (r)
varies with r. In the following, we denote W and W, the associated ground-state wavefunctions with
energies Eg and E|), respectively.

*P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).




First Hohenberg—Kohn theorem

If g = U then

N
(fu(ri) — v’(ri)) x Wq qu(ri) X Wy — o' (r;) x ¥
i=1 i=1

N N
<T—|— Weeo -+ Zv(ri)x> Uy — <T—|— Weeo -+ Zv’(rﬂx) \116

1=1
EoUo — ELU)

=1

(Eo — E{j) x ¥

so that, in the particular case ri; =r2 =... =rpy =r, we obtain

v(r) —v'(r) = (Eo — E})/N —  constant (absurd!)

Therefore Vo and W(, cannot be equal.




First Hohenberg—Kohn theorem

Proof (part 2): Let us now assume that W and ¥(, have the same electron density ng.

According to the Rayleigh—Ritz variational principle

N

EO<<%T+W%+ZU(1~Z-)>< %> and E) <

1=1
N 7
'

E{ + (v —v'|no)

thus leading to

0< Eg—Ej—(v—2'|ng) <0

*P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

N
<\If0 T+ Wee + Y _v'(ri)x
=1

\ .

W

)

~~

Eo — (v —v'|ng)

absurd!




Second Hohenberg—Kohn theorem

HK2: The exact ground-state density ng(r) of the electronic Hamiltonian

N
I:I[’Une] = T + Wee + Z’Une(ri)x
1=1

minimizes the energy density functional FE[n] = F[n] + / dr vpe(r)n(r),
R3

where the Hohenberg-Kohn universal functional F'[n] is defined as

Fln] = (O[n]|T + Wee|¥[n]),

and the minimum equals the exact ground-state energy Ejy:

min E[n] = E[ng] = Eo

n

Comment: we know from HK1 that n(r) — vn|/(r) — VYv[n]] = ¥n]

-~

ground-state wavefunction with density n.




Second Hohenberg—Kohn theorem

Proof:

e for any density n(r), ¥[n] is well defined according to HK1 and

(U[n]|Hlvne][¥[n]) > Eo

(W[n][T+ Wee W [n]) + /RS dr vne(r) gy (£) > Fo

7

~~

N —
Fn] n(r)

thus leading to| E[n] > Eq

e When n(r) equals the exact ground-state density no(r):
no(r) — ovne(r) — VY[ng] = Y]vne] = Yo

Eno] = (Uo|T + Wee o) + /

5 dr 'Une(r)nO(r) — <\IJO|T + Wee + Vne|\IJO> = Eo
R




Kohn—-Sham DFT (KS-DFT)

e The HK theorems apply to non-interacting electrons:

interacting problem non-interacting KS problem

0
v [n](r)

CI)KS [n]

Tun] = <<I>Ks[n]‘T|(I>KS[n]>

ngKs [, (r) = n(r)

e KS decomposition of the universal HK functional:

Fn] = Ts[n] + Fuxc[n]

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

yn(r)n(r’)

1
with  Fpyxc[n] = = / / drdr
2 Jr3 JRr3 lr —r/|

+ Fxc[n].




How can we determine the KS determinant?




Levy-Lieb constrained search formalism

e For a given density n there is a unique potential vig[n](r), if it exists ..., such that ®¥5[n] is the
N

ground state of 7' + Z vks[n](r;)x with density n.
i=1

e For all normalized wavefunctions ¥ with density n the following inequality is fulfilled:

N N
< | (hzvm[nl(ri)x) @Ks[n]> < <\1f <T+Zva[n] ~ ) \v>
1=1 1=1

s Tun] < (U|T|W) — | Tin] = min (¥|T|0)

U—n

o Therefore (PKS|T|®KS) = Ti[ng] = min (U|T|¥) but we do not know ng ...

v —nq

e Note that, as a consequence of the previous equality, Ts[ng] < (Uo|T'|¥o) !




Kohn-Sham DFT (KS-DFT)

e For any normalized wavefunction ¥,

(U|T|w)

(U|T + Ve |T)

<\IJ‘T + ‘A/ne‘\:[}> + EHXC [n‘lf]

e The exact ground-state energy Fj is recovered when ¥ = ®X5 thus leading to

Eq = m‘lin {<\P|T + ‘A/nel\Il> + EHXC[”"I’]}

e Note that the minimization can be restricted to single determinantal wavefunctions ®.




Comparing wave function theory (WFT) with KS-DFT

Eo = min {<@|T+ Vie + Weew)} — min {<q>|T+ Vie|®) + EHXC[%]}

| WFT | DFT

\Q:Q)HF—|—ZC;€detk S = |pips ... o |
k

2

\ 7
-~

\ 7
Vo

multideterminantal wave function single determinant




Standard density-functional approximations (DFASs)

Local and semi-local functionals

n

LDA (uniform electron gas)
E. [n] = |dre,, (n(l')) X n(r) S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58 (8): 1200-1211 (1980).

J

E [n] = |dr gxc(n(r), | Vn(r) | ) X n(r)  Generalized gradient approximations (GGAs):
) LYP, PBE, ...

. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 57:785, (1988).
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).

Hybrid functionals

E [n] = aEMT[@]4 (1—a)EP™[ng] + EP™[ng] B3LYP

A. D. Becke, J. Chem. Phys. 98, 1372 (1993).

E [n] ~ E}f’HF[CI)] + E;r’DFA[nq)] + ECD F A[nq)] Range-separated hybrids
CAM-B3LYP

7 _— 1l 178
Wee - Were + W;ﬁ

! !

\ 4
Long-range short-range

Yanai, T.; Tew, D. P; Handy, N. C., Chem. Phys. Lett., 393, 51-57 (2004).
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BHandHLDA
B3LYP
CAM-B3LYP
BHandHLYP
MP2
CCSD(T)
Expt.

=
LL]
E
>
(@)
| —
O
c
()]
c
O
)
&)
©
| —
()]
]
c

6 7 8 9
Interatomic distance [units of ag]




DFT, us (humans), and the machines
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ARTICLE

Bypassing the Kohn-Sham equations with machine
learning

Felix Brockherde!?, Leslie Vogt 3 LiLi® 4 Mark E. Tuckerman3>¢, Kieron Burke®’ & Klaus-Robert Miiller!82

Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional
theory to solve electronic structure problems in a wide variety of scientific fields. Machine
learning holds the promise of learning the energy functional via examples, bypassing the need
to solve the Kohn-Sham equations. This should yield substantial savings in computer
time, allowing larger systems and/or longer time-scales to be tackled, but attempts to
machine-learn this functional have been limited by the need to find its derivative. The present
work overcomes this difficulty by directly learning the density-potential and energy-density
maps for test systems and various molecules. We perform the first molecular dynamics
simulation with a machine-learned density functional on malonaldehyde and are able to
capture the intramolecular proton transfer process. Learning density models now allows the
construction of accurate density functionals for realistic molecular systems.

Nature Communications 8, Article number: 872 (2017)




Teaching the HK theorem to a machine

One can teach the functional Ts[n] to a machine.

But then it needs to find the value of §7s[n]/dn(r) by itself ...

... in order to determine ng variationally from vpe.

What about learning the map v — nfv] directly ?*

If we have vne, the machine will tell us directly what the ground-state density ng = n[vne] is.

We can also teach the machine how to compute the enerqy E[ng|] = Ts[no| + Fuxc|[no] + (vne|no)-

* Brockherde, Felix, Vogt, Leslie, Li ,Li, Tuckerman, Mark E, Burke, Kieron and Muller, Klaus-Robert, Nature Communications 8, 872 (2017).




Teaching the HK theorem to a machine

e Lxpansion of densities in an orthonormal basis of functions {¢;(r)}; <, :

Z ull [v] x ¢y (r).

e Kernel Ridge Regression (KRR) method:

M

(l) Zﬁ() Xk ’Uj)

2
[ dr|v(r) — v;(r)

202

k(”)”i) = exXp | —

where {v; }, — j< s are the potentials the machine will learn from.

Brockherde, Felix, Vogt, Leslie, Li Li, Tuckerman, Mark E, Burke, Kieron and Muller, Klaus-Robert, Nature Communications 8, 872 (2017).




Teaching the HK theorem to a machine

e The machine will learn

L

ni(r) =y ul) x ¢y (r)

=1

e The paramaters to be optimized (learning process) are 3 = { Bj(.l) }

1<j<MA<I<L

e Cost function to be minimized with respect to 3:

e(B)

Ms
—

)
I
—_

orthonormal basis

.ME
M=

)
I
—_
o~
I
—_

.Mg
M=

)
I
}_l
o~
I
Ju




Q

E (kcal/mol)

1

20 30
Simulation time (5 fs)

O

=
<)
S
=
S
4}
=
N—
w

—_ -
NPOOOON D
x=

o

100
Simulation time (5 fs)

Fig. 5 Energy errors of ML-HK along ab initio MD and ML-generated trajectories. a Energy errors of ML-HK along a 0.25 ps ab initio MD trajectory of
malonaldehyde. PBE values in blue, ML-HK values in red. The ML model correctly predicts energies during proton transfer in frames 7-15 without explicit
inclusion of these geometries in the training set. b Energy errors of ML-HK along a 1ps MD trajectory of malonaldehyde generated by the ML-HK model.
ML-HK values in red, PBE values of trajectory snapshots in blue

Nature Communications 8, Article number: 872 (2017)




