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Introduction to density-functional theory

Schrödinger equation for the ground state
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N -electron Schrödinger equation for the ground state

Ĥ 0 = E0 0

...
Ψ"

Ψ#
Ψ$
Ψ%

Ψ&

'"

'#

'$
'%
'&

where  0 ⌘  0(x1,x2, . . . ,xN ), xi ⌘ (ri,�i) ⌘ (xi, yi, zi,�i = ± 1

2
) for i = 1, 2, . . . , N,
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Introduction to density-functional theory

N -electron Schrödinger equation for the ground state

ĤΨ0 = E0Ψ0

where Ψ0 ≡ Ψ0(x1,x2, . . . ,xN ), xi ≡ (ri, σi) ≡ (xi, yi, zi, σi = ± 1
2

) for i = 1, 2, . . . , N,

and Ĥ = T̂ + Ŵee + V̂ .

T̂ ≡ −1

2

N∑

i=1

∇2
ri

= −1

2

N∑

i=1

(
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

)
−→ universal kinetic energy operator

Ŵee ≡
N∑

i<j

1

|ri − rj |
× −→ universal two-electron repulsion operator

V̂ ≡
N∑

i=1

v(ri)× where v(r) = −
nuclei∑

A

ZA

|r−RA|
−→ local nuclear potential operator
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Introduction to density-functional theory

The Nobel Prize in Chemistry 1998
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The Nobel Prize in Chemistry 1998

Walter Kohn, John Pople

John Pople - Facts
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John A. Pople

Born: 31 October 1925, Burnham-on-Sea, United Kingdom

Died: 15 March 2004, Chicago, IL, USA

Affiliation at the time of the award: Northwestern University, Evanston, IL, USA

Prize motivation: "for his development of computational methods in quantum chemistry"

Field: theoretical chemistry

Prize share: 1/2
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Introduction to density-functional theory

(Fictitious) non-interacting electrons
• Solving the Schrödinger equation for non-interacting electrons is easy.

• You “just" have to solve the Schrödinger equation for a single electron.

(
T̂ +

N∑

i=1

v(ri)×
)

Φ0 = E0Φ0 ⇔
[
−1

2
∇2

r + v(r)×
]
ϕi(x) = εiϕi(x), i = 1, 2, . . . , N.

Proof: a simple solution to the N -electron non-interacting Schrödinger equation is

Φ0 ≡ ϕ1(x1)× ϕ2(x2)× . . .× ϕN (xN ) =

N∏

j=1

ϕj(xj) ← Hartree product!

since
(
T̂ +

N∑

i=1

v(ri)×
)

Φ0 =
N∑

i=1

N∏

j 6=i
ϕj(xj)×

[
−1

2
∇2

ri
+ v(ri)×

]
ϕi(xi) =

(
N∑

i=1

εi

)
Φ0.
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Introduction to density-functional theory

(Real) interacting many-electron problem

• Before addressing the true (interacting) problem we should keep in mind that electrons are fermions.

• Consequently, they should be described by Slater determinants instead of Hartree products.

• Therefore, in the particular case of two electrons, we have

ϕ1(x1)ϕ2(x2) −→ Φ0 ≡
1√
2

∣∣∣∣∣∣
ϕ1(x1) ϕ1(x2)

ϕ2(x1) ϕ2(x2)

∣∣∣∣∣∣
=

1√
2

[
ϕ1(x1)ϕ2(x2)− ϕ1(x2)ϕ2(x1)

]
.

• When computing the two-electron repulsion energy
〈

Φ0

∣∣∣Ŵee

∣∣∣Φ0

〉
we describe the so-called Hartree

(i.e. electrostatic) and exchange energies.

• Finally, Φ0 cannot be the exact solution to the interacting Schrödinger equation [whatever choice is
made for the spin-orbitals {ϕi(x)}i=1,2,...].

• The energy contribution that is missing is referred to as correlation energy.
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Introduction to density-functional theory

Mapping the interacting problem onto a non-interacting one

• Is it possible to extract the exact (interacting) ground-state energy from a non-interacting system?

• If yes, then it would lead to a huge simplification of the problem.

• Nevertheless, the question sounds a bit weird since the two-electron repulsion is completely ignored
in a non-interacting system.

• One way to establish a connection between interacting and non-interacting worlds is to use the
electron density as basic variable (instead of the wavefunction).

• Electron density for a non-interacting system: nΦ0
(r) =

∑

σ=± 1
2

N∑

i=1

|ϕi(r, σ)|2

• Electron density for an interacting system:

nΨ0
(r) = N

∑

σ=± 1
2

∫
dx2 . . .

∫
dxN |Ψ0(r, σ,x2, . . . ,xN )|2
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Introduction to density-functional theory

Mapping the interacting problem onto a non-interacting one

• There is of course no reason to believe that these two densities are equal.

• However, we may assume that it is possible to adjust the local potential in the non-interacting system
such that the two densities become equal.

• This “magical" potential is known as the Kohn–Sham (KS) potential.

• In summary:

interacting problem → non-interacting KS problem

Ŵee → 0

v(r) → vKS(r)

nΨ0 (r) = nΦKS
0

(r)

• Questions to be answered:

(1) If vKS(r) exists, is it unique? yes!

(2) Does the knowledge of nΨ0
(r) gives access (in principle) to E0? yes!
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Introduction to density-functional theory

E0 = ⟨Ψ0 | Ĥ |Ψ0⟩

n0(r)

Ψ0(x1, x2, …, xN) N∑
σ

∫ dx2…∫ dxN |Ψ0(r, σ, x2, …, xN) |2

=

∫ dx1 ∫ dx2…∫ dxN Ψ*0 (x1, x2, …, xN) × ĤΨ0(x1, x2, …, xN)

=

Ĥ

Wave function theory 
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Introduction to density-functional theory

E0 = ⟨Ψ0 | Ĥ |Ψ0⟩

n0(r)

Ψ0(x1, x2, …, xN)

Ĥ

Wave function theory Density functional theory 

Hohenberg-Kohn theorem

Institut de Chimie, Strasbourg, France Page 10



Introduction to density-functional theory

E0 = ⟨Ψ0 | Ĥ |Ψ0⟩

n0(r)

Ψ0(x1, x2, …, xN)

Ĥ

Wave function theory Density functional theory 
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Introduction to density-functional theory

E0 = ⟨Ψ0 | Ĥ |Ψ0⟩ = E [ΦKS0 ]

n0(r)
Ψ0(x1, x2, …, xN)

Ĥ

Wave function theory Density functional theory 

N∑
σ

∫ dx2…∫ dxN |ΦKS0 (r, σ, x2, …, xN) |2

=

Kohn-Sham DFT
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Introduction to density-functional theory

E0 = ⟨Ψ0 | Ĥ |Ψ0⟩ = E [ΦKS0 ]

n0(r)
Ψ0(x1, x2, …, xN)

Ĥ

Wave function theory Density functional theory 

N∑
σ

∫ dx2…∫ dxN |ΦKS0 (r, σ, x2, …, xN) |2

=

Kohn-Sham DFT

Note that E0 ≠ ⟨ΦKS0 | Ĥ |ΦKS0 ⟩!
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Introduction to density-functional theory

The Nobel Prize in Chemistry 1998

This website uses cookies to improve user experience. By using our website you consent to all cookies in
accordance with our Cookie Policy.
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Share this: 6

The Nobel Prize in Chemistry 1998

Walter Kohn, John Pople

Walter Kohn - Facts

Work
The structures of molecules and the way they react with one another depends on the movement of electrons and their

distribution in space, which is determined by the laws of quantum mechanics. However, quantum mechanics requires

very complicated calculations for complex systems such as molecules. In 1964 Walter Kohn laid the foundation for a

theory that stated it was not necessary to account for every electron's movement. Instead, one could look at the

average density of electrons in the space. This presented new opportunities for calculations involving chemical

structures and reactions.

Walter Kohn

Born: 9 March 1923, Vienna, Austria

Died: 19 April 2016, Santa Barbara, CA, USA

Affiliation at the time of the award: University of California, Santa Barbara, CA, USA

Prize motivation: "for his development of the density-functional theory"

Field: theoretical chemistry

Prize share: 1/2

Walter Kohn - Facts https://www.nobelprize.org/nobel_prizes/chemistry/laureates/...

1 of 2 23/02/2017, 10:24
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Introduction to density-functional theory

Two things to remember before we start ...

• The following expression for the expectation value of the one-electron potential energy in terms of the
electron density will be used intensively in the rest of this lecture:

〈
Ψ

∣∣∣∣∣
N∑

i=1

v(ri)×
∣∣∣∣∣Ψ
〉

=

∫

R3
dr v(r)nΨ(r) = (v|nΨ)

• Note that a constant shift v(r)→ v(r)− µ in the local potential does not affect the ground-state
wavefunction (and therefore it does not affect the ground-state density):

(
T̂ + Ŵee +

N∑

i=1

(
v(ri)− µ

)
×
)

Ψ0 =
(
ĤΨ0

)
−Nµ×Ψ0 =

(
E0−Nµ

)
Ψ0.
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Introduction to density-functional theory

First Hohenberg–Kohn theorem
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Introduction to density-functional theory

First Hohenberg–Kohn theorem

• Note that v → Ψ0 → E0

→ n0 = nΨ0

• HK1: Hohenberg and Kohn∗ have shown that, in fact, the ground-state electron density fully
determines (up to a constant) the local potential v. Therefore

n0 → v → Ψ0 → E0

• In other words, the ground-state energy is a functional of the ground-state density: E0 = E[n0].

Proof (part 1):

Let us consider two potentials v and v′ that differ by more than a constant, which means that v(r)− v′(r)

varies with r. In the following, we denote Ψ0 and Ψ′0 the associated ground-state wavefunctions with
energies E0 and E′0, respectively.

∗P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

Institut de Chimie, Strasbourg, France Page 17



Introduction to density-functional theory

First Hohenberg–Kohn theorem

If Ψ0 = Ψ′0 then

N∑

i=1

(
v(ri)− v′(ri)

)
×Ψ0 =

N∑

i=1

v(ri)×Ψ0 − v′(ri)×Ψ′0

=

(
T̂ + Ŵee +

N∑

i=1

v(ri)×
)

Ψ0 −
(
T̂ + Ŵee +

N∑

i=1

v′(ri)×
)

Ψ′0

= E0Ψ0 − E′0Ψ′0

=
(
E0 − E′0

)
×Ψ0

so that, in the particular case r1 = r2 = . . . = rN = r, we obtain

v(r)− v′(r) =
(
E0 − E′0

)
/N −→ constant (absurd!)

Therefore Ψ0 and Ψ′0 cannot be equal.
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Introduction to density-functional theory

First Hohenberg–Kohn theorem

Proof (part 2): Let us now assume that Ψ0 and Ψ′0 have the same electron density n0.

According to the Rayleigh–Ritz variational principle

E0 <

〈
Ψ′0

∣∣∣∣∣T̂ + Ŵee +

N∑

i=1

v(ri)×
∣∣∣∣∣Ψ
′
0

〉

︸ ︷︷ ︸
and E′0 <

〈
Ψ0

∣∣∣∣∣T̂ + Ŵee +

N∑

i=1

v′(ri)×
∣∣∣∣∣Ψ0

〉

︸ ︷︷ ︸
E′0 + (v − v′|n0) E0 − (v − v′|n0)

thus leading to

0 < E0 − E′0 − (v − v′|n0) < 0 absurd!

∗P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
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Introduction to density-functional theory

Second Hohenberg–Kohn theorem

HK2: The exact ground-state density n0(r) of the electronic Hamiltonian

Ĥ[vne] ≡ T̂ + Ŵee +
N∑

i=1

vne(ri)×

minimizes the energy density functional E[n] = F [n] +

∫

R3
dr vne(r)n(r),

where the Hohenberg–Kohn universal functional F [n] is defined as

F [n] = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉,

and the minimum equals the exact ground-state energy E0:

min
n
E[n] = E[n0] = E0

Comment: we know from HK1 that n(r) → v[n](r) → Ψ[v[n]] = Ψ[n]︸ ︷︷ ︸
ground-state wavefunction with density n.
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Introduction to density-functional theory

Second Hohenberg–Kohn theorem

Proof:

• for any density n(r), Ψ[n] is well defined according to HK1 and

〈Ψ[n]|Ĥ[vne]|Ψ[n]〉 ≥ E0

〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉︸ ︷︷ ︸+

∫

R3
dr vne(r)nΨ[n](r)

︸ ︷︷ ︸
≥ E0

F [n] n(r)

thus leading to E[n] ≥ E0

• When n(r) equals the exact ground-state density n0(r):

n0(r) → vne(r) → Ψ[n0] = Ψ[vne] = Ψ0

E[n0] = 〈Ψ0|T̂ + Ŵee|Ψ0〉+

∫

R3
dr vne(r)n0(r) = 〈Ψ0|T̂ + Ŵee + V̂ne|Ψ0〉 = E0
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Introduction to density-functional theory

Kohn–Sham DFT (KS-DFT)
• The HK theorems apply to non-interacting electrons:

interacting problem → non-interacting KS problem

Ŵee → 0

v[n](r) → vKS[n](r)

Ψ[n] → ΦKS[n]

F [n] → Ts[n] =
〈

ΦKS[n]
∣∣∣T̂
∣∣∣ΦKS[n]

〉

nΨ[n](r) = nΦKS[n](r) = n(r)

• KS decomposition of the universal HK functional:

F [n] = Ts[n] + EHxc[n] with EHxc[n] =
1

2

∫

R3

∫

R3
drdr′

n(r)n(r′)
|r− r′| + Exc[n].

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
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Introduction to density-functional theory

How can we determine the KS determinant?
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Introduction to density-functional theory

Levy–Lieb constrained search formalism

• For a given density n there is a unique potential vKS[n](r), if it exists ..., such that ΦKS[n] is the

ground state of T̂ +

N∑

i=1

vKS[n](ri)× with density n.

• For all normalized wavefunctions Ψ with density n the following inequality is fulfilled:
〈

ΦKS[n]

∣∣∣∣∣

(
T̂ +

N∑

i=1

vKS[n](ri)×
)∣∣∣∣∣Φ

KS[n]

〉
≤
〈

Ψ

∣∣∣∣∣

(
T̂ +

N∑

i=1

vKS[n](ri)×
)∣∣∣∣∣Ψ

〉

−→ Ts[n] ≤ 〈Ψ|T̂ |Ψ〉 −→ Ts[n] = min
Ψ→n

〈Ψ|T̂ |Ψ〉

• Therefore 〈ΦKS|T̂ |ΦKS〉 = Ts[n0] = min
Ψ→n0

〈Ψ|T̂ |Ψ〉 but we do not know n0 ...

• Note that, as a consequence of the previous equality, Ts[n0] ≤ 〈Ψ0|T̂ |Ψ0〉 !
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Introduction to density-functional theory

Kohn–Sham DFT (KS-DFT)

• For any normalized wavefunction Ψ,

〈Ψ|T̂ |Ψ〉 ≥ Ts[nΨ]

〈Ψ|T̂ + V̂ne|Ψ〉 ≥ Ts[nΨ] +

∫

R3
dr vne(r)nΨ(r)

〈Ψ|T̂ + V̂ne|Ψ〉+ EHxc[nΨ] ≥ Ts[nΨ] + EHxc[nΨ] +

∫

R3
dr vne(r)nΨ(r)

︸ ︷︷ ︸

E[nΨ] ≥ E0

• The exact ground-state energy E0 is recovered when Ψ = ΦKS thus leading to

E0 = min
Ψ

{
〈Ψ|T̂ + V̂ne|Ψ〉+ EHxc[nΨ]

}

• Note that the minimization can be restricted to single determinantal wavefunctions Φ.
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Introduction to density-functional theory

Comparing wave function theory (WFT) with KS-DFT

E0 = min
Ψ

{
〈Ψ|T̂ + V̂ne + Ŵee|Ψ〉

}
= min

Φ

{
〈Φ|T̂ + V̂ne|Φ〉+ EHxc[nΦ]

}

↓WFT ↓ DFT

Ψ = ΦHF +
∑

k

Ckdetk

︸ ︷︷ ︸
Φ = |ϕ2

1ϕ
2
2 . . . ϕ

2
N
2

|
︸ ︷︷ ︸

multideterminantal wave function single determinant
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Introduction to density-functional theory

Standard density-functional approximations (DFAs)


…
Exc[n] ≈ ∫ dr εxc(n(r)) × n(r)

Exc[n] ≈ ∫ dr εxc(n(r), |∇n(r) |) × n(r) Generalized gradient approximations (GGAs):

Local and semi-local functionals

LDA (uniform electron gas)
S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58 (8): 1200–1211 (1980).

� J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).
� C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 57:785, (1988).

LYP, PBE, …

Exc[n] ≈ αEHFx [Φ] + (1−α)EDFAx [nΦ] + EDFAc [nΦ]

Exc[n] ≈ Elr,HFx [Φ] + Esr,DFAx [nΦ] + EDFAc [nΦ]

…

Hybrid functionals

B3LYP

Range-separated hybrids

Hartree-Fock-like 

exchange energy (evaluated with KS orbitals)

Ŵee = Ŵlree + Ŵsree

Long-range short-range

CAM-B3LYP

A. D. Becke, J. Chem. Phys. 98, 1372 (1993).

Yanai, T.; Tew, D. P.; Handy, N. C., Chem. Phys. Lett., 393, 51-57 (2004).
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Introduction to density-functional theory

DFT, us (humans), and the machines
Exact scaling relations for Ts [n] and Ex[n]

We want to see how (some) universal density functionals are a↵ected by the
uniform coordinate scaling.

We start with the simplest one, namely the Hartree functional EH[n].

EXERCISE

Show that the following scaling relation is fulfilled,

EH[n� ] = �EH[n].

It can also be shown that the non-interacting kinetic energy and exact exchange
energy functionals fulfill the following scaling relations:

Ts [n� ] = �2Ts [n] ,

Ex[n� ] = �Ex[n].
EXERCISE

For that purpose, write the variational principle for the KS Hamiltonian

T̂ +
PN

i=1 vKS[n](ri)⇥, consider trial wavefunctions  with density n [we denote

 ! n] and conclude that Ts [n] = min
 !n

h |T̂ | i. Deduce that �KS
� [n] = �KS[n� ].

Emmanuel Fromager (UdS) EUR: Theory of extended systems 4 / 6

Uniform coordinate scaling in wavefunctions and densities

Let � > 0 be a scaling factor.

Applying a uniform coordinate scaling consists in multiplying each space
coordinate by �:

r ⌘ (x, y, z) ! �r ⌘ (�x, �y, �z)

dr = dxdydz ! �3dr

Uniform coordinate scaling applied to the density:

n(r) ! n�(r) = �3n(�r)

Uniform coordinate scaling applied to an N -electron wavefunction [spin is
una↵ected by the scaling]:

 (r1, r2, . . . , rN ) !  �(r1, r2, . . . , rN ) = �
3N
2  (�r1, �r2, . . . , �rN )

Emmanuel Fromager (UdS) EUR: Theory of extended systems 2 / 6
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to solve the Kohn–Sham equations. This should yield substantial savings in computer
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machine-learn this functional have been limited by the need to find its derivative. The present

work overcomes this difficulty by directly learning the density-potential and energy-density

maps for test systems and various molecules. We perform the first molecular dynamics

simulation with a machine-learned density functional on malonaldehyde and are able to

capture the intramolecular proton transfer process. Learning density models now allows the
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Teaching the HK theorem to a machine

• One can teach the functional Ts[n] to a machine.

• But then it needs to find the value of δTs[n]/δn(r) by itself ...

• ... in order to determine n0 variationally from vne.

• What about learning the map v → n[v] directly ?∗

• If we have vne, the machine will tell us directly what the ground-state density n0 = n[vne] is.

• We can also teach the machine how to compute the energy E[n0] = Ts[n0] + EHxc[n0] + (vne|n0).

∗Brockherde, Felix, Vogt, Leslie, Li ,Li, Tuckerman, Mark E, Burke, Kieron and Muller, Klaus-Robert, Nature Communications 8, 872 (2017).
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Teaching the HK theorem to a machine

• Expansion of densities in an orthonormal basis of functions {φl(r)}1≤l≤L:

n[v](r) =

L∑

l=1

u(l)[v]× φl(r).

• Kernel Ridge Regression (KRR) method:

u(l)[v] =

M∑

j=1

β
(l)
j × k (v, vj)

k(v, vi) = exp


−

∫
dr
∣∣∣v(r)− vi(r)

∣∣∣
2

2σ2




where {vj}1≤j≤M are the potentials the machine will learn from.

Brockherde, Felix, Vogt, Leslie, Li ,Li, Tuckerman, Mark E, Burke, Kieron and Muller, Klaus-Robert, Nature Communications 8, 872 (2017).
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Teaching the HK theorem to a machine
• The machine will learn

ni(r) =

L∑

l=1

u
(l)
i × φl(r)

• The paramaters to be optimized (learning process) are β ≡
{
β

(l)
j

}
1≤j≤M,1≤l≤L

.

• Cost function to be minimized with respect to β:

e (β) =

M∑

i=1

∫
dr
∣∣∣ni(r)− n[vi](r)

∣∣∣
2

orthonormal basis
=

M∑

i=1

L∑

l=1

∣∣∣∣∣u
(l)
i − u(l)[vi]

∣∣∣∣∣

2

=

M∑

i=1

L∑

l=1

∣∣∣∣∣u
(l)
i −

M∑

j=1

β
(l)
j × k (vi, vj)

∣∣∣∣∣

2
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is the average of tautomer atomic positions. For the test set, we
use snapshots from a computationally expensive
Born–Oppenheimer ab initio MD trajectory at 300 K. Figure 5a
shows that the ML-HK map is able to predict DFT energies
during a proton transfer event (MAE of 0.27 kcal/mol) despite
being trained on classical geometries that did not include these
intermediate points.

We show, finally, that the ML-HK map can also be used to
generate a stable MD trajectory for malonaldehyde at 300 K
(Fig. 5b). In principle, analytic gradients could be obtained for

each timestep, but for this first proof-of-concept trajectory, a
finite-difference approach was used to determine atomic forces.
The ML-HK-generated trajectory samples the same molecular
configurations as the ab inito MD simulation (see Fig. 6 and
Supplementary Table 1) with a mean absolute energy error of
0.77 kcal/mol, but it typically underestimates the energy for out-
of-plane molecular fluctuations at the extremes of the classical
training set (maximum error of 5.7 kcal/mol, see Supplementary
Fig. 4). Even with the underestimated energy values, however, the
atomic forces are sufficiently large to return the molecule to the
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