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• C. Cohen-Tannoudji, B. Diu, F. Laloë : Mécanique Quantique.

1. Quantum mechanics basics

(a) Fundamental principles

In quantum mechanics, the point of view is radicaly different from the dominant

one in classical mechanics. For instance, a particle of charge q and mass m

positioned in r in space is described by a function, named wavefunction ϕ(r).

Observable quantities are formulated as operators and one refers to as represen-

tations, usually r representation. In one dimension, position, momentum and

kinetics energy operators read :

x → x×
px → h̄

i

∂

dx

T =
p2x
2m

→ − h̄2

2m

∂2

∂x2

Note : these expression can be extended to three dimension-space.

The Hamiltonian Ĥ is associated to the total energy. An electron moving in the

field of a fixed nucleus can be written :

Ĥ = − h̄2

2me

∂2

dx2
− Ze2

4πǫ0x
.
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The second term is the electrostatic potential energy.

In the following, we shall make extensive use of the so-called atomic units (a.u.)

where formally e = 1, me = 1, h̄ = 1, 1
4πǫ0

= 1.

(b) Quantum mechanics postulates

• The state of a system is fully captured by a mathematical function

Ψ(r1, r2, . . . , t). where the r1, r2 . . . stand for the particle coordinates.

• Position x and momentum px operators satisfy particular rules featuring the

Heisenberg uncertainty principle

[x, px] = xpx − pxx = ih̄

• The mean value of an operator Ω̂, 〈Ω̂〉, in a normalized state Ψ (i.e., 〈Ψ|Ψ〉 =
∫

Ψ∗Ψdτ = 1) reads :

〈Ω̂〉 =
∫

Ψ∗Ω̂Ψdτ.

Interpretation : Let us first assume discretisation of levels. Ψ can be decom-

posed as a linear combination of Ω̂ eigenvectors Ψn associated to eigenvalue

ωn one can easily show that :

Ψ =
∑

n

cnΨn

〈Ω̂〉 =
∑

n

|cn|2ωn.

〈Ω〉 is mean value weighted by the appearance of the eigenstates in the ex-

pansion of Ψ.

• Born suggested the following interpretation of the wavefunction. The

probability of finding the system in “position” r1, r2 . . . is given by

|Ψ(r1, r2, . . .)|2dτ .
Such interpretation imposes some restrictions on the wavefunction

∫ |Ψ|2dτ <
∞. Important : from now on, we shall impose the normalization condition
∫ |Ψ|2dτ = 1.

• The wavefunction satisfies the time-dependent Schrödinger’s equation :

ih̄
∂Ψ

∂t
= ĤΨ.

Assuming separability between time and space variables, Ψ(x, t) = ψ(x)θ(t).

The Schrödinger’s equation splits in two :

− h̄2

2m

∂2ψ

∂x2
+ V (x)ψ = Eψ,

ih̄
∂θ

∂t
= Eθ.
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The first equation is the time-independent Schrödinger’s equation.

Note : the second equation can be easily solved and θ ∼ e−iEt/h̄.

Let us recall that the eigenvalues of any observables are quantized. In

particular, the energy levels of a quantum system are discrete (i.e. integers

can be used to label them). Finally, the eigenvectors form an orthogonal

basis set. This property will be frequently used in the following.

(c) Matrix representation

From algebra, it is known that matrix multiplication is, in general, not commu-

tative (i.e., A.B 6= B.A). This property is relected in quantum mechanics such

as [x, px] = ih̄.

Note : The Dirac’s notation “bracket” is very useful in quantum mechanics. Let

us recall that 〈Ψm|Ω̂|Ψn〉 =
∫

Ψ∗
mΩ̂Ψndτ . In the following, we shall write Ωmn =

〈Ψm|Ω̂|Ψn〉 as the matrix element.

Let us assume a {|n〉} basis set. Any Ψ can be decomposed onto that basis and

the Schrödinger’s equation reads :

Ĥ|ψ〉 = Ĥ
∑

n

cn|n〉 = Eψ = E
∑

n

cn|n〉.

By multiplying by the bra 〈m|,
∑

n

cn〈m|Ĥ|n〉 = E
∑

n

cn〈m|n〉.

Since the Ĥ eigenvectors are orthogonal, 〈m|n〉 = δmn, one gets :

∑

n

Hmncn = Ecm

Let us suppose that all off-diagonal matrix elements are zero, Hmn = 0. Then,

the energy E is simply the diagonal element Hmm. Therefore, solving the

Schrödinger’s equation is just a diagonlization problem.

2. Two-level problem

(a) Perturbation treatment

This is a rather common situation in quantum chemistry. Let us start from Ĥ0

holding two known eigenvectors and eigenvalues :

Ĥ(0)|i〉 = E
(0)
i |i〉 with E(0)

1 < E
(0)
2

And let us write the exact Hamiltonian as Ĥ = Ĥ(0) + Ĥ(1).

Note : this is typically the situation when one has to build molecular orbitals

(several nuclei acting on a given electron) starting from atomic orbitals (a single

nucleus acting on an electron).
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Any solution ψ can be decomposed as a linear combination of |1〉 and |2〉 :

|ψ〉 = a1|1〉+ a2|2〉.

Since ψ is a solution of the Schrödinger’s equation, one gets :

a1 (H − E) |1〉+ a2 (H − E) |2〉 = 0.

Projections onto 〈1| and 〈2| lead to the following equations :

a1 (H11 − E) + a2H12 = 0 and a1H21 + a2 (H22 − E) = 0

The solution ψ = 0 is not compatible with
∫ |ψ|2dτ = 1. Therefore, one wants to

avoid the solution a1 = a2 = 0, and this is done by setting the determinant to

zero. One refers to the secular determinant :
∣

∣

∣

∣

∣

H11 − E H12

H21 H22 − E

∣

∣

∣

∣

∣

= 0.

The second-order equation is easily solved and leads to the energies :

E± =
1

2
(H11 +H22)±

1

2

[

(H11 −H22)
2 + 4H12H21

]1/2
.

Let us recall that H is hermitian. Therefore, H12H21 = H12H
∗
12 = |H12|2, positive

real value. Then, if the diagonal elements are not affected (i.e. H
(1)
ii = 0),

Hii = Ei. This assumption allows for a simplification of the following discussion.

Let us define ∆E = E
(0)
2 − E

(0)
1 the energy difference between the interacting

levels (see Figure 1). Assuming |H12| ≪ ∆E, the solution can be expanded as :

E

|H12|
2

∆E

- |H12|
2

∆E

∆E

E
(0)
1

E
(0)
2

FIG. 1: Avoided crossing between two interacting levels.

E+ ≈ E
(0)
1 − |H12|2

∆E
and E− ≈ E

(0)
2 +

|H12|2
∆E

Let us comment on these results :

• The low-lying level is lowered in energy, whereas the high-lying one is pushed

higher in energy. This is the so-called avoided crossing (see Figure 1).
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• The avoided crossing is enhanced as the energy difference ∆E goes to zero.

Evidently, the expansion is invalidared as soon as ∆E = 0. However, for

∆E = 0, E± = 1
2

(

E
(0)
1 + E

(0)
2

)

± |H12|.
• This general result is at the orgini of the core/valence separation.

• The wave functions expression can be obtained from the secular determinant

and the expression of the eigenvalues. One can show that

|ψ+〉 ≈ |1〉 − |H12|
∆E

|2〉

|ψ−〉 ≈ |2〉+ |H12|
∆E

|1〉.

One often says that starting from the unperturbed Hamiltonian, both states

get contaminated by the introduction of the perturbation.

(b) Variational method : generalisation

Another strategy consists in building the wave function, say a trial wavefunction

Ψ, and to progressively modify Ψ → Ψ + δΨ in order to minimize the energy.

The Raleigh ratio is defined as :

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 ,

and one wants to reach δE = 0 (stationnary condition).

The variational theorem states that the ground state energy E0 is a lower bound

for any function Ψ, E ≥ E0. The equality holds as soon as Ψ is an eigen value of

H.

In practice, one uses the Raleigh-Ritz method. We shall see how a variational

problem (mathematical minimisation) is transformed into an algebra one (secular

determinant).

Again, the idea is to expand the trial function Ψ on a basis set {Ψi} , Ψ =
∑

i ciΨi.

The unknowns are now the coefficients of the expansion. For the sake of simplicity,

let us assume that all coefficients are real values :

E =

∑

i,j cicjHij
∑

ij cicjSij

,

where Hij = 〈Ψi|H|Ψj〉 and Sij = 〈Ψi|Ψj〉 (overlaps matrix).

The minimization of E is achieved by imposing ∂E/∂ck = 0. As a result, a set of

coupled linear equations must be solved :
∑

i

ci (Hik − ESik) = 0

Again, to exclude the unacceptable solution (c1, c1, . . .) = (0, 0, . . .), the secular

determinant must be set to zero :

det|Hik − ESik| = 0.
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The solutions of this polynomial in E are the eigenvalues, defining the spec-

troscopy. This is a very standard way of solving a problem in quantum chemistry.

The trick is the introduction of a basis set.

3. Goals and objectives

(a) Electrons behaviours

The problem is multiple since different interactions, of same nature though, are

to be treated :

• Nuclei have their own degrees of freedom. One may factorize the wave func-

tion, or simply consider nuclei as fixed particles.

• Electrons repel each other. Any independent picture might be invalidated

• Electrons do have an intrinsic magnetic moment. The wave function must

include such property, possibly as a total spin.

(b) Electronic density

The density ρ is defined as the amount of charge per volume unit. The nuclear

contribution is easily calculated since nuclei are considered as point charges :

ρnuc(r) =
∑

A

ZA × δ(r−RA),

with ρ(r) = ρnuc(r) + ρelec(r). The electronic contribution ρelec must then be

added.

(c) Approximations and standard methods (semi empirical, DFT, ab initio)

The objective is to evaluate ρelec.

• Most recent methods directly focus on the density and the method is named

Density Functional Theory. This is the leading methodology, despite the

need for some parametrization. The electron-electron interaction energy is

described as a function of the density (and the density is a function of space.

That is the origin of “functional”).

• Historically, the Hartree-Fock method was first developed starting from orig-

inal Hartree’s views. The idea is to describe each electron dynamics in a

mean field generated by the other electrons. There is a strong similariy with

the concept of screening in atomic theory (see Figure 2). Unfortunately,

fluctuations are not taken into account. The movements of electrons are

not independent, and one must account for a description that goes beyond

Hartree-Fock picture. These are called Configurations Interaction CI meth-

ods, where several configurations are explicitely included (in contrast with

Hartree-Fock theory where a unique configuration is considered).

• Finally, semi empirical methods are based on a limited number of pa-

rameters to build up the electronic density. Most of these methods are

mono-electronic in essence, projecting the complexity of electron-electron
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FIG. 2: Left : schematic view of the electronic structure of dinuclear system. Right : mean-field

description of the dynamics of a single electron.

interactions into these parameters. Transferability of any parametrization is

a central issue. Let us mention Hückel and extended Hückel theories which

have been extensively used for conjugated polyenes.

4. Hydrogen atom quantification

(a) Description of the system

The system is just two interacting particles, a proton and an electron. It is known

that the problem can be decomposed into a fictitious reduced mass positionned

by the relative coordinates and a global movement of the center of mass. Let us

concentrate on the fictitious particle and leave out the global movement :

• Since 1
µ
= 1

me
+ 1

MN

et MN ∼ 2000×me, µ ≈ me.

• Therefore, the center of masse is almos located on the nucleus and the prob-

lem has spherical symmetry.

In atomic units, the Schödinger’s equation reads :

−∇2

2
ψ − 1

r
ψ = Eψ.

(b) Resolution of the Schrödinger’s equation : spherical harmonics

It is rather tempting to separate the radial part from the angular by writing

ψ(r, θ, φ) = R(r).Y (θ, φ). The R function is the so-called radial part of the wave

function. Let us first look into the equation the angular part Y obeys :

[

1

sin2θ

∂2

∂φ2
+

1

sinθ

∂

∂θ
sinθ

∂

∂θ

]

Y = −ElY.

The Y functions are the so-called spherical harmonics, traditionally denoted Yl,ml

with ml = −l,−l+1, . . . , 0, . . . l− 1, l. Besides, the eigenvalues are El = l(l+1).

• These spherical harmonics are solution of the particle on a sphere problem.

• For a given quantum number l value, the magnetic quantum number ml has

2l + 1 values.
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• Since El does not depend on ml, each level is (2l + 1) degenerated.

Examples : for l = 0, ml = 0 is the unique possible value. It is an s-type

orbital. For l = 1, ml can be -1, 0 or +1. These orbitals px, py, pz are in fact

linear combinations of the spherical harmonics Y1,−1, Y1,0 et Y1,1.

• Let us note Lz the projection of the angular momentum L on a quantification

axis. The spherical harmonics are also eigenvectors of Lz, with eigenvalues

ml, LzYl,ml
= mlYl,ml

.

Attention : atomic units were used through out these manpulations. Do keep in

mind that the unit of [x, px], L is the one of h̄.

By writing R = u
r
, the u function satisfies a one-dimensional type Schrödinger’s

equation :

−d
2u

dr2
+ Veff (r)u = Eu,

where Veff (r) = −1
r
+ l(l+1)

2r2
is an effective potential. The second term is named

centrifugal potential. The problem can be analytically solved, and the n quantum

number naturally appears. One can show that :

R(r) = Rn,l(r) and n = 1, 2, . . . l = 0, 1, . . . , n− 1

Definition : The solutions of a monoelectronic problem are called orbitals. The

radial part of atomic orbitals are dominated by an exponentially decaying function

:

Rn,l(r) = P (r).e−r/rn with rn = n2a0.

P is a polynoma of degree n − 1 (Laguerre’s polynoma) and a0 = 4πǫ0h̄
2

mee2
is the

Bohr radius (a0 = 0.529 Å).

Finally, the energy is directly controlled by the principal quantum number n :

En = −
(

me4

32π2ǫ20h̄
2

)

1

n2
= −13, 6

n2
(eV ).

(c) Radial distribution

The orbitals can be written as ψn,l,m = Rn,l.Yl,m. Following Bohr’s view, the prob-

ability of finding the electron in an elementary volume dτ is given by |ψn,l,m|2dτ ,
where dτ = r2sinθdrdθdφ using spherical coordinates. Thus, the probabilyt of

finding the electron at a given distance r is given by integrating over θ et φ :

P (r)dr =
∫ π

0
dθ
∫ 2π

0
dφR2

n,l(r)|Yl,m|2sinθdr.

Spherical harmonics being normalized,
∫ π

0
dθ
∫ 2π

0
dφ|Yl,m|2sinθ = 1.
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P (r) = Rn,l(r)
2r2 is called the radical distribution function.

Note : extrema of this function give a classical view. One can show that rmax

grows as n2. Thus, the electrostatic energy being proportionaal to 1/rmax, the

1/n2 law for the energy levels is recovered.

5. Polyelectronic atoms : the Helium case

(a) Analysis of the problem

In a system such as helium atom (nuclear charge Z = +2), an extra contribution

arising from the electron-electron repulsion Vee must be taken into account.

r1

r2

r12

FIG. 3: Caracteristic distances in helium atom.

The Hamiltonian in atom units reads :

H = −∇2
1

2
− ∇2

2

2
− 2

r1
− 2

r2
+

1

r12

No analytical solution of the Schrödinger’s equation can be found because of the

presence of the Vee(r12) = 1/r12 term.

(b) Orbital approximation

One can start considering Vee as a perturbation. In that case, Ĥ(0) = ĥ1 + ĥ2
where ĥ1 and ĥ2 are hydrogenöıd Hamiltonians for which solutions are known. As

a mater of fact, the resolution is rigorously the same as for the hydrogen atom,

by changing the nucleus charge from Z = 1 to Z = 2. From the independency of

the electrons, the solutions of Ĥ(0) have the following form:

ψ (r1, r2) = ψn1,l1,m1
(r1) .ψn2,l2,m2

(r2) .

Let us stress that ψ is an approximate solution though, since the exact Hamilto-

nian reads Ĥ(0) + V̂ee. Such approximation is called the orbital approximation.

Let us insist on this definition : an orbital is monoelectronic wavefunction solution

of a monoelectronic wave equation. Thus, the tota energy can be approximated

as :

E = ǫn1
+ ǫn2

∼
(

1

n2
1

+
1

n2
2

)

.
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The energy correction δE to the previous energy is given by the mean value of

Vee in state ψ (cf perturbations theory) :

δE = 〈ψn1,l1,m1
.ψn2,l2,m2

| 1
r12

|ψn1,l1,m1
.ψn2,l2,m2

〉

=
∫

|ψn1,l1,m1
|2
(

1

r12

)

|ψn2,l2,m2
|2dτ1dτ2 = J.

This quantity named as Coulomb integral is usually written in a compact way

J = (ψn1,l1,m1
ψn1,l1,m1

, ψn2,l2,m2
.ψn2,l2,m2

) . Numerically, J is of the order of a few

eV and E = 2E1,0,0 + J provides an estimation of the ground state energy of

helium atom.

The situation is somewhat different when one examines excited states. Let us

consider excited states ψ∗ generated from the 1s12s1 configuration. By exhanging

the r1 et r2 coordinates (1 and 2 for simplicity), two functions can be generated,

ψ1(1, 2) = a(1)b(2) et ψ2(1, 2) = a(2)b(1). One can immeditaly build the secular

determinant from the linear expansion of ψ∗ on ψ1 et ψ2. Let us evaluate the

required matrix elements :

H11 = 〈a(1)b(2)|ĥ1 + ĥ2 +
1

r12
|a(1)b(2)〉 = ǫa + ǫb + J = H22

H12 = 〈a(1)b(2)|ĥ1 + ĥ2 +
1

r12
|a(2)b(1)〉

= 〈a(1)|ĥ1|b(1)〉.〈b(2)|a(2)〉+ 〈b(2)|ĥ2|a(2)〉.〈a(1)|b(1)〉+K

H12 = H21,

where K = 〈a(1)b(2)| 1
r12

|a(2)b(1)〉 is the exchange integral. Using the compact

notation for the Coulomb integral, K = (ab, ba) : the terminology “exchange” is

understood. The K integral is behind the famous Hund’rule.

Orbitals a and b are eigenvectors of a hermitian operator : they are orthogo-

nal. Thus, the extradiagonal term is simply H12 = K = H21 and the secular

determinant reads :
∣

∣

∣

∣

∣

ǫa + ǫb + J − E K

K ǫa + ǫb + J − E

∣

∣

∣

∣

∣

= 0,

with finally

E± = ǫa + ǫb + J ±K.

The corresponding wavefunctions can be developped onto a(1)b(2) et a(2)b(1)

ψ± =
1√
2
(a(1)b(2)± a(2)b(1)) .

• As expected the degeneracy between ψ1 and ψ2 functions is lifted by the

electron-electron repulsion and the energy difference is just 2K.
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• For r1 ∼ r2, ψ−(r1, r2) ∼ 0. One refers to the Fermi hole, the presence

of an electron in some region of space excluding the presence of any other

electron. Thus, the electron-electron repulsion is reduced in ψ−. This is to be

contrasted with what is observed in ψ+ since ψ+(r1, r1) 6= 0. The electron-

electron repulsion is larger in ψ+ than in ψ− and one can understand that

E+ ≥ E−.

• One can easily check that ψ−(r1, r2) = −ψ−(r2, r1) whereas

ψ+(r1, r2) = ψ+(r2, r1). ψ− and ψ+ are said to be antisymetric et sy-

metric, respectively.

(c) Electron spin

The wavefunction behaviour by permutation of electrons coordinates is crucial in

quantum mechanics. Evidently, the intrinsic orbital momentum of electron has

been omitted up to now.

Let us recall the algebra of kinetic moments coupling J1 and J2 leading to a total

kinetic moment J = J1 + J2 with :

|J1 − J2| ≤ J ≤ J1 + J2

or J = |J1 − J2|, |J1 − J2|+ 1, . . . , J1 + J2 − 1, J1 + J2

and MJ =MJ1 +MJ2 .

Example : the electron holds a kinetic spin moment s = 1/2. If the electron

evolves in a d orbital (l = 2) then the total kinetic moment j = l + s has values

ranging from |l−s| to l+s, j = 3/2, 5/2. In a two-electron system, the total spin

S can be either S = 0 (singlet state) or S = 1 (triplet state). Usually, α stands

for the |s = 1/2,ms = 1/2〉 spin state and β for |s = 1/2,ms = −1/2〉 and the

total spin wavefunctions read :

|S = 0,MS = 0〉 =
1√
2
(α(1)β(2)− α(2)β(1))

and

|S = 1,MS = −1〉 = β(1)β(2)

|S = 1,MS = 0〉 =
1√
2
(α(1)β(2) + α(2)β(1))

|S = 1,MS = +1〉 = α(1)α(2).

The three S = 1 components are symetrical upon 1 ↔ 2 exchange. In contrast,

the singlet spin function is antisymetric.

Note: the eigenvalues of the spin operator S2 (valid for any kinetic moment)are

S(S + 1), that is 0 et 2.

(d) Determinantal structure of the wavefunction

Pauli’s principle : the wavefunction of any electron system must be antisymetric
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S = 0

S = 1

2K 1s12s1

E

FIG. 4: Singlet-triplet splitting of the 1s12s1 configuration : Hund’s rule.

upon electron pair coordinates transposition. By coordinates, one refers to both

space and spin components. Thus, the singlet wave function S = 0 must be asso-

ciated to the symmetric space part ψ+. In other words, the 1s12s1 configuration

of helium gives rise to a fundamental triplet state and a 2K higher in energy sin-

glet state (see Figure 4). This is the origin of Hund’s rule, a strictly non-classical

phenomenon.

Extension : the spin degree of freedom allows us to introduce spin-orbitals.

From any orbital (one-electron wavefunction) ψn,l,m which is a function of space

coordinates r, we build two spin-orbitals :

ψα
n,l,m(1) = ψn,l,m(r1)α(1) and ψβ

n,l,m(1) = ψn,l,m(r1)β(1)

Notations : ψβ
n,l,m = ψn,l,m and ψn,l,m the α spin-orbital.

From spin-orbitals, the antisymetry is automaticaly fulfilled if the wavefunction

is written as a determinant, named Slater’s determinant :

ψ(1, 2) =
1√
2

∣

∣

∣

∣

∣

a(1) b(1)

a(2) b(2)

∣

∣

∣

∣

∣

= |ab|.

Such structure obeys the laws of quantum mechanics but remains an approx-

imation. If electron 1 occupies orbital a, the electron 2 must be in orbital b.

The double occupancy of a given orbital is not (configurations |aa| and |bb|) are
not taken into account, whereas they might appear at least in the singlet state.

Several Slater’s determinants must be included to progressively build up the

exact state.

(e) Screening effect

One wishes to maintain the framework of orbitals even in polyelectronic atoms.

Let us concentrate on electron 1. One may to to account for electron-electron

repulsion by introducing some approximation to recover a central potential :

V =
∑

i 6=1

1

r1i
≈ σ

r1
.
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Z Z∗

r1

FIG. 5: A given electron undergoes a central potential arising from an effective charge Z∗ = Z−σ.

σ is an effective charge localized on the nucleus that should account of the pres-

ence of all the other electrons acting on electron 1. The problem is significantly

simplified since it is turned into a single electron problem moving in the field of

a Z∗ = Z − σ nucleus (see Figure 5). Empirical and variational methods can be

used to evaluate the screened charge.

6. Polynuclear system: study case of H2

In a molecule, each individual electron feels the presence of several nuclei, breaking

down the central character of the potential.

(a) Nature of the problem

Let us consider the H2 molecule characterized by the R distance between the nu-

clei. For large distance separation, the total energy E is simply twice the one of a

single hydrogen atom, that is −27.2 eV. At shorter distances, the nucleus-nucleus

repulsion (at least !) contribute to the divergence of E. The dissociation curve

displayed in Figure 6 gives the variation of E with respect to R. First, the move-

R
Req

De

E

FIG. 6: Dissociation curve of a diatomic molecule.De stands for the dissociation energy.

ments of nuclei and electrons are separated following the Born-Oppenheimer’s

approximation. The variables R of the “heavy” particules (nuclei) are separated

from the ones of the “light” particules (electrons) ri in the expression of the total

wavefunction Ψ(R, r1, r2) :

Ψ(R, r1, r2) = ψ(R, r1, r2)ξ(R).

By neglecting certain contributions, one can show that ψ a Schrödinger’s equa-
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tion, R being a parameter :

−∇2

2
ψ + V (R, r1, r2)ψ = E(R)ψ

The total energy Etot simply reads Etot = E(R) + 1/R.

(b) Linear combination of atomic orbitals

Let us A and B be the two protons separated by R. Qualitatively, the linear

combination of atomic orbitals (LCAO) method can be illustrated on the H+
2

cation. In the vicinity of nucleaus A, the Hamitlonian can be approximated by :

−∇2

2
ψ − 1

rA
.

One recognizes the hydrogen atom Hamiltonian on A nucleus, the solutions of

which are known. Thus the solution of our problem should behave as an atomic

orbital in the vicinity of A (and B as well !). Acceptable solutions should be

φA ± φB where φA et φB are the atomic orbitals localized on nucleus A and B,

respectively.

More generaly, the molecular orbitals are written as linear combinations of the

atomic orbitals :

ψOM =
∑

i

ciφOA,i

The optimization of the ci coefficients leads us back to the secular determinant.

The so-called overlap integrals Sij = 〈φi|φj〉 play a major role along this proce-

dure. Atomic orbitals centered on different nuclei are not necessarily orthogonal.

Let us concentrate on the H2 molecule to understand the notion of “overlap”.

This terminology can be understood by looking into the strucutre of the atomic

orbitals localized on A and B (see Figure 7).

r

φA(r).φB(r) ∼ 0φA(r).φB(r) ∼ 0

φA(r).φB(r) 6= 0

φA φB

FIG. 7: Overlap concept : the grey zone corresponds to a domain where the product φA(r).φB(r)

has noticeable values. The orbitals “overlap” in such region of space.

Note : the atomic orbitals being normalized, SAA = SBB = 1 et we shall write

S = SAB for the sake of simplicty. Overlap is a dimensionneless quantity.
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Traditionally, the following short-hand notations are introduced α = HAA = HBB

Coulomb integral, and β = HAB = HBA resonance integral (β ≤ 0). The solutions

of the secular determinant 2× 2 are readily accessible :

E± =
α± β

1± S

• Let us stress that in absolute value the destabilization is larger than the sta-

bilization. This is contrasted with the approximate perturbative treatments.

• Is is easily shown that S → 0 when R → 0.

• A similar behaviour is expected for the resonance integral.

• Consequently, E+ → α and E− → α in the dissociation limit.

• The molecular orbitals can be fully expressed, using again the normalization

condition :

cA = cB =
1

√

2(1 + S)
for E = E+

cA = −cB =
1

√

2(1− S)
for E = E−.

These orbitals satisfy some symmetry properties g et u characteristic of

systems holding a center of inversion.

7. A semi empirical method : the Hückel method

(a) σ/π separation

In a conjugated polyene (see Figure 8), carbon atoms are all sp2 hybridized. The

1

2

3

4

5

FIG. 8: Conjugated polyene : pentadiene.

network is defined by the interaction of orbitals which display cylindrical revolu-

tion along the bonds : one refers to the σ network. The three directions around a

trigonal carbon are generated by linear combinations of atomic orbitals (LCAO)

on a given site. One referes to hybrid orbitals. The fourth valence atomic orbital

is availabe for the π network construction, more polarizable and reactive. From

their s character, the σ orbitals lie lower in energy and a qualitative molecular

orbitals spectrum is given in Figure 9.

The Hückel method concentrates on the valence part (see the highlighted window

energy Figure 9), and more generaly upon the π system constructed upon a basis
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π

π∗

σ

σ∗

E

valence

FIG. 9: σ − π separation in conjugated polyenes.

of 2p-type atomic orbitals {ϕi}. Besides, the Hamiltonian is monoelectronic, a

significant assumption that consists in adpating the parameters to reproduce

some experimental evidence.

(b) Resonance and Coulomb integrals

The parametrization is derived from UV spectroscopy of thermodynamics, or

from more elaborated calculations. Transferability of a set of parameters is a

central issue, and more importantly the transferability of the resonance integral

hij = 〈ϕi|h|ϕj〉. It is then assumed that hij = β is independent of the i et j

sites. In its simplest version (Hückel), it is supposed that this integral is zero for

non-neigbhouring atoms, i.e. hij = 0 as soon as i et j are not nearest-neighbours.

Besides, the overlaps Sij being usually rather small, they are set to zero, Sij = 0

for i 6= j. Finally, the Hückel method can be summarized as follows :

hij = β if i et j are connected,

hij = 0 otherwise, and

Sij = δij .

Example : For the system given in Figure 8, h23 = β but h24 = 0.

However, β is very sensitive to the the relative orientation (see Figure 10).

One way to account for the angular dependency is to write :

β = 〈2pz|h|2pz〉 = β0cos (θ) ,

where the θ angle is given Figure 10.

Let us now examine the diagonal terms of the secular determinant. hii =

〈ϕi|h|ϕi〉 = α is named Coulomb integral and corresponds to the energy of an

electron staying in such orbital. Therefore, α is the ionization potential of the

element.
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θ

FIG. 10: Relative orientation of 2p type atomic orbitals that modulates the resonance integral.

Since in the Hückel method one concentrates on the π system, α = 0 eV can be

imposed by a simple change of the origin of the energies.

As an estimate, α/β ∼ 1/10 and all energies are measured with respect to β.

(c) Construction of the secular determinant

In the simplest version of the Hückel method, the construction is much simplified

owing to the approximations. As an example, the secular determinant of the

polyene represented in Figure 8 reads :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α− E β 0 0 0

β α− E β 0 0

0 β α− E β 0

0 0 β α− E β

0 0 0 β α− E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

and one traditionally introduces x = α−E
β

:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x 1 0 0 0

1 x 1 0 0

0 1 x 1 0

0 0 1 x 1

0 0 0 1 x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Note : an order n equation arises, n being the number of carbon atoms. Once

the energies {Ei} are determined, by setting E = Ei in the set of equations

the molecular orbitals can be fully expanded remembering the normalization

condition.

(d) Advantages/drawbacks of the method

It is very attractive for qualitative interpretation, giving quite reasonable a de-

scription of electronic densities. Orbital analysis can be carried out along with

electrophilicity et nucleophilicity.
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Evidently, electron-electron interactions are not taken into account. Besides,

overalp integrals are all set to zero which makes the splitting between two

degenerate levels strictly symetrical, α + β et α − β. Reality is different and

some precautions should be taken.

8. Quantitative approach of electronic structure

(a) Setting the problem

The difficulty lies in the the presence of the electron-electron repuslion term in

the Hamiltonian.

i. First, no analytical resolution is possible, and one would like to start with

the orbital picture. Thus, electrons are “confined” in boxes the dimension of

which are related to the electronic density.

ii. The treatement of the instantaneous electron-electron interactions is a diffi-

cult task, and though gives rise to intriguing properties.

(b) Mean field

Evidently, some approximations must be made in view of the difficulties of the

problem.

Whatever the nature of the system, atomic or moelcular, one would like to start

with orbitals (i.e. one-electron wavefunction) to build up electronic configura-

tions from Slater determinants. The concept of screening will be much used (see

Figure 5) even if the field is no longer central.

(c) Hartree-Fock method - Self-consistency

For a system consisting of N electrons and M nuclei, the method consists in

averaging the interaction of a given electron with the N − 1 others. Assuming

the Born-Oppenheimer’s approximation validity (i.e. fixed nuclei), let us write

the Hamiltonian in atomic units :

Ĥ = −
N
∑

i=1

1

2
∇2

i −
M
∑

A=1

1

2MA

∇2
A −

N
∑

i=1

M
∑

A=1

ZA

riA

+
N
∑

i=1

N
∑

j>i

1

rij
+

M
∑

A=1

M
∑

B>A

ZAZB

RAB

The problematic contribution is the electron-electron interactions term
∑

j>i 1/rij .

A mean-field approximation does not mean that this term is simply neglected.

The objective is rather to average such interactions and to ignore the fluctuations.

In other words and using a simple writing, the Hartree-Fock approximation con-

sists in substituting the term
∑

j>i 1/rij by 〈∑j>i 1/rij〉. The electrons are then

confined in orbitals and the the electronic state Ψ is approximated by a unique

electronic configuration.

Let us summarize the Hartree-Fock approach and the search for the so-called

canonical orbitals :
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• Ψ is written as a unique Slater determinant, Ψ = |aābb̄ · · · | where a, b, · · ·
are the canonical orbitals

• Ψ makes the energy stationnary, that is :

δE = δ〈Ψ|H|Ψ〉 = 0

This procedure allows to average the interactions of a given electron with the

N − 1 others. It is a mean field approach and the method is self-consistent since

the electronic interactions rulingH are defined by the orbitals, which are precisely

the unknowns.

(d) Electronic correlation : H2 as a study

A single electronic configuration might not be sufficient to depict the electronic

structure.

FIG. 11: H2 dissociation into 2H• : degeneracy and non-validity of the Hartree-Fock method as R

increases.

The system may “hesitate” between several electronic configurations. We know

from quantum mechanics that in such situation that a superposition is necessary

(cf. avoided crossing).

Let us examine the dissociation regime of the di-hydrogen molecule starting from

the euilibrium geometry Req = 0.7 Å. In a minimal basis set, i.e. a single 1s type

orbital on each hydrogen atom we shall refer to as a and b. The canonical molec-

ular orbitals g et u are the in-phase and out-of-phase linear combinations gerade

and ungerade constructed on a and b. In the vicinity of Req, the electronic state

is fairly well described by the double-occupancy of g, Ψ = |gḡ| (see Figure 11).

In contrast, g and u become quasi-degenerate in the limit R ≫ Req and no one

can decide on |gḡ| over |uū|. Therefore, Ψ must be an equal mixture of these two

configurations :

Ψ =
1√
2

(

|gḡ| − |uū|
)

Note : the superposition of several electronic structures is well-known in organic

chemistry, where mesomerism is a means to account for the presence of more

than one Lewis form. Ψ is to be considered as an hybrid of resonance constructed

on the limiting forms |gḡ| et |uū|. The negative sign in the previous relation can

be understood from the dissociation limit.
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Let us finally switch back to the atomic orbitals basis set, a and b. After a limited

algebra, one can find :

Ψ =
1√
2

(

|ab̄|+ |bā|
)

Attention : to perform the calculations, one should keep in mind the anisymetry

character of a determinant (example : |ab̄| = −|b̄a|).

This particular regime, so-called strong correlation, highlights the limitation of the

Hartree-Fock method. Is is very standard for open-shell systems, bond dissociation

processes. The active center of biological systems such as hemoglobin (Fe2+ vs. Fe3+)

FIG. 12: Left, hemoglobin structure. Right, active center of hemoglobin.

is a prototype of situation where more than one configuration might be necessary (see

Figure 12).

The description of electronic structures calls for demanding strategies since particles can-

not be treated independently. The latter may invalidate any mean-field approach such as

the Hartree-Fock method. Generaly speaking, an electronic state (sometimes accessible from

experiments) might not be reduced to a single configuration. It is rather an approximation

of a reality that quantum chemists try to build up step by step.
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