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University of Strasbourg, second year Master’s level

Exam in advanced quantum chemistry

January 2018

duration of the exam session: 2h

Neither documents nor calculators are allowed.

The grading scale might be changed.

1. Questions about the lectures (10 points)

[2 pts] What is the Born—Oppenheimer approximation ? Are the nuclei treated in classical mechanics

within such an approximation 7 How are vibrational energies and electronic energies related ?
[1 pt] Give the main difference between variational and non-variational quantum chemical methods.

[2 pts] Explain why the Hartree—Fock (HF) method can be formulated as an orbital rotation problem.
How can the HF orbitals be optimized 7 How can we verify in a CI calculation that the determinants
are contructed from HF orbitals ? If we perform a FCI calculation with molecular orbitals that are not

the HF orbitals (let us consider Kohn—Sham orbitals for example), do we obtain a different FCI energy ?

[2 pts] Define the concept of static correlation. What is the appropriate method for its description ?
How is the wavefunction parameterized within this method 7 Is it possible to describe excited states

with this method ? Does it provide accurate results 7
[1 pt] Does the energy depend explicitly on the electron density ?

[2 pts] What are the differences and similarities between HF and Kohn-Sham (KS) density-functional

approaches 7

. Beyond the Hartree—Fock approximation: the fluctuation-dissipation theorem (14 points)

A 1
Let H = Z hpg &};ELQ + 5 Z (PQ|RS) &?&gdsd}g be the electronic Hamiltonian (we work within the
PQ PQRS

Born—-Oppenheimer approximation) written in second quantization.

a)

[1 pt] What do the indices P, @, R and S refer to 7 Which name is usually given to hpg and (PQ|RS),

respectively 7 Give their physical meaning.
y y



b)

[1 pt] Let ¥, denote the exact normalized N-electron ground-state wavefunction of H with energy

N 1
Ey. Explain why Ey = <\I/0‘H‘\IIO> and deduce that | Ey = thQD}I;OQ + 3 Z (PQ|RS) DPQRS
PQ PQRS
where the one- and two-electron density matrices are defined as follows for any normalized N -electron

wavefunction W D = (Wahag|¥) and  Dfops = (¥|ahahasan|¥).

> will be referred

[1.5 pts] Show that DgQRS = F%RQS — 8orDpg |, where FPRQS = <\I/‘apaRaQa5

to as the reordered two-electron density matriz in the following. Hint: use the anti-commutation rules

of second quantization.

[1 pt] Show that the one-electron density matrix is completely known from the reordered two-electron
one. Hint: Explain physically why (Z &Edp) |¥) = N |¥) and deduce that ZF}I;QRR =N DgQ.
R

R
Conclude.

[1 pt] Conclude from questions 2. b), ¢), and d) that the ground-state energy is an explicit functional of

the ground-state reordered two-electron density matrix.

In the rest of the problem we focus on the calculation of F]\I;‘)RQS.

[1 pt] Explain why ’&E&P\Ij0> and ’&(gdg\l/g> are N-electron quantum states.

[2 pts] Let {¥;},_ 5 . be the complete orthonormal basis of N-electron ground and excited states of H

with energies {E},_o,,, . Show that | (aharWo|iy|abasWo) = [Ehos = DERDag + > DEE'DEG' |
i>1

where, for any N-electron wavefunction ¥, 1 y|¥) = |¥), and the so-called transition one-electron density
matrix elements are defined for any spin-orbitals U and V as DOUT’/ = <\Ilg’&TU€LV’\IJZ->. Hint: use real

algebra and the resolution of the identity formula 1y = |¥o)(Wo| + D W) (W)
i>1

[1.5 pts] Show that, when the summation over excited states is neglected in the expression of F]\I;‘j%@ g, the

(approximate) ground-state energy can be expressed explicitly in terms of the ground-state one-electron

1
density matrixas By ~ Y hpoDpy+5 Y (PQIRS) (DERDSS — dorD}) - Show that if, in addition,
PQ PQRS
we approximate the exact ground-state wavefunction ¥, by the Hartree-Fock (HF) Slater determinant

®(, whose occupied spin-orbitals are denoted {I};=; . n, and we sum over spin-orbitals occupied in @
occupied occupied

1
only, then we recover the HF energy expression Eyp = Z hrr + 3 Z ((IJ|IJ> — (IJ|JI) )
I 1J
Hints: First, use questions 2. b), c¢) and g). Then, explain why D}I)j’ = 07y where I and J denote

occupied spin-orbitals in ®y. Conclude.



BONUS

Let us return to the exact theory. Even though the problem we are interested in, namely the calculation
of the ground-state energy, has in appearance nothing to do with a time-dependent problem, it is possi-
ble to establish mathematically a connection between the response of the molecule to a time-dependent
perturbation (which plays a crucial role in the interpretation of spectroscopy experiments) and the exact
calculation of Ey. For convenience, we will rewrite the energy contribution that was neglected in question

2. h) as follows,

- Z (PQIRS)Y " DY;i DY = ! > (PQIRS)Y. (Dhs + D% (DG + Dg3') . (1)

PQRS i>1 PQRS i>1

[2 pts] Let us imagine that the molecule is in the presence of an external time-dependent perturbation
with frequency w and strength e which is described by the operator ‘A/e(t) = ecoswt X (&g&Q + &gdg).
Since the total Hamiltonian H(t) = H + V.(t) is now time-dependent, the wavefunction W(t) becomes
time-dependent (and complex). It is possible to show that the real part of the one-electron density

matrix, which is also time-dependent, can be expanded as follows through first order in ¢,

Re [(w(t)

a}ag,’\l}(t)ﬂ = Re [Dpfy)| = DE + 2ecoswt x Rprso(w) + -, (2)

where the so-called frequency-dependent linear response function equals

1 1
_|_
Wi —w W +w

Rprso(w) = —~ 2 (DO—n 0—>i) <D0—>z + D0—>7,> [
K3

and w; = F; — Ey is the exact excitation energy for the transition ¥y — ;.

We now employ a mathematical trick which consists in using a pure imaginary frequency iw [where

i? = —1] instead of a real one. Give a simplified expression for Rpg sq(iw) and conclude that
1 oo . 1 0—1 0—1 0—1 0—1
— | Rersq(iv)dw = i (Dhs + D% (D% + DY) (4)

i>1

This important result is known as the ﬂuctuation-dissipatz’on theorem.

“+oc0 w;
Hint: use the formula / —_
0 w+w?

dw = 5 and note that the result does not depend on w;.
[2 pts] Conclude from Egs. (1) and (4), and questions 2. b), ¢), g) that, even though the one-electron
density matrix is not sufficient for calculating the ground-state energy FEy, its time-dependent version,

which describes the reponse of the electrons to a time-dependent perturbation, gives access, in principle

exactly, to Ey.
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