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1. Questions about the lectures (10 points)

a) [2 pts] What is the Born–Oppenheimer approximation ? Are the nuclei treated in classical mechanics

within such an approximation ? How are vibrational energies and electronic energies related ?

b) [1 pt] Give the main di�erence between variational and non-variational quantum chemical methods.

c) [2 pts] Explain why the Hartree–Fock (HF) method can be formulated as an orbital rotation problem.

How can the HF orbitals be optimized ? How can we verify in a CI calculation that the determinants

are contructed from HF orbitals ? If we perform a FCI calculation with molecular orbitals that are not

the HF orbitals (let us consider Kohn–Sham orbitals for example), do we obtain a di�erent FCI energy ?

d) [2 pts] Define the concept of static correlation. What is the appropriate method for its description ?

How is the wavefunction parameterized within this method ? Is it possible to describe excited states

with this method ? Does it provide accurate results ?

e) [1 pt] Does the energy depend explicitly on the electron density ?

f) [2 pts] What are the di�erences and similarities between HF and Kohn–Sham (KS) density-functional

approaches ?

2. Beyond the Hartree–Fock approximation: the fluctuation-dissipation theorem (14 points)

Let Ĥ =
ÿ

P Q

hP Q â
†
P âQ + 1

2
ÿ

P QRS

ÈPQ|RSÍ â
†
P â

†
QâS âR be the electronic Hamiltonian (we work within the

Born–Oppenheimer approximation) written in second quantization.

a) [1 pt] What do the indices P, Q, R and S refer to ? Which name is usually given to hP Q and ÈPQ|RSÍ,

respectively ? Give their physical meaning.
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b) [1 pt] Let �0 denote the exact normalized N -electron ground-state wavefunction of Ĥ with energy

E0. Explain why E0 =
e
�0

---Ĥ
---�0

f
and deduce that E0 =

ÿ

P Q

hP QD
�0
P Q + 1

2
ÿ

P QRS

ÈPQ|RSÍ D
�0
P QRS

where the one- and two-electron density matrices are defined as follows for any normalized N -electron

wavefunction �: D
�

P Q =
e
�

---â†
P âQ

---�
f

and D
�

P QRS =
e
�

---â†
P â

†
QâS âR

---�
f

.

c) [1.5 pts] Show that D
�

P QRS = ��

P RQS ≠ ”QRD
�

P S , where ��

P RQS =
e
�

---â†
P âRâ

†
QâS

---�
f

will be referred

to as the reordered two-electron density matrix in the following. Hint: use the anti-commutation rules

of second quantization.

d) [1 pt] Show that the one-electron density matrix is completely known from the reordered two-electron

one. Hint: Explain physically why
A

ÿ

R

â
†
RâR

B

|�Í = N |�Í and deduce that
ÿ

R

��

P QRR = ND
�

P Q.

Conclude.

e) [1 pt] Conclude from questions 2. b), c), and d) that the ground-state energy is an explicit functional of

the ground-state reordered two-electron density matrix.

In the rest of the problem we focus on the calculation of ��0
P RQS .

f) [1 pt] Explain why
---â†

RâP �0

f
and

---â†
QâS�0

f
are N -electron quantum states.

g) [2 pts] Let {�i}i=0,1,2,... be the complete orthonormal basis of N -electron ground and excited states of Ĥ

with energies {Ei}i=0,1,2,.... Show that
e
â

†
RâP �0

---1̂N

---â†
QâS�0

f
= ��0

P RQS = D
�0
P RD

�0
QS +

ÿ

iØ1

D
0æi
P R D

0æi
SQ ,

where, for any N -electron wavefunction �, 1̂N |�Í = |�Í, and the so-called transition one-electron density

matrix elements are defined for any spin-orbitals U and V as D
0æi
UV =

e
�0

---â†
U âV

---�i

f
. Hint: use real

algebra and the resolution of the identity formula 1̂N = |�0ÍÈ�0| +
ÿ

iØ1

|�iÍÈ�i|.

h) [1.5 pts] Show that, when the summation over excited states is neglected in the expression of ��0
P RQS , the

(approximate) ground-state energy can be expressed explicitly in terms of the ground-state one-electron

density matrix as E0 ¥
ÿ

P Q

hP QD
�0
P Q+1

2
ÿ

P QRS

ÈPQ|RSÍ
1
D

�0
P RD

�0
QS ≠ ”QRD

�0
P S

2
. Show that if, in addition,

we approximate the exact ground-state wavefunction �0 by the Hartree-Fock (HF) Slater determinant

�0, whose occupied spin-orbitals are denoted {I}I=1,...,N , and we sum over spin-orbitals occupied in �0

only, then we recover the HF energy expression EHF =
occupiedÿ

I

hII + 1
2

occupiedÿ

IJ

1
ÈIJ |IJÍ ≠ ÈIJ |JIÍ

2
.

Hints: First, use questions 2. b), c) and g). Then, explain why D
�0
IJ = ”IJ where I and J denote

occupied spin-orbitals in �0. Conclude.
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BONUS

Let us return to the exact theory. Even though the problem we are interested in, namely the calculation

of the ground-state energy, has in appearance nothing to do with a time-dependent problem, it is possi-

ble to establish mathematically a connection between the response of the molecule to a time-dependent

perturbation (which plays a crucial role in the interpretation of spectroscopy experiments) and the exact

calculation of E0. For convenience, we will rewrite the energy contribution that was neglected in question

2. h) as follows,

1
2

ÿ

P QRS

ÈPQ|RSÍ
ÿ

iØ1

D
0æi
P R D

0æi
SQ = 1

8
ÿ

P QRS

ÈPQ|RSÍ
ÿ

iØ1

1
D

0æi
P R + D

0æi
RP

2 1
D

0æi
SQ + D

0æi
QS

2
. (1)

i) [2 pts] Let us imagine that the molecule is in the presence of an external time-dependent perturbation

with frequency Ê and strength ‘ which is described by the operator V̂‘(t) = ‘ cos Êt ◊
1
â

†
S âQ + â

†
QâS

2
.

Since the total Hamiltonian Ĥ(t) = Ĥ + V̂‘(t) is now time-dependent, the wavefunction �(t) becomes

time-dependent (and complex). It is possible to show that the real part of the one-electron density

matrix, which is also time-dependent, can be expanded as follows through first order in ‘,

Re
Ëe

�(t)
---â†

P âR

---�(t)
fÈ

= Re
Ë
D

�(t)
P R

È
= D

�0
P R + 2‘ cos Êt ◊ RP R,SQ(Ê) + . . . , (2)

where the so-called frequency-dependent linear response function equals

RP R,SQ(Ê) = ≠1
4

ÿ

iØ1

1
D

0æi
P R + D

0æi
RP

2 1
D

0æi
SQ + D

0æi
QS

2
◊

5 1
Êi ≠ Ê

+ 1
Êi + Ê

6
, (3)

and Êi = Ei ≠ E0 is the exact excitation energy for the transition �0 æ �i.

We now employ a mathematical trick which consists in using a pure imaginary frequency iÊ [where

i2 = ≠1] instead of a real one. Give a simplified expression for RP R,SQ(iÊ) and conclude that

≠ 1
fi

⁄
+Œ

0

RP R,SQ(iÊ) dÊ = 1
4

ÿ

iØ1

1
D

0æi
P R + D

0æi
RP

2 1
D

0æi
SQ + D

0æi
QS

2
. (4)

This important result is known as the fluctuation-dissipation theorem.

Hint: use the formula
⁄

+Œ

0

Êi

Ê
2

i + Ê2
dÊ = fi

2 and note that the result does not depend on Êi.

j) [2 pts] Conclude from Eqs. (1) and (4), and questions 2. b), c), g) that, even though the one-electron

density matrix is not su�cient for calculating the ground-state energy E0, its time-dependent version,

which describes the reponse of the electrons to a time-dependent perturbation, gives access, in principle

exactly, to E0.
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4) Approximations : Istria
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