University of Strasbourg, second year Master's level

Exam in advanced quantum chemistry

January 2018

duration of the exam session: 2h

Neither documents nor calculators are allowed. The grading scale might be changed.

1. Questions about the lectures (10 points)

- a) [2 pts] What is the Born–Oppenheimer approximation ? Are the nuclei treated in classical mechanics within such an approximation ? How are vibrational energies and electronic energies related ?
- b) [1 pt] Give the main difference between variational and non-variational quantum chemical methods.
- c) [2 pts] Explain why the Hartree–Fock (HF) method can be formulated as an orbital rotation problem. How can the HF orbitals be optimized? How can we verify in a CI calculation that the determinants are contructed from HF orbitals? If we perform a FCI calculation with molecular orbitals that are *not* the HF orbitals (let us consider Kohn–Sham orbitals for example), do we obtain a different FCI energy?
- d) [2 pts] Define the concept of static correlation. What is the appropriate method for its description ?
 How is the wavefunction parameterized within this method ? Is it possible to describe excited states with this method ? Does it provide accurate results ?
- e) [1 pt] Does the energy depend explicitly on the electron density ?
- f) [2 pts] What are the differences and similarities between HF and Kohn–Sham (KS) density-functional approaches ?

2. Beyond the Hartree–Fock approximation: the fluctuation-dissipation theorem (14 points)

Let $\hat{H} = \sum_{PQ} h_{PQ} \hat{a}_P^{\dagger} \hat{a}_Q + \frac{1}{2} \sum_{PQRS} \langle PQ|RS \rangle \hat{a}_P^{\dagger} \hat{a}_Q^{\dagger} \hat{a}_S \hat{a}_R$ be the electronic Hamiltonian (we work within the Born–Oppenheimer approximation) written in second quantization.

a) [1 pt] What do the indices P, Q, R and S refer to ? Which name is usually given to h_{PQ} and $\langle PQ|RS \rangle$, respectively ? Give their physical meaning.

- b) [1 pt] Let Ψ_0 denote the exact normalized N-electron ground-state wavefunction of \hat{H} with energy E_0 . Explain why $E_0 = \langle \Psi_0 | \hat{H} | \Psi_0 \rangle$ and deduce that $E_0 = \sum_{PQ} h_{PQ} D_{PQ}^{\Psi_0} + \frac{1}{2} \sum_{PQRS} \langle PQ | RS \rangle D_{PQRS}^{\Psi_0}$ where the one- and two-electron density matrices are defined as follows for any normalized N-electron wavefunction Ψ : $D_{PQ}^{\Psi} = \langle \Psi | \hat{a}_P^{\dagger} \hat{a}_Q | \Psi \rangle$ and $D_{PQRS}^{\Psi} = \langle \Psi | \hat{a}_P^{\dagger} \hat{a}_Q | \Psi \rangle$.
- c) **[1.5 pts]** Show that $D_{PQRS}^{\Psi} = \Gamma_{PRQS}^{\Psi} \delta_{QR} D_{PS}^{\Psi}$, where $\Gamma_{PRQS}^{\Psi} = \langle \Psi | \hat{a}_{P}^{\dagger} \hat{a}_{R} \hat{a}_{Q}^{\dagger} \hat{a}_{S} | \Psi \rangle$ will be referred to as the *reordered two-electron density matrix* in the following. **Hint:** use the anti-commutation rules of second quantization.
- d) [1 pt] Show that the one-electron density matrix is completely known from the reordered two-electron one. Hint: Explain physically why $\left(\sum_{R} \hat{a}_{R}^{\dagger} \hat{a}_{R}\right) |\Psi\rangle = N |\Psi\rangle$ and deduce that $\sum_{R} \Gamma_{PQRR}^{\Psi} = N D_{PQ}^{\Psi}$. Conclude.
- e) [1 pt] Conclude from questions 2. b), c), and d) that the ground-state energy is an explicit functional of the ground-state reordered two-electron density matrix.

In the rest of the problem we focus on the calculation of $\Gamma^{\Psi_0}_{PRQS}$.

- f) [1 pt] Explain why $\left|\hat{a}_{R}^{\dagger}\hat{a}_{P}\Psi_{0}\right\rangle$ and $\left|\hat{a}_{Q}^{\dagger}\hat{a}_{S}\Psi_{0}\right\rangle$ are N-electron quantum states.
- g) [2 pts] Let $\{\Psi_i\}_{i=0,1,2,...}$ be the complete orthonormal basis of N-electron ground and excited states of \hat{H} with energies $\{E_i\}_{i=0,1,2,...}$. Show that $\left[\langle \hat{a}_R^{\dagger} \hat{a}_P \Psi_0 | \hat{\mathbb{1}}_N | \hat{a}_Q^{\dagger} \hat{a}_S \Psi_0 \rangle = \Gamma_{PRQS}^{\Psi_0} = D_{PR}^{\Psi_0} D_{QS}^{\Psi_0} + \sum_{i\geq 1} D_{PR}^{0\to i} D_{SQ}^{0\to i} \right]$, where, for any N-electron wavefunction Ψ , $\hat{\mathbb{1}}_N |\Psi\rangle = |\Psi\rangle$, and the so-called *transition* one-electron density matrix elements are defined for any spin-orbitals U and V as $D_{UV}^{0\to i} = \langle \Psi_0 | \hat{a}_U^{\dagger} \hat{a}_V | \Psi_i \rangle$. **Hint:** use real algebra and the resolution of the identity formula $\hat{\mathbb{1}}_N = |\Psi_0\rangle\langle\Psi_0| + \sum_{i\geq 1} |\Psi_i\rangle\langle\Psi_i|$.
- h) [1.5 pts] Show that, when the summation over excited states is neglected in the expression of $\Gamma_{PRQS}^{\Psi_0}$, the (approximate) ground-state energy can be expressed explicitly in terms of the ground-state one-electron density matrix as $E_0 \approx \sum_{PQ} h_{PQ} D_{PQ}^{\Psi_0} + \frac{1}{2} \sum_{PQRS} \langle PQ|RS \rangle \left(D_{PR}^{\Psi_0} D_{QS}^{\Psi_0} \delta_{QR} D_{PS}^{\Psi_0} \right)$. Show that if, in addition, we approximate the exact ground-state wavefunction Ψ_0 by the Hartree-Fock (HF) Slater determinant Φ_0 , whose occupied spin-orbitals are denoted $\{I\}_{I=1,\dots,N}$, and we sum over spin-orbitals occupied in Φ_0 only, then we recover the HF energy expression $E_{\text{HF}} = \sum_{I}^{\text{occupied}} h_{II} + \frac{1}{2} \sum_{IJ}^{\text{occupied}} \left(\langle IJ|IJ \rangle \langle IJ|JI \rangle \right)$. Hints: First, use questions 2. b), c) and g). Then, explain why $D_{IJ}^{\Phi_0} = \delta_{IJ}$ where I and J denote occupied spin-orbitals in Φ_0 . Conclude.

BONUS

Let us return to the exact theory. Even though the problem we are interested in, namely the calculation of the ground-state energy, has in appearance nothing to do with a time-dependent problem, it is possible to establish mathematically a connection between the response of the molecule to a time-dependent perturbation (which plays a crucial role in the interpretation of spectroscopy experiments) and the exact calculation of E_0 . For convenience, we will rewrite the energy contribution that was neglected in question 2. h) as follows,

$$\frac{1}{2}\sum_{PQRS} \langle PQ|RS \rangle \sum_{i\geq 1} D_{PR}^{0\to i} D_{SQ}^{0\to i} = \frac{1}{8}\sum_{PQRS} \langle PQ|RS \rangle \sum_{i\geq 1} \left(D_{PR}^{0\to i} + D_{RP}^{0\to i} \right) \left(D_{SQ}^{0\to i} + D_{QS}^{0\to i} \right). \tag{1}$$

i) [2 pts] Let us imagine that the molecule is in the presence of an external time-dependent perturbation with frequency ω and strength ϵ which is described by the operator $\hat{V}_{\epsilon}(t) = \epsilon \cos \omega t \times \left(\hat{a}_{S}^{\dagger} \hat{a}_{Q} + \hat{a}_{Q}^{\dagger} \hat{a}_{S}\right)$. Since the total Hamiltonian $\hat{H}(t) = \hat{H} + \hat{V}_{\epsilon}(t)$ is now time-dependent, the wavefunction $\Psi(t)$ becomes time-dependent (and complex). It is possible to show that the real part of the one-electron density matrix, which is also time-dependent, can be expanded as follows through first order in ϵ ,

$$\operatorname{Re}\left[\left\langle\Psi(t)\Big|\hat{a}_{P}^{\dagger}\hat{a}_{R}\Big|\Psi(t)\right\rangle\right] = \operatorname{Re}\left[D_{PR}^{\Psi(t)}\right] = D_{PR}^{\Psi_{0}} + 2\epsilon\cos\omega t \times \mathcal{R}_{PR,SQ}(\omega) + \dots,$$
(2)

where the so-called frequency-dependent linear response function equals

$$\mathcal{R}_{PR,SQ}(\omega) = -\frac{1}{4} \sum_{i \ge 1} \left(D_{PR}^{0 \to i} + D_{RP}^{0 \to i} \right) \left(D_{SQ}^{0 \to i} + D_{QS}^{0 \to i} \right) \times \left[\frac{1}{\omega_i - \omega} + \frac{1}{\omega_i + \omega} \right],\tag{3}$$

and $\omega_i = E_i - E_0$ is the exact *excitation energy* for the transition $\Psi_0 \to \Psi_i$.

We now employ a mathematical trick which consists in using a pure imaginary frequency $i\omega$ [where $i^2 = -1$] instead of a real one. Give a simplified expression for $\mathcal{R}_{PR,SQ}(i\omega)$ and conclude that

$$-\frac{1}{\pi} \int_0^{+\infty} \mathcal{R}_{PR,SQ}(\mathrm{i}\omega) \,\mathrm{d}\omega = \frac{1}{4} \sum_{i \ge 1} \left(D_{PR}^{0 \to i} + D_{RP}^{0 \to i} \right) \left(D_{SQ}^{0 \to i} + D_{QS}^{0 \to i} \right). \tag{4}$$

This important result is known as the *fluctuation-dissipation theorem*. **Hint:** use the formula $\int_0^{+\infty} \frac{\omega_i}{\omega_i^2 + \omega^2} d\omega = \frac{\pi}{2}$ and note that the result does not depend on ω_i .

j) [2 pts] Conclude from Eqs. (1) and (4), and questions 2. b), c), g) that, even though the one-electron density matrix is not sufficient for calculating the ground-state energy E_0 , its time-dependent version, which describes the reponse of the electrons to a time-dependent perturbation, gives access, in principle exactly, to E_0 .

Exam. Advanced Quanha Chemichy - 172 - 2013-2017
a)
$$E_{1,\alpha_{1}} R_{-\alpha} ds - cher + cpin-activity
h $E_{2,\alpha_{1}} R_{-\alpha} ds - cher + cpin-activity
h = chearts - the cherron
h = chearts - the cherron
h = cherron - the cherron
h = cherron - the cherron
h = cherron - the cherron - the cherron
h = cherron - the cherron - the cherron
h = cherron - the cheron - the cherron - the cherron - the cherron - the ch$$$$$$$$$$

b) Approximations:
$$\Gamma_{LER}^{++} = 2\frac{D_{1}^{+}}{D_{2}^{+}} \sum_{z \in Z_{2}^{+}} \sum_{z$$