University of Strasbourg, second year Master's level

Exam in advanced quantum chemistry

January 2018

duration of the exam session: 2h

Neither documents nor calculators are allowed. The grading scale might be changed.

1. Questions about the lectures (10 points)

- a) **[2 pts]** What is the Born–Oppenheimer approximation ? Are the nuclei treated in classical mechanics within such an approximation ? How are vibrational energies and electronic energies related ?
- b) **[1 pt]** Give the main difference between variational and non-variational quantum chemical methods.
- c) **[2 pts]** Explain why the Hartree–Fock (HF) method can be formulated as an orbital rotation problem. How can the HF orbitals be optimized ? How can we verify in a CI calculation that the determinants are contructed from HF orbitals ? If we perform a FCI calculation with molecular orbitals that are *not* the HF orbitals (let us consider Kohn–Sham orbitals for example), do we obtain a different FCI energy?
- d) **[2 pts]** Define the concept of static correlation. What is the appropriate method for its description ? How is the wavefunction parameterized within this method ? Is it possible to describe excited states with this method ? Does it provide accurate results ?
- e) **[1 pt]** Does the energy depend explicitly on the electron density ?
- f) **[2 pts]** What are the differences and similarities between HF and Kohn–Sham (KS) density-functional approaches ?
- **2. Beyond the Hartree–Fock approximation: the fluctuation-dissipation theorem (14 points)**

Let $\hat{H} = \sum$ *P Q* $h_{PQ} \hat{a}^{\dagger}_P \hat{a}_Q + \frac{1}{2}$ 2 $\overline{}$ *P QRS* $\langle PQ|RS \rangle \hat{a}_P^{\dagger} \hat{a}_Q^{\dagger} \hat{a}_S \hat{a}_R$ be the electronic Hamiltonian (we work within the Born–Oppenheimer approximation) written in second quantization.

a) [1 pt] What do the indices P, Q, R and S refer to ? Which name is usually given to h_{PQ} and $\langle PQ|RS \rangle$, respectively ? Give their physical meaning.

- b) **[1 pt]** Let Ψ_0 denote the exact normalized *N*-electron ground-state wavefunction of \hat{H} with energy *E*₀. Explain why $E_0 = \left\langle \Psi_0 \middle| \hat{H} \middle| \Psi_0 \right\rangle$ and deduce that $E_0 = \sum_{n=0}^{\infty}$ *P Q* $h_{PQ}D_{PQ}^{\Psi_0} + \frac{1}{2}$ 2 \sum *P QRS* $\langle PQ|RS\rangle D_{PQRS}^{\Psi_0}$ where the one- and two-electron density matrices are defined as follows for *any normalized N-electron wavefunction* Ψ : $D_{PQ}^{\Psi} = \langle \Psi | \hat{a}_P^{\dagger} \hat{a}_Q | \Psi \rangle$ and $D_{PQRS}^{\Psi} = \langle \Psi | \hat{a}_P^{\dagger} \hat{a}_Q^{\dagger} \hat{a}_S \hat{a}_R | \Psi \rangle$.
- c) [1.5 pts] Show that $\boxed{D_{PQRS}^{\Psi} = \Gamma_{PRQS}^{\Psi} \delta_{QR}D_{PS}^{\Psi}}$, where $\left| \Gamma_{PRQS}^{\Psi} = \langle \Psi | \hat{a}_P^{\dagger} \hat{a}_R \hat{a}_Q^{\dagger} \hat{a}_S | \Psi \rangle \right|$ will be referred to as the *reordered two-electron density matrix* in the following. **Hint:** use the anti-commutation rules of second quantization.
- d) **[1 pt]** Show that the one-electron density matrix is completely known from the reordered two-electron one. **Hint:** Explain physically why $\left(\sum_{i=1}^{n} x_i\right)$ *R* $\hat{a}^{\dagger}_R \hat{a}_R$ $\Bigg)$ $|\Psi\rangle = N |\Psi\rangle$ and deduce that \sum *R* $\Gamma_{PQRR}^{\Psi} = ND_{PQ}^{\Psi}$. Conclude.
- e) **[1 pt]** Conclude from questions 2. b), c), and d) that the ground-state energy is an explicit functional of the ground-state reordered two-electron density matrix.

In the rest of the problem we focus on the calculation of $\Gamma_{PRQS}^{\Psi_0}$.

- f) [1 pt] Explain why $\left|\hat{a}^{\dagger}_R \hat{a}_P \Psi_0\right\rangle$ and $\left|\hat{a}^{\dagger}_Q \hat{a}_S \Psi_0\right\rangle$ are *N*-electron quantum states.
- g) **[2 pts]** Let ${\Psi_i}_{i=0,1,2,...}$ be the complete orthonormal basis of *N*-electron ground *and* excited states of \hat{H} with energies ${E_i}_{i=0,1,2,...}$. Show that $\left| \left\langle \hat{a}_R^{\dagger} \hat{a}_P \Psi_0 \right| \hat{\mathbb{1}}_N \right| \hat{a}_Q^{\dagger} \hat{a}_S \Psi_0 \right\rangle = \Gamma_{PRQS}^{\Psi_0} = D_{PR}^{\Psi_0} D_{QS}^{\Psi_0} + \sum_{i=1}^{N}$ $i \geq 1$ $D_{PR}^{0\rightarrow i}D_{SQ}^{0\rightarrow i}$ ^{$\bigg|$}, where, for any *N*-electron wavefunction $\overline{\Psi}$, $\hat{\mathbb{1}}_N|\Psi\rangle = |\Psi\rangle$, and the so-called *transition* one-electron density matrix elements are defined for any spin-orbitals *U* and *V* as $D_{UV}^{0\to i} = \langle \Psi_0 | \hat{a}_{U}^{\dagger} \hat{a}_{V} | \Psi_i \rangle$. **Hint:** use real algebra and the resolution of the identity formula $\hat{\mathbb{1}}_N = |\Psi_0\rangle \langle \Psi_0| + \sum$ $i \geq 1$ $|\Psi_i\rangle\langle\Psi_i|$.
- h) **[1.5 pts]** Show that, when the summation over excited states is neglected in the expression of $\Gamma_{PRQS}^{\Psi_0}$, the (approximate) ground-state energy can be expressed explicitly in terms of the ground-state one-electron density matrix as $E_0 \approx \sum$ *P Q* $h_{PQ}D_{PQ}^{\Psi_0} + \frac{1}{2}$ 2 \sum *P QRS* $\langle PQ|RS\rangle \left(D_{PR}^{\Psi_0}D_{QS}^{\Psi_0}-\delta_{QR}D_{PS}^{\Psi_0}\right)$. Show that if, in addition, we approximate the exact ground-state wavefunction Ψ_0 by the Hartree-Fock (HF) Slater determinant Φ_0 , whose occupied spin-orbitals are denoted $\{I\}_{I=1,\dots,N}$, and we sum over spin-orbitals occupied in Φ_0 occupied only, then we recover the HF energy expression $E_{\text{HF}} =$ occupied

V *I* $h_{II} + \frac{1}{2}$ 2 occupied

V *IJ* $\Big(\left\langle IJ|IJ\right\rangle - \left\langle IJ|JI\right\rangle \Big).$ **Hints:** First, use questions 2. b), c) and g). Then, explain why $D_{IJ}^{\Phi_0} = \delta_{IJ}$ where *I* and *J* denote occupied spin-orbitals in Φ_0 . Conclude.

BONUS

Let us return to the exact theory. Even though the problem we are interested in, namely the calculation of the ground-state energy, has in appearance nothing to do with a time-dependent problem, it is possible to establish mathematically a connection between the response of the molecule to a time-dependent perturbation (which plays a crucial role in the interpretation of spectroscopy experiments) and the exact calculation of E_0 . For convenience, we will rewrite the energy contribution that was neglected in question 2. h) as follows,

$$
\frac{1}{2} \sum_{PQRS} \langle PQ|RS \rangle \sum_{i\geq 1} D_{PR}^{0\to i} D_{SQ}^{0\to i} = \frac{1}{8} \sum_{PQRS} \langle PQ|RS \rangle \sum_{i\geq 1} \left(D_{PR}^{0\to i} + D_{RP}^{0\to i} \right) \left(D_{SQ}^{0\to i} + D_{QS}^{0\to i} \right). \tag{1}
$$

i) [2 pts] Let us imagine that the molecule is in the presence of an external *time-dependent perturbation* with frequency ω and strength ϵ which is described by the operator $\hat{V}_{\epsilon}(t) = \epsilon \cos \omega t \times (\hat{a}_{S}^{\dagger} \hat{a}_{Q} + \hat{a}_{Q}^{\dagger} \hat{a}_{S}).$ Since the total Hamiltonian $\hat{H}(t) = \hat{H} + \hat{V}_\epsilon(t)$ is now time-dependent, the wavefunction $\Psi(t)$ becomes time-dependent (and complex). It is possible to show that the real part of the one-electron density matrix, which is also time-dependent, can be expanded as follows through first order in ϵ ,

$$
\operatorname{Re}\left[\left\langle \Psi(t)\left|\hat{a}_{P}^{\dagger}\hat{a}_{R}\right|\Psi(t)\right\rangle\right]=\operatorname{Re}\left[D_{PR}^{\Psi(t)}\right]=D_{PR}^{\Psi_{0}}+2\epsilon\cos\omega t\times\mathcal{R}_{PR,SQ}(\omega)+\ldots,\tag{2}
$$

where the so-called frequency-dependent *linear response function* equals

$$
\mathcal{R}_{PR,SQ}(\omega) = -\frac{1}{4} \sum_{i \ge 1} \left(D_{PR}^{0 \to i} + D_{RP}^{0 \to i} \right) \left(D_{SQ}^{0 \to i} + D_{QS}^{0 \to i} \right) \times \left[\frac{1}{\omega_i - \omega} + \frac{1}{\omega_i + \omega} \right],\tag{3}
$$

and $\omega_i = E_i - E_0$ is the exact excitation energy for the transition $\Psi_0 \to \Psi_i$.

We now employ a mathematical trick which consists in using a pure imaginary frequency i ω where $i^2 = -1$] instead of a real one. Give a simplified expression for $\mathcal{R}_{PR,SQ}(i\omega)$ and conclude that

$$
-\frac{1}{\pi} \int_0^{+\infty} \mathcal{R}_{PR,SQ}(i\omega) d\omega = \frac{1}{4} \sum_{i\geq 1} \left(D_{PR}^{0\to i} + D_{RP}^{0\to i} \right) \left(D_{SQ}^{0\to i} + D_{QS}^{0\to i} \right). \tag{4}
$$

This important result is known as the *fluctuation-dissipation theorem*. **Hint:** use the formula $\int_0^{+\infty} \frac{\omega_i}{\omega_i^2 + \omega^2} d\omega = \frac{\pi}{2}$ and note that the result does not depend on ω_i .

j) $[2 \text{ pts}]$ Conclude from Eqs. (1) and (4), and questions 2. b), c), g) that, even though the one-electron density matrix is not sufficient for calculating the ground-state energy E_0 , its time-dependent version, which describes the reponse of the electrons to a time-dependent perturbation, gives access, in principle exactly, to E_0 .

Exam, Advanced Q, and the C'4m's's a factor of the graph,
$$
2\pi r
$$
, $2\pi r$, $$

$$
\begin{array}{ll}\n\text{A}_{\text{in}} & \text{A}_{\text{in}} \text{A}_{\text{out}} & \text{B}_{\text{in}} & \text{B}_{\text{in}} \text{A}_{\text{out}} & \text{B}_{\text{out}} \text{A}_{\text{out}} \text{A}_{\text{out}}
$$