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2. Seniority-zero many-body wavefunctions (10 points)

An N -electron many-body wavefunction Ψ̃ is said to have no seniority (hence its name “seniority-zero

wavefunction”) if it can be written as a linear combination of Slater determinants D in which orbitals are

either doubly occupied or not occupied at all:

∣∣∣Ψ̃〉 =
∑
D
CD |D〉 , (1)

where

|D〉 =
∣∣∣∣(p1)2 (p2)2 . . .

(
pN

2

)2
〉
≡

N
2∏
i=1

â†pi,αâ
†
pi,β
|vac〉 . (2)

a) [1 pt] Can we use the ansatz of Eqs. (1) and (2) for describing electron correlation? Justify your answer

by referring, for example, to the MP2 wavefunction.

Yes. In the MP2 method, for example, the correlated wavefunction consists of the reference HF deter-

minant (which is a seniority-zero wavefunction in the closed-shell case) to which a linear combination

of doubly-excited determinants is added. Among all the possible double excitations, the following will

preserve the seniority-zero character of the wavefunction: i2 → a2, where i and a denote occupied and

virtual orbitals in the HF determinant, respectively. Note that some double excitations like, for example,

(iα, jβ)→ a2, where i 6= j, are not taken into account in a seniority-zero wavefunction.

b) [1 pt] Show, by considering the simple example of the stretched H2 molecule, that seniority-zero wave-

functions are well adapted to the description of strong correlation effects.

In the dissociation limit of H2, the ground state is strongly correlated (one electron is localized on one

hydrogen atom while the other electron is localized on the other atom). Since the exact ground-state

wavefunction reads |Ψ0〉 = 1√
2

(∣∣∣σ2
g

〉
−
∣∣σ2
u

〉)
, where σg and σu are the bonding and antibonding or-

bitals, respectively, we conclude that, in this simple example, the strongly correlated ground state has no

seniority.

c) [1.5 pts] In the following, we consider a single set of molecular orbitals {ϕp}p from which all the seniority-

zero Slater determinants D are constructed. Let us first assume that these orbitals are Hartree–Fock
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orbitals. A configuration interaction (CI) calculation based on the wavefunction ansatz of Eq. (1) is

referred to as doubly occupied CI (DOCI). Explain briefly how the coefficients CD and the ground-state

energy would be determined within the DOCI method.

DOCI is a CI calculation where the energy (and the seniority-zero CI coefficients CD) will be obtained

by diagonalizing the projection of the Hamiltonian matrix onto the space of seniority-zero determinants.

The latter can be obtained by applying all possible seniority-zero-preserving excitations to the reference

HF determinant (doubles, quadruples, sextuples, etc ...).

Is DOCI equivalent to full CI (FCI)?

No because many excitations like singles or triples will be absent from a DOCI calculation. Indeed these

excitations do not preserve the seniority.

d) [1 pt] In the spirit of the multiconfigurational self-consistent field (MCSCF) method, one may opt for a

reoptimization of the orbitals within a DOCI calculation. Explain how this could be achieved by means

of an orbital rotation operator.

In such a seniority-zero MCSCF approach, the wavefunction would be parameterized as follows:

∣∣∣Ψ̃ (κ,C)
〉

= e−κ̂
(∑
D
CD |D〉

)
, (3)

where κ̂ =
∑
p>q,σ κpq

(
â†p,σâq,σ − â†q,σâp,σ

)
, and the variational parameters are κ ≡ {κpq}p>q and C ≡

{CD}D. Their optimal values would be obtained by minimizing the following seniority-zero energy:

E (κ,C) =

〈
Ψ̃ (κ,C)

∣∣∣ Ĥ ∣∣∣Ψ̃ (κ,C)
〉

〈
Ψ̃ (κ,C)

∣∣∣Ψ̃ (κ,C)
〉 . (4)

e) [2 pts] Let us consider the (so-called one-electron reduced) density matrix elements:

DΨ̃
pq =

∑
σ=α,β

〈
Ψ̃
∣∣∣ â†p,σâq,σ ∣∣∣Ψ̃〉 . (5)

Prove that, according to Eq. (1), the density matrix is diagonal

DΨ̃
pq =

∑
D,D′

CDCD′
∑
σ=α,β

〈
D′
∣∣ â†p,σâq,σ |D〉 . (6)

If p 6= q, various scenarios should be considered. If q is not occupied in D or p is (doubly) occupied in

D then â†p,σâq,σ |D〉 = −âq,σâ†p,σ |D〉 = 0. If q is occupied and p is unoccupied then â†p,σâq,σ |D〉 is not
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zero but it is not a seniority-zero determinant (since p and q are now singly occupied). It is therefore

orthogonal to all seniority-zero determinants D′. In conclusion, in all cases, 〈D′| â†p,σâq,σ |D〉 = 0 when

p 6= q.

and the diagonal elements read

nΨ̃
p = DΨ̃

pp = 2
∑
D3p

C2
D, (7)

where “D 3 p” means that the sum runs over the seniority-zero Slater determinants D in which the

orbital ϕp is (doubly) occupied.

DΨ̃
pp =

∑
D,D′

CDCD′
〈
D′
∣∣ n̂p |D〉 , (8)

where n̂p =
∑
σ=α,β â

†
p,σâp,σ is the occupation operator for orbital p. Since n̂p |D〉 = nDp |D〉 where nDp = 0

if p is not occupied in D and nDp = 2 if it is (doubly) occupied, it comes

DΨ̃
pp =

∑
D,D′

CDCD′nDp
〈
D′
∣∣D〉 =

∑
D,D′

CDCD′nDp δD′D =
∑
D
C2
Dn
D
p = 2

∑
D3p

C2
D. (9)

What is the physical meaning of nΨ̃
p ?

nΨ̃
p is the occupation number of the orbital p in the seniority-zero wavefunction. Note that it is in

principle fractional (it would be an integer if we were using a single Slater determinant instead of a

linear combination of Slater determinants).

f) [1 pt] Let us write the electronic Hamiltonian as Ĥ =
∑
pq,σ=α,β hpq â

†
p,σâq,σ + Ŵee where Ŵee is the two-

electron repulsion operator. What are the energy contributions described by the one-electron integrals

hpq?

The kinetic energy and the nuclear attraction potential energy.

Show that
〈

Ψ̃
∣∣∣ Ĥ ∣∣∣Ψ̃〉 =

∑
p vpn

Ψ̃
p +

〈
Ψ̃
∣∣∣ Ŵee

∣∣∣Ψ̃〉 , where vp = hpp.
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〈
Ψ̃
∣∣∣ Ĥ ∣∣∣Ψ̃〉 =

∑
pq,σ=α,β

hpq
〈

Ψ̃
∣∣∣ â†p,σâq,σ ∣∣∣Ψ̃〉+

〈
Ψ̃
∣∣∣ Ŵee

∣∣∣Ψ̃〉 ,
=

∑
pq

hpqD
Ψ̃
pq +

〈
Ψ̃
∣∣∣ Ŵee

∣∣∣Ψ̃〉
=

∑
pq

hpqn
Ψ̃
p δpq +

〈
Ψ̃
∣∣∣ Ŵee

∣∣∣Ψ̃〉
=

∑
p

hppn
Ψ̃
p +

〈
Ψ̃
∣∣∣ Ŵee

∣∣∣Ψ̃〉 . (10)

g) [2.5 pts] Let E0 be the seniority-zero ground-state energy:

E0 = min
Ψ̃

〈
Ψ̃
∣∣∣ Ĥ ∣∣∣Ψ̃〉 =

〈
Ψ̃0
∣∣∣ Ĥ ∣∣∣Ψ̃0

〉
=
∑
p

vpn
Ψ̃0
p +

〈
Ψ̃0
∣∣∣ Ŵee

∣∣∣Ψ̃0
〉
, (11)

where the minimization is restricted to normalized seniority-zero wavefunctions Ψ̃ [we assume that the

orbitals are fixed]. By changing the diagonal elements of the one-electron integrals, i.e. vp → h′pp = v′p,

we obtain a new ground-state seniority-zero wavefunction Ψ̃′0, new occupations nΨ̃′
0

p , and therefore a new

seniority-zero ground-state energy E ′0. We assume that ground states are not degenerate and that they

have exactly the same orbital occupations, i.e. nΨ̃′
0

p = nΨ̃0
p = n0

p. Prove that, under these assumptions,

E0 < E ′0 +
∑
p

(
vp − v′p

)
n0
p and E ′0 < E0 −

∑
p

(
vp − v′p

)
n0
p.

If we assume that seniority-zero ground-state wavefunctions are not degenerate, applying the variational

principle of Eq. (11) to both Hamiltonians with vp and v′p diagonal one-electron integral elements leads

to

E0 <
〈

Ψ̃′0
∣∣∣ ∑
pq,σ=α,β

hpq â
†
p,σâq,σ + Ŵee

∣∣∣Ψ̃′0〉 (12)

and

E ′0 <
〈

Ψ̃0
∣∣∣ ∑
pq,σ=α,β

h′pq â
†
p,σâq,σ + Ŵee

∣∣∣Ψ̃0
〉
, (13)

where

〈
Ψ̃′0
∣∣∣ ∑
pq,σ=α,β

hpq â
†
p,σâq,σ + Ŵee

∣∣∣Ψ̃′0〉 =
〈

Ψ̃′0
∣∣∣ ∑
pq,σ=α,β

h′pq â
†
p,σâq,σ + Ŵee

∣∣∣Ψ̃′0〉
+
〈

Ψ̃′0
∣∣∣ ∑
pq,σ=α,β

(
hpq − h′pq

)
â†p,σâq,σ

∣∣∣Ψ̃′0〉
= E ′0 +

∑
p

(vp − v′p)n
Ψ̃′

0
p (14)
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and

〈
Ψ̃0
∣∣∣ ∑
pq,σ=α,β

h′pq â
†
p,σâq,σ + Ŵee

∣∣∣Ψ̃0
〉

=
〈

Ψ̃0
∣∣∣ ∑
pq,σ=α,β

hpq â
†
p,σâq,σ + Ŵee

∣∣∣Ψ̃0
〉

+
〈

Ψ̃0
∣∣∣ ∑
pq,σ=α,β

(
h′pq − hpq

)
â†p,σâq,σ

∣∣∣Ψ̃0
〉

= E0 +
∑
p

(v′p − vp)nΨ̃0
p . (15)

By combining Eqs. (12)-(15) with the assumption nΨ̃′
0

p = nΨ̃0
p = n0

p we finally obtain

E0 < E ′0 +
∑
p

(
vp − v′p

)
n0
p (16)

and

E ′0 < E0 +
∑
p

(v′p − vp)n0
p. (17)

Conclude.

We conclude from Eqs. (16) and (17) that, under our orbital occupation assumption,

0 < E ′0 − E0 +
∑
p

(
vp − v′p

)
n0
p < 0, (18)

which is absurd. In conclusion, there is a one-to-one correspondence between the diagonal one-electron

integrals {vp}p and the orbital occupations
{
nΨ̃0
p

}
p
in the ground-state seniority-zero wavefunction.

Why can this result be seen as a kind of Hohenberg–Kohn theorem for seniority-zero wavefunctions?

The collection of occupation numbers
{
nΨ̃0
p

}
p
can be seen as an electron density in the molecular orbital

space. The density “on the orbital p” is nΨ̃0
p . Formally [see the energy expression in Eq. (11)], the

collection of diagonal one-electron integrals {vp}p looks like a potential, by analogy with DFT. The value

of this potential “on the orbital p” is vp. In this respect, the theorem we proved is a Hohenberg–Kohn-like

theorem.
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