
Exam in Advanced Quantum Chemistry – M2 course
January 2022, Two-hour exam

Neither documents nor calculators are allowed.

1. Questions on the lecture material [10 points]

a) [2 pts] What is the key idea underlying the Hartree–Fock (HF) approximation? What is the definition

of the correlation energy? Is FCI exact?

b) [3 pts] Explain why the HF method can be formulated as an orbital rotation problem. How can the

HF orbitals be optimized? How can we verify in a CI calculation that the determinants are constructed

from HF orbitals? If we perform the FCI calculation with different molecular orbitals [the KS orbitals,

for example] without changing the atomic orbital basis, do we obtain a different FCI energy?

c) [3 pts] Define the concept of static correlation. What is the appropriate method for its description?

How is the wavefunction parameterized within this method? Is it possible to describe excited states with

this method? Does it provide accurate results?

d) [2 pts] The local density approximation (LDA) fails in describing both bond dissociations and dispersion

forces. What is the reason? Does it mean that KS-DFT can only be applied to some electronic systems

but not all?

2. Exercise: Equation-of-Motion Coupled-Cluster theory [10+2 points]

In the so-called Equation-of-Motion Coupled-Cluster (EOM-CC) theory [it will become clear in the bonus

question of the exercise where the name comes from], an excited-state wave function Ψk (k > 0) is determined

from the ground-state wave function Ψ0 as follows:

|Ψk〉
k>0= R̂ |Ψ0〉 , (1)

where the excitation operator R̂ (which is defined below) describes physical electronic excitations, i.e.,

excitations that can be observed in spectroscopy experiment. The CC exponential ansatz is used for the

ground-state wave function,

|Ψ0〉 = eT̂ |Φ0〉 , (2)

where Φ0 is the Hartree-Fock (HF) ground-state Slater determinant. Both T̂ and R̂ operators can be written

1



in second quantization as follows:

T̂ =
∑
I,A

tAI â
†
AâI +

∑
I<J,A<B

tAB
IJ â†Aâ

†
B âJ âI +

∑
I<J<K,A<B<C

tABC
IJK â†Aâ

†
B â
†
C âK âJ âI + . . . (3)

and

R̂ = r01̂ +
∑
I,A

rA
I â
†
AâI +

∑
I<J,A<B

rAB
IJ â†Aâ

†
B âJ âI +

∑
I<J<K,A<B<C

rABC
IJK â†Aâ

†
B â
†
C âK âJ âI + . . . , (4)

respectively, where 1̂ is the identity operator, i.e., 1̂ |Ψ〉 = |Ψ〉. The indices I, J,K, . . . and A,B,C, . . .

denote occupied and unoccupied spin-orbitals in Φ0, respectively.

a) [2 pts] In principle, the alternative parameterization |Ψk〉 = R̂ |Φ0〉, which is not further discussed in the

following, can be employed in place of the one in Eqs. (1) and (2), for computing excited states. What

are the to-be-optimized parameters in this case? How is such a method usually referred to? What is the

practical advantage of using as reference the CC wave function of Eq. (2) rather than the HF one Φ0?

b) [1 pt] Let Ĥ and E0 denote the electronic Hamiltonian operator and the ground-state energy, respectively.

Explain why, according to Eq. (2), e−T̂ ĤeT̂ |Φ0〉 = E0 |Φ0〉. How can the operator T̂ be determined from

this observation? Hint: Evaluate 〈µ|e−T̂ ĤeT̂ |Φ0〉, where |µ〉 denotes an excited HF determinant.

c) [0.5 pt] We focus in the rest of the exercise on the calculation of the excited-state energies {Ek}k>0. Show

that, according to Eqs. (1), (2), and the Schrödinger equation for the kth excited state, the excitation

operator R̂ is such that

e−T̂ ĤR̂eT̂ |Φ0〉 = Ek e
−T̂ R̂ eT̂ |Φ0〉 . (5)

d) [3 pts] Explain why, according to Eqs. (3) and (4), the excitation operators T̂ and R̂ commute. We

recall that eT̂ =
+∞∑
p=0

T̂ p

p! = 1̂+ T̂ + T̂ 2

2 + . . . Deduce that eT̂ and R̂ commute and, according to Eq. (5),

Ĥ R̂ |Φ0〉 = Ek R̂ |Φ0〉 , (6)

where Ĥ = e−T̂ ĤeT̂ . In the light of question 2. a), conclude that, in EOM-CC theory, the calculation of

excited-state energies consists in applying the configuration interaction method to the modified (so-called

similarity transformed) Hamiltonian Ĥ. What simplifications are made at the so-called EOM-CCSD level

of approximation?

e) [1.5 pts] Show that Ĥ† = eT̂ †
Ĥe−T̂ † . Explain why T̂ differs from T̂ † and conclude that, unlike the true

Hamiltonian Ĥ, the similarity transformed Hamiltonian Ĥ is not hermitian. Explain why Ĥ, Ĥ, and Ĥ†
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share the same eigenvalues Ek by proving that

Ĥ |Ψk〉 = Ek |Ψk〉 ⇔ Ĥ
(
e−T̂ |Ψk〉

)
= Ek ×

(
e−T̂ |Ψk〉

)
⇔ Ĥ†

(
eT̂ † |Ψk〉

)
= Ek ×

(
eT̂ † |Ψk〉

)
. (7)

f) [1 pt] As a consequence of question 2. e), Ĥ† has its own eigenvector (associated to the energy Ek) that

we denote L̂† |Φ0〉, where

L̂† = `01̂ +
∑
I,A

`AI â
†
AâI +

∑
I<J,A<B

`AB
IJ â†Aâ

†
B âJ âI +

∑
I<J<K,A<B<C

`ABC
IJK â†Aâ

†
B â
†
C âK âJ âI + . . . (8)

Deduce that [see also Eq. (6)], for any wave function Ψ, the following equalities are fulfilled:

〈
Ĥ†L̂†Φ0

∣∣∣Ψ〉 =
〈
L̂†Φ0

∣∣∣Ĥ∣∣∣Ψ〉 = Ek

〈
L̂†Φ0

∣∣∣Ψ〉 , (9)〈
Ψ
∣∣∣Ĥ∣∣∣R̂Φ0

〉
= Ek

〈
Ψ
∣∣∣R̂Φ0

〉
. (10)

Explain why L̂†Φ0 and R̂Φ0 are usually referred to as left and right eigenfunctions of Ĥ, respectively.

g) [1 pt] Like the conventional normalization condition, the so-called bi-orthonormalization condition,〈
L̂†Φ0

∣∣∣R̂Φ0
〉

= 1, can always be imposed. Deduce from Eq. (9) that, in this case, the kth excited-

state energy can be expressed as Ek = 〈Φ0|L̂ĤR̂|Φ0〉. Summarize the key steps in the EOM-CCSD

method [see question 2. d)] and highlight the main differences with the conventional CISD method.

BONUS QUESTION

h) [2 pts] The purpose of this last question is to explain where the name “equation of motion” comes from.

Show that, according to the excited-state wave function ansatz of Eq. (1) and the Schrödinger equation

that is fulfilled by both Ψ0 and Ψk (with energies E0 et Ek, respectively), we have

[
Ĥ, R̂

]
|Ψ0〉 = (Ek − E0) R̂ |Ψ0〉 , (11)

where
[
Ĥ, R̂

]
= ĤR̂ − R̂Ĥ. In the time-dependent formulation of quantum mechanics, the expecta-

tion value of R̂ at a given time t can be determined from the time-dependent version of the opera-

tor, R̂(t) = e+iĤt R̂ e−iĤt, where i is the complex pure imaginary unit number (i.e., i2 = −1), and

e±iĤt ≡ exp
{
±iĤt

}
=

+∞∑
n=0

(
±iĤt

)n

n! . Explain why dR̂(t)
dt

= i e+iĤt
[
Ĥ, R̂

]
e−iĤt. Deduce that Eq. (11)

can be rewritten as follows,

−i d
dt

(
R̂(t) |Ψ0〉

)∣∣∣∣
t=0

= (Ek − E0) R̂ |Ψ0〉 , (12)

and conclude.
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