M1 "Sciences et Génies des Matériaux" & M1 franco-allemand "Polymères"

Quantum Mechanics course

Lecturer: Emmanuel Fromager

The following questions are meant to help the students in reviewing their lecture notes.

- 1. Which mathematical functions are used for describing the state of a particle moving along the *x* axis in classical Newton and quantum mechanics, respectively? Write the fundamental time-dependent equations that these functions are supposed to fulfill.
- 2. Let $\left[\hat{A}\right] \equiv \left\{A_{ij}\right\}_{1\leq i,j\leq N}$ be the matrix representation of a *linear* quantum operator \hat{A} in a given basis $\{|u_i\rangle\}_{1\leq i\leq N}$. Show that, according to the linearity of \hat{A} , we can deduce from \hat{A} the quantum state $\hat{A}|\Psi\rangle$ that is obtained by applying \hat{A} to *any* state $|\Psi\rangle = \sum_{\hat{A}|\hat{A}|\hat{B}}$ *N j*=1 $C_j |u_j\rangle$. Show that, if $\{|u_i\rangle\}_{1\leq i\leq N}$ is orthonormal, then $C_i = \langle u_i | \Psi \rangle$ and $A_{kj} = \langle u_k | \hat{A} | u_j \rangle$. Deduce that the identity operator reads $\hat{1} = \sum$ *N j*=1 $|u_j\rangle \langle u_j|$ and that $\hat{A} = \hat{\mathbb{I}} \hat{A} \hat{\mathbb{I}} = \sum$ *N i,j*=1 A_{ij} | u_i $\langle u_j$ |.
- 3. How does the wave function $\Psi(\vec{r})$, where $\vec{r} \equiv (x, y, z)$ denotes a position that the particle under study could have in the three-dimensional real space, relate to the quantum state $|\Psi\rangle$ of that particle? Explain the notation $\Psi(\vec{r}') = \langle \vec{r}' | \Psi \rangle$, where $\vec{r}' \equiv (x', y', z')$ is some given fixed position. Let \hat{x} denote the *x* coordinate position operator. Why, according to the postulates of quantum mechanics, should we expect the following equality to be fulfilled: $\hat{x}|\vec{r}'\rangle = x'|\vec{r}'\rangle$? Deduce that $(\hat{x}\Psi)(\vec{r}') = \langle \vec{r}'|\hat{x}|\Psi\rangle =$ $x' \times \Psi(\vec{r}')$.
- 4. Let \hat{O} denote a Hermitian quantum operator and $|\Psi_{\mathcal{S}_i}\rangle$ an eigenvector of \hat{O} associated to the eigenvalue \mathfrak{s}_i (which is indexed with *i*). Show that \mathfrak{s}_i is a real number (*i.e.*, it is equal to its complex conjugate). Show that, if $|\Psi_{\mathcal{O}_j}\rangle$ is another eigenvector of $\hat{\mathcal{O}}$ associated to a different eigenvalue $\mathcal{O}_j \neq \mathcal{O}_i$, then $|\Psi_{\beta_j}\rangle$ and $|\Psi_{\beta_i}\rangle$ are orthogonal. On the basis of these mathematical properties, explain why, in quantum mechanics, we associate to any observable $\mathcal O$ a Hermitian operator $\hat{\mathcal O}$. We assume that, just before measuring \mathcal{O} , the system under study is in the quantum state $|\Psi\rangle = \sum_{\mathbf{r}}$ *k* $C_k | \Psi_{\mathfrak{S}_k} \rangle$. What is the probability of measuring \mathfrak{s}_i ? Why should we always verify that $|\Psi\rangle$ is normalized before evaluating that probability? If $|\Psi\rangle$ is not normalized, how can we construct a normalized quantum state that is equivalent to $|\Psi\rangle$?
- 5. Let \hat{A} and \hat{B} be two Hermitian operators. We assume that they share a *common* orthonormal basis of eigenvectors $\{|u_i\rangle\}$. We denote a_i and b_i the eigenvalues of \hat{A} and \hat{B} , respectively, that are associated to $|u_i\rangle$. Show that \hat{A} and \hat{B} commute, *i.e.*, $\left[\hat{A}, \hat{B}\right] |u_i\rangle = 0$ for any basis vector $|u_i\rangle$. Explain why, in this case, the observables *A* and *B* (that are associated to \hat{A} and \hat{B} , respectively) can be measured simultaneously. If the value a_j is measured for *A*, which value will then be measured for *B*?
- 6. We represent the Hamiltonian of a quantum student in the two-state orthonormal basis $\{|\mathbb{Q}\rangle, |\mathbb{Q}\rangle\}$ of "happy" and " not happy" states as follows: $\hat{[H]} =$ $\sqrt{ }$ \vert *α β β α* 1 , where $\beta < 0$. Are $|\mathcal{Q}\rangle$ and $|\mathcal{Q}\rangle$ stationary states? Verify that the normalized eigenvectors of \hat{H} ^{$=$} read $\frac{1}{\sqrt{2}}$ 2 $(|\mathbb{Q}\rangle + |\mathbb{Q}\rangle)$ and $\frac{1}{\sqrt{2}}$ 2 $(|\mathbb{Q}\rangle - |\mathbb{Q}\rangle)$. What is the probability of being happy for a quantum student that stands in its ground state?
- 7. Let \hat{H} denote the Hamiltonian operator of a quantum system and $\hat{U}(t) = e^{-i\hat{H}t/\hbar}$, where t denotes the time and $i^2 = -1$. We recall that, for any quantum operator \hat{A} , the exponential of \hat{A} reads $e^{\hat{A}} \equiv$ $+\infty$ *n*=0 \hat{A}^n $\frac{A}{n!}$. We consider an orthonormal basis $\{|\Psi_j\rangle\}$ of eigenvectors of \hat{H} and denote $\{E_j\}$ the associated energies. Show that $\hat{H} = \hat{H}\hat{\mathbb{1}} = \sum$ *k* $E_k |\Psi_k\rangle \langle \Psi_k |$ and $\hat{U}(t) = \hat{U}(t) \hat{\mathbb{1}} = \sum$ *j* $e^{-iE_jt/\hbar}|\Psi_j\rangle\langle\Psi_j|.$

Deduce that $\hat{H}\hat{U}(t) = i\hbar \frac{d\hat{U}(t)}{dt}$ and conclude that $|\Psi(t)\rangle = \hat{U}(t)|\Psi(t=0)\rangle$ is the quantum state of the system at time *t* if, at time $t = 0$, it is in the state $|\Psi(t = 0)\rangle$. Why is $\hat{U}(t)$ referred to as time evolution operator? Why are the eigenvectors of \hat{H} referred to as stationary states?

- 8. What is the general idea behind perturbation theory? How do we technically derive the perturbation expansion of the energies for a given Hamiltonian \hat{H} ?
- 9. Let \hat{H}_0 and \hat{H} be two different Hamiltonian operators. We denote $\hat{W} = \hat{H} \hat{H}_0$ and introduce the *α*-dependent Hamiltonian $\hat{H}(\alpha) = \hat{H}_0 + \alpha \hat{W}$, where *α* is a real number. Verify that $\hat{H}(\alpha)$ is Hermitian. We denote $E_i(\alpha)$ the eigenvalue of $\hat{H}(\alpha)$ associated to the eigenvector $|\Psi_i(\alpha)\rangle$ which is *normalized* for any value of α . Prove the Hellmann–Feynman theorem: $\frac{dE_i(\alpha)}{d\alpha}$ = * $\Psi_i(\alpha)$ $\begin{array}{c} \hline \end{array}$ $\partial \hat{H}(\alpha)$ *∂α* $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$ $\Psi_i(\alpha)$ \setminus . Deduce that, in perturbation theory, the first-order correction to the energy is determined solely from the perturbation operator \hat{W} and the unperturbed quantum state $|\Psi_i(\alpha=0)\rangle$.