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Schrödinger equation for the ground state
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Ŵee ⌘
NX

i<j

1

|ri � rj |
⇥ �! universal two-electron repulsion

operator

V̂ ⌘
NX

i=1

v(ri)⇥ where v(r) = �
nucleiX

A

ZA

|r�RA| �! local nuclear potential operator

Emmanuel Fromager (Unistra) Seminar, IRMA, Strasbourg, France 23/05/2019 2 / 2

Faculty of Physics and Engineering, University of Strasbourg, France Page 2



Variational principle, stationarity condition and Hückel method

Variational principle for the ground state
• Real algebra will be used in the following: 〈Ψ|Φ〉 = 〈Φ|Ψ〉∗ = 〈Φ|Ψ〉.
• Let {|ΨI〉}I=0,1,2,... be the orthonormal eigenstates of any Hamiltonian operator Ĥ :

Ĥ|ΨI〉 = EI |ΨI〉, 〈ΨI |ΨJ 〉 = δIJ .

• These states are exact solutions to the time-independent Schrödinger equation.

• In the following, |Ψ0〉 denotes the ground state i.e. the eigenstate with lowest energy. For simplicity,
we will assume that the ground state is not degenerate:

EI > E0 if I > 0.

Example: the lowest five states of the helium atom can be represented as follows,

E0 1s2

E1 = E2 = E3 1s2s (triplet)
E4 1s2s (singlet)
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(Rayleigh–Ritz) variational principle for the ground state
• Theorem: the exact ground-state energy is a lower bound for the expectation value of the energy. The

minimum is reached when the trial quantum state |Ψ〉 equals the ground state |Ψ0〉:

E0 = min
Ψ

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 =

〈Ψ0|Ĥ|Ψ0〉
〈Ψ0|Ψ0〉

= 〈Ψ0|Ĥ|Ψ0〉 = min
Ψ,〈Ψ|Ψ〉=1

〈Ψ|Ĥ|Ψ〉.

Proof: ∀Ψ, |Ψ〉 =
∑

I≥0

CI |ΨI〉 and 〈Ψ|Ĥ|Ψ〉 − E0〈Ψ|Ψ〉 =
∑

I≥0

C2
I

(
EI − E0

)
≥ 0.

• In the previous description of the ground state (the so-called non variational one) we had to solve the
time-independent Schrödinger equation (which is an eigenvalue equation) and select the lowest
energy. In this so-called variational formulation, we "just" have to minimize the expectation value for
the energy in order to determine E0.

• The variational formulation is convenient for performing (practical) approximate calculations of
ground-state wavefunctions. As discussed further in the following we can, for example, expand the
trial quantum state |Ψ〉 in a finite basis of states whose dimension is much smaller than the dimension
of the full space of quantum states (which can actually be infinite !).
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Stationarity condition for both ground and excited states

• Let us return to the exact theory. Any trial quantum state |Ψ〉 can be decomposed as follows,

|Ψ〉 =
∑

I≥0

CI |uI〉. We denote C =




C0

C1

...

CI
...




the set of variational parameters

and {|uI〉}I=0,1,... is an arbitrary orthonormal basis. Thus, |Ψ〉 becomes a function of C, hence the
notation |Ψ(C)〉 used in the following.

• Consequently, the trial energy
[

i.e. the expectation value of the energy obtained for |Ψ(C)〉
]

is also a
function of C:

E(C) =
〈Ψ(C)|Ĥ|Ψ(C)〉
〈Ψ(C)|Ψ(C)〉 =

∑

I≥0,J≥0

CICJ 〈uI |Ĥ|uJ 〉
∑

I≥0

C2
I

.

Faculty of Physics and Engineering, University of Strasbourg, France Page 5



Variational principle, stationarity condition and Hückel method

Stationarity condition for both ground and excited states
• Theorem: |Ψ(C)〉 is an eigenstate of Ĥ if and only if it fulfills the following stationarity condition,

∂E(C)

∂CJ
= 0, ∀J ≥ 0.

Proof:
∂

∂CJ

(
〈Ψ(C)|Ψ(C)〉E(C)

)
=

∂

∂CJ

(
〈Ψ(C)|Ĥ|Ψ(C)〉

)

−→ 2E(C)
〈∂Ψ(C)

∂CJ

∣∣∣Ψ(C)
〉

+ 〈Ψ(C)|Ψ(C)〉∂E(C)

∂CJ
= 2
〈∂Ψ(C)

∂CJ

∣∣∣Ĥ
∣∣∣Ψ(C)

〉

where
∣∣∣∣
∂Ψ(C)

∂CJ

〉
= |uJ 〉. Therefore, using the resolution of the identity leads to

Ĥ|Ψ(C)〉 − E(C)|Ψ(C)〉 =
∑

J≥0

(
〈uJ |Ĥ|Ψ(C)〉 − E(C)〈uJ |Ψ(C)〉

)
|uJ 〉

=
1

2
〈Ψ(C)|Ψ(C)〉

∑

J≥0

∂E(C)

∂CJ
|uJ 〉.
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Stationarity condition for both ground and excited states

• Note that the stationarity condition applies not only to the ground state but also to the excited states.

• However, excited states do not minimize locally the expectation value of the energy.

• This can be easily illustrated by considering the trial quantum state |Ψ(ξ)〉 = ξ|Ψ0〉+ |Ψ1〉

and the corresponding trial energy E(ξ) =
〈Ψ(ξ)|Ĥ|Ψ(ξ)〉
〈Ψ(ξ)|Ψ(ξ)〉 which are both functions of ξ.

We then see that

E(ξ)− E1 =
ξ2E0 + E1

ξ2 + 1
− E1 =

ξ2

ξ2 + 1

(
E0 − E1

)
< 0 when ξ deviates from 0.
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Stationarity condition for both ground and excited states
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From the exact theory to approximate methods

• There exists for some (simple) systems like the hydrogen atom exact analytical solutions to the
Schrödinger equation.

• There are no analytical solutions to the electronic Schrödinger equation for atoms or molecules with
more than one electron.

• Therefore, in order to apply quantum mechanics to chemistry or solid state physics, we need a strategy
for approaching numerically (i.e. with a computer) the exact solutions.

• Of course we should check that, in case an exact analytical solution exists, the latter (or a solution close
to it) is recovered with such a strategy.
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From the exact theory to approximate methods

• Let us consider the example of the hydrogen atom. The exact 1s orbital, which is obtained by solving
the Schrödinger equation in an infinite dimension space of quantum states, reads in atomic units[
i.e. r← r/a0 ≡ (x/a0, y/a0, z/a0)

]
,

Ψ0(r) =
1√
π
e−r where r = |r|.

• In standard quantum chemistry codes, Gaussian functions are used instead of the above (so-called
Slater) function: for example, Φ1(r) = e−2.23r2 , Φ2(r) = e−0.41r2 or Φ3(r) = e−0.11r2 .

• We would like to approach the exact solution with a linear combination of these three functions:

Ψ0(r) ≈ Ψ̃0(r) = C̃1 Φ1(r) + C̃2 Φ2(r) + C̃3 Φ3(r).

A simple but non trivial question is: how to determine the "best" coefficients C̃1, C̃2 and C̃3 ?
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From the exact theory to approximate methods

• Let us consider a second example: the H+
2 molecule.

The exact ground-state molecular orbital Ψ0(r) can a priori be approximated by the linear combination
of the 1s atomic orbitals that are centered on the (fixed) hydrogen atoms located at positions RA and
RB , respectively. In this case, we use only two basis functions:

Ψ0(r) ≈ Ψ̃0(r) = C̃1 Φ1(r) + C̃2 Φ2(r),

where Φ1(r) =
1√
π
e−|r−RA| and Φ2(r) =

1√
π
e−|r−RB |.

How can we determine the "best" values for C̃1 and C̃2 ?

Comment: the atomic orbitals Φ1 and Φ2 are not necessarily orthogonal:

〈Φ1|Φ2〉 =

∫

R3
dr Φ∗1(r)Φ2(r) =

1

π

∫

R3
dr e−|r−RA| × e−|r−RB | = S12 ←− overlap integral

S12 equals zero in the dissociation limit
(
|RA −RB | → +∞

)
.
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Variational approximate method: general formulation

• Let us consider a subspace EM of the full space of quantum states. The integer M denotes the (finite)
dimension of EM and {|ΦI〉}I=1,2,...,M is a (not necessarily orthonormal) basis of that subspace.

• Let us build the so-called overlap matrix (also referred to as metric matrix) as follows,

S =




〈Φ1|Φ1〉 〈Φ1|Φ2〉 . . . 〈Φ1|ΦM 〉
〈Φ2|Φ1〉 〈Φ2|Φ2〉 . . . 〈Φ2|ΦM 〉

...
...

...
...

〈ΦM |Φ1〉 〈ΦM |Φ2〉 . . . 〈ΦM |ΦM 〉



.

Moreover, we introduce the so-called Hamiltonian matrix:

H =




〈Φ1|Ĥ|Φ1〉 〈Φ1|Ĥ|Φ2〉 . . . 〈Φ1|Ĥ|ΦM 〉
〈Φ2|Ĥ|Φ1〉 〈Φ2|Ĥ|Φ2〉 . . . 〈Φ2|Ĥ|ΦM 〉

...
...

...
...

〈ΦM |Ĥ|Φ1〉 〈ΦM |Ĥ|Φ2〉 . . . 〈ΦM |Ĥ|ΦM 〉



.
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• In this context the trial quantum state reads

|Ψ(C̃)〉 =

M∑

I=1

C̃I |ΦI〉 where C̃ =




C̃1

C̃2

...

C̃M




←− variational parameters

• The trial energy can be written in terms of the Hamiltonian and metric matrices as follows,

E(C̃) =
〈Ψ(C̃)|Ĥ|Ψ(C̃)〉
〈Ψ(C̃)|Ψ(C̃)〉

=

M∑

I,J=1

C̃I C̃JHIJ

M∑

I,J=1

C̃I C̃JSIJ

.

• It can be shown that the stationarity condition
∂E(C̃)

∂C̃J
= 0, ∀J = 1,M is equivalent, in this

context, to

HC̃ = E(C̃)SC̃ ←− approximate calculation of the ground and some excited states.
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Comment : if the basis of the subspace EM is orthonormal (i.e. S =
[
1̂
]
), we obtain the eigenvalue equation

HC̃ = E(C̃)C̃ which is nothing but the time-independent Schrödinger equation projected onto EM .

• An energy Ẽ is solution if there exists a non-zero column vector C̃ such that

(
H − ẼS

)
C̃ = 0,

which implies that the so-called secular determinant is equal to zero,

det
(
H − ẼS

)
= 0

since
(
H − ẼS

)
cannot be inverted.

• Application to the hydrogen atom: Ĥ ≡ − ~2

2m
∇2 − e2

4πε0r
×

• Application to the H+
2 molecule: in this case the Hamiltonian operator reads

Ĥ ≡ − ~2

2m
∇2 +

e2

4πε0

(
− 1

|r−RA|
− 1

|r−RB |
+

1

|RA −RB |

)
×
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Many-electron systems
• If we want to apply the approximate variational method introduced previously to a system that

contains more than one electron like, for example, the hydrogen molecule, then we need basis

functions ΦI that describe two electrons
(

ΦI ≡ ΦI(r1, r2)
)

and we must use the following
two-electron Hamiltonian:

Ĥ ≡ − ~2

2m
∇2

r1
− ~2

2m
∇2

r2
+

e2

4πε0

(
− 1

|r1 −RA|
− 1

|r1 −RB |
− 1

|r2 −RA|
− 1

|r2 −RB |

)
×

+
e2

4πε0

(
1

|r1 − r2|︸ ︷︷ ︸
+

1

|RA −RB |

)
×

two-electron repulsion

• In the following we will consider a much simpler approximation (referred to as one-electron
approximation) which consists in (i) defining a Hamiltonian operator ĥ for one electron, (ii) applying
the variational method to it and, finally, (iii) distributing the electrons among the calculated molecular
orbitals. The many-electron energy is then obtained by summing up the energies of the occupied
(spin-) orbitals.

• In the Hückel method, the overlap between atomic orbitals is neglected when the variational method
is applied

(
S ≈

[
1̂
])

.
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The Hückel method applied to H2

• We choose as atomic orbitals the 1s orbitals centered on each hydrogen atom in order to apply the

variational method: Φ1(r) =
1√
π
e−|r−RA| and Φ2(r) =

1√
π
e−|r−RB |.

• Construction of the Hamiltonian matrix:

〈Φ1|ĥ|Φ1〉 = 〈Φ2|ĥ|Φ2〉 = α ←− for symmetry reasons

〈Φ1|ĥ|Φ2〉 = 〈Φ2|ĥ|Φ1〉 = β

• No numerical values for α and β are actually needed for giving a qualitative description of the bond
between the two atoms. We just need to impose the condition β < 0 (this will be discussed later on).

• Consequently, the secular determinant reads

∣∣∣∣∣∣
α− ε β

β α− ε

∣∣∣∣∣∣
= (α− ε)2 − β2 = 0

→ ε1σg = α+ β and ε1σu = α− β.

• The corresponding normalized molecular orbitals are Φ1σg (r) =
1√
2

(
Φ1(r) + Φ2(r)

)
and

Φ1σu (r) =
1√
2

(
Φ1(r)− Φ2(r)

)
.
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The Hückel method applied to H2

α+ β 1σg (bonding)

α− β 1σu (anti-bonding)

• The ground-state electronic configuration of H2 is denoted
(
1σg

)2.

• The total electronic energy equals 2(α+ β).

• The bond order (B.O.) is defined as follows,

B.O. =
number of electrons in bonding orbitals − number of electrons in anti-bonding orbitals

2

Here B.O. = 1 −→ single bond :-)

• Similarly, we would obtain B.O. = (2− 2)/2 = 0 for the helium dimer (no covalent bond !).
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