Particle confined on a segment \overline{P} Mechanics: Practical training non-

A particle of mass m is confined on a segment of length L: this model is used to describe free electrons in metals or electrons in conjugated polyenes.

- 1. The particle is assumed to be free on the segment. What does that mean for its energy?
- 2. Write the Schrödinger equation for the particle.
- 3. Solve the differential equation and write down the solutions in terms of cosine and sine functions.
- 4. Using the boundary condition at $x=0$, simplify the expression of the solutions Ψ .
- 5. Using the second boundary condition, the one on $\Psi(x)$ at $x=L$, show that the energy is quantized, i.e. that it depends on a quantum number n.
- 6. Show that the quantum number n can be taken positive. Is n= 0 a physical solution?
- 7. Derive the normalization factor of the wave function associated to the quantum number n.
- 8. What represents $\Psi^*(x) \Psi(x) dx$? Then, what represents $\Psi^*(x) \Psi(x)$?
- 9. Draw the wave functions and the densities of probability associated to the energy levels n=1, 2, 3. Comment.
- 10. Show that in the case of a macroscopic system (L goes to infinity), the energy is not quantized anymore. Show that for large quantum numbers, the density of probability is uniform along the segment [OL]. Explain why this is referred to as classical limit.
- 11. Derive the expectation value of the position of the particle for a given n value. Comment.
- 12. Derive the expectation value of the momentum for a given n value. Comment.
- 13. We use the model of the confined particle along the segment [OL] to interpret the behavior of π electrons of double bonds in conjugated polyenes. The π electrons are considered to be free to move along the axis of the molecule, which is assumed to be a straight line. An electronic transition (absorption spectrum) happens between the highest occupied energy level (Pauli principle) and the first unoccupied one. The frequency of this transition obeys the Bohr equation: $\Delta E = h v$.

We shall take two examples: hexa-2,4-diene (6C) and butadiene (4C). For each case, derive the relation between λ , the wavelength associated to this transition, and D, the length of the molecule. Compute λ in each case (m=9,11.10³¹ kg; c=3.10⁸ m.s⁻¹; h=6,63 10⁻³⁴ J.s, C-C = 154 pm, C=C = 135 pm). The experimental values are λ_{exp6} = 227 nm and λ_{exp4} =217 nm. Comment.

Particle confined in a cubic box

We consider a "free" particle of mass m trapped into a cubic box of volume L x L x L.

Purpose of the exercise: we want to know what are the possible energies of the trapped particle. Note that such a question arises in statistical physics when considering the ideal gas model.

- 1. Write the Schrödinger equation for the particle and give the six boundary conditions.
- 2. Let us write the solution as $\Psi(x,y,z)= \varphi_x(x)\varphi_y(y)\varphi_z(z)$. Insert this expression into the Schrödinger equation and divide then by $\Psi(x,y,z)$.
- 3. Show that the Schrödinger equation obtained in question 2 leads to three independent equations, which can be formally considered as Schrödinger equations for a particle confined on a segment along the x, y or z axis. The corresponding energies are denoted E_{x} , E_{y} and E_{z} in the following. Express the total energy E of the particle in the box with respect to $\mathsf{E}_{\mathsf{x}},\,\mathsf{E}_{\mathsf{y}}$ and E_{z} .
- 4. According to the tutorial "Particle confined on a segment", and using boundary conditions, what are the possible values for $\mathsf{E}_{\mathsf{x}},\,\mathsf{E}_{\mathsf{y}}$ and E_{z} ?
- 5. What are then the possible energies E for the particle in the box?
- 6. Give the expression of the corresponding wave function $\Psi(x,y,z)$.
- 7. What happens to the energy levels when the volume of the box becomes infinite?

Example 11		
\n $\frac{1}{2}x + 1 = \frac{1}{2}x$ \n	\n $\frac{1}{2}x + 1 = \frac{1}{2}x$ \n	\n $\frac{1}{2}x + 1 = \frac{1}{2}x$ \n
\n $\frac{1}{2}x + 1 = \frac{1}{2}x$ \n	\n $\frac{1}{2}x + 1 = \frac{1}{2}x$ \n	
\n $\frac{1}{2}x - 1 = \frac{1}{2}x$ \n	\n $\frac{1}{2}x - 1 = \frac{1}{2}x$ \n	
\n $\frac{1}{2}x - 1 = \frac{1}{2}x$ \n	\n $\frac{1}{2}x - 1 = \frac{1}{2}x$ \n	
\n $\frac{1}{2}x - 1 = \frac{1}{2}x$ \n	\n $\frac{1}{2}x - 1 = \frac{1}{2}x$ \n	
\n $\frac{1}{2}x - 1 = \frac{1}{2}x$ \n	\n $\frac{1}{2}x - 1 = \frac{1}{2}x$ \n	
\n $\frac{1}{2}x - 1 = \frac{1}{2}x$ \n	\n $\frac{1}{2}x - 1 = \frac{1}{2}x$ \n	
\n $\frac{1}{2}x - 1 = \frac{1}{2}x$ \n	\n $\frac{1}{2}x - 1 = \frac{1}{2}x$ \n	
\n $\frac{1}{2}x - 1 = \frac{1}{2}x$ \n	\n $\frac{1}{2}x - 1 = \frac{1}{2}x$ \n	
\n $\frac{1}{2}x - 1 = \frac{1}{2}x$ \n	\n $\frac{1}{2}x - 1$	

a sa karang sa mga bayang sa kalawang sa mga bayang sa mga bayang sa mga bayang sa pag-ang sa pag-ang sa pag-a
Mga bayang sa mga bayang s

5. **Short boundary condition**
$$
(4k-1) = 0
$$

\n
$$
\Rightarrow \quad \sin kk = 0 \Leftrightarrow \quad k = n\pi \quad n \in \mathbb{Z}
$$
\n
$$
\Rightarrow \quad \frac{k^2k^2}{2m} = \frac{\frac{k^2}{2m}}{2m} \left(\frac{n\pi}{L} \right)^2 = \epsilon_m
$$
\n
$$
\Rightarrow \quad \frac{k^2}{2m} = \frac{\frac{k^2}{2m}}{2m} \left(\frac{n\pi}{L} \right)^2 = \epsilon_m
$$
\n
$$
\Rightarrow \quad \frac{k^2}{2m} = \frac{\frac{k^2}{2m}}{2m} \left(\frac{n\pi}{L} \right)^2 = \epsilon_m
$$
\n
$$
\Rightarrow \quad \frac{k^2}{2m} \left(\frac{n\pi}{L} \right)^2 = \frac{n\pi}{2m}
$$
\n
$$
\Rightarrow \quad \frac{k^2}{2m} \left(\frac{n\pi}{L} \right)^2 = \frac{n\pi}{2m} \left(\frac{n\pi}{L} \right)
$$
\n
$$
\Rightarrow \quad \frac{n\pi}{L} \left(\frac{n\pi}{L} \right)^2 = \frac{n\pi}{2m} \left(\frac{n\pi}{L} \right)
$$
\n
$$
\Rightarrow \quad \frac{n\pi}{L} \left(\frac{n\pi}{L} \right)^2 = \frac{n\pi}{2m} \left(\frac{n\pi}{L} \right)
$$
\n
$$
\Rightarrow \quad \frac{n\pi}{L} \left(\frac{n\pi}{L} \right)^2 = \frac{n\pi}{2m} \left(\frac{n\pi}{L} \right)
$$
\n
$$
\Rightarrow \quad \frac{n\pi}{L} \left(\frac{n\pi}{L} \right)^2 = \frac{n\pi}{2m} \left(\frac{n\pi}{L} \right)
$$
\n
$$
\Rightarrow \quad \frac{n\pi}{L} \left(\frac{n\pi}{L} \right)^2 = \frac{n\pi}{2m} \left(\frac{n\pi}{L} \right)
$$
\n
$$
\Rightarrow \quad \frac{n\pi}{L} \left(\frac{n\pi}{L} \right)^2 = \frac{n\pi}{2m} \left(\frac{n\pi}{L} \right)
$$
\n
$$
\Rightarrow \quad \frac{n\pi}{L} \left(\frac{n\pi}{L} \right) = \frac{n\pi}{2}
$$
\n
$$
\Rightarrow \quad \frac{n\pi}{L} \
$$

 $\frac{z}{L}$.

$$
\frac{4f_{m}(x) = \sqrt{\frac{2}{L}} \sin(\frac{m\pi}{L}x)
$$
\n5. $4f(x) + (x) dx = d\theta(x)$: probability $4L + 1$
\n $2L + m\theta$ which is $2L + 1$ by $2L + 1$ will be $2L + 1$ to $2L + 1$
\n $f(x) = 4f(x) + (x) dx = d\theta(x)$: probability $4L + 1$
\n $f(x) = 4f(x) + (x) dx$ is the $2L + 1$ by $2L + 1$ by $2L + 1$ will be $2L + 1$
\n $f(x) = 4f(x) + 1$ by $2L + 1$ by $2L + 1$ by $2L + 1$ by $2L + 1$
\n $f(x) = 4f(x) + 1$
\n $2f(x) = |4x(x)|^2 = \frac{2}{L} \sin^2(\frac{n\pi x}{L})$
\n $2f(x) = 2f(x) + 2f(x) + 1$
\n $2f(x) = 2f(x) +$

 $3/2$

where $\frac{u}{n}(x)$ changes sign)
hus with the energy

noles noh nides

ality of the schutists $H_m(x)$ $\frac{2}{L}\left(\frac{n\pi z}{L}\right)$ Sin $\left(\frac{m\pi x}{L}\right)$ dx

$$
= \sum_{i=0}^{3} \int_{0}^{L} \frac{1}{2\pi i} \Big(\cos((n-m)\pi x) - \cos((n+m)\pi x) \Big) dx
$$

 \bullet

$$
=\frac{4}{L}\int_{0}^{L}cos(\theta_{1}-\mu_{1})\frac{d\tau}{L}d\tau
$$

$$
-\frac{4}{L}\left[-\frac{sin(\theta_{1}+\mu_{1})\tau_{2}}{(\pi_{1}+\mu_{1})\frac{\tau_{2}}{L}}\right]
$$

if
$$
h+m \rightarrow \langle H_n | H_m \rangle = \frac{1}{L} \left[\frac{f \sin((m-m)\pi x)}{(n-m)\frac{m}{L}} \right]_0^L
$$

\nThus f is a $\frac{1}{2} \left[\frac{f \sin((m-m)\pi x)}{(n-m)\frac{m}{L}} \right]_0^L$
\n
\n
$$
\frac{G_{mn+1} + \sin(H_{mn})}{\frac{1}{2} \left[\frac{f \sin(H_{mn})}{2} \right]_0^L}
$$
\n
$$
= \frac{1}{2} \left[\frac{f \sin(H_{mn})}{2} \right]_0^L
$$
\n
$$
= \frac{1}{2} \left[\frac{f \sin(H_{mn})}{2} \right]_0^L
$$
\n
$$
= \frac{2(2p+1)}{2n}
$$
\n
$$
\frac{2n \pi x_0}{2n}
$$
\n
$$
= \frac{2(2p+1)}{2n}
$$
\n
$$
= \frac{2}{2} \left[\frac{2p+1}{2} \right]_0^L
$$
\n
$$
= \frac{2}{2} \
$$

10 - We have shown an question 5 that the
\nConfinement of the particle arideus a quantization
\nof its energy
$$
\rightarrow
$$
 $E_R = \frac{\hbar^2 k_m^2}{2m}$
\nwhere $k_m = \frac{n \pi}{L}$ and the classical limit ($L \rightarrow +\infty$)
\nwhere $k_m = \frac{\pi}{L}$ \rightarrow D
\nwhich means that the set a continuously the value,
\nfor k_m and thus for E_m (the energy is not
\nquantized anymore).
\nIn reality 1. as a power finite (very large but both satisfy)
\nwhich means that the energy being are very very close.
\nIn reality 1. as a complex function, Note that
\n $E_R = \frac{\hbar^2}{2m} (\frac{\pi}{L})^2 \rightarrow 0$ $(1/x) \rightarrow 0$
\n $E_2 = \frac{\hbar^2}{2m} (\frac{2\pi}{L})^2 \rightarrow 0$ $(1/x) \rightarrow 0$
\nBut for sufficientity large n values, E_m work be
\nSmall (Since L is finite).

 $= 0$

 $4/2$

$$
\lambda = \frac{8 \times 9, 11.10^{-31} (424)^{2} 10^{-24} . 310^{8}}{6,63.10^{-34} (s)}
$$

\n
$$
\lambda = 1,196.10 \text{ m} = \frac{118,6 \text{ nm} = \lambda}{\frac{318,6 \
$$

 $\begin{picture}(120,140)(-30,140)(-20,140$

Let us look at the *IT* orbitals ...

12.
$$
\langle x \rangle = \int_{-a}^{b} \frac{dx}{x} (x) x (x) dx = \int_{0}^{b} \frac{2}{b} x \sin^{2}(\pi \pi x) dx
$$

\n
$$
= \int_{0}^{b} \frac{x}{x} (4 - 6\pi (2\pi \pi x / b)) dx
$$
\n
$$
= \frac{4}{b} \int_{0}^{b} \frac{x}{x} dx = -\frac{4}{b} \int_{0}^{b} x cos(2\pi \pi x / b) dx
$$
\n
$$
= \frac{4}{b} \int_{0}^{b} x dx = -\frac{4}{b} \int_{0}^{b} x cos(2\pi \pi x / b) dx
$$
\n
$$
= \frac{4}{b} \int_{0}^{b} x sin(2\pi \pi x / b) dx
$$
\n
$$
= \frac{4}{b} \int_{0}^{b} x sin(2\pi \pi x / b) dx
$$
\n
$$
= \frac{4}{b} \int_{0}^{b} \frac{x sin(2\pi \pi x / b)}{2\pi \pi (b)} dx
$$
\n
$$
= \frac{4}{b} \int_{0}^{b} \frac{x sin(2\pi \pi x / b)}{2\pi \pi (b)} dx
$$
\n
$$
= \frac{4}{b} \int_{0}^{b} \frac{x cos(2\pi \pi x / b)}{2\pi \pi (b)} dx
$$
\n
$$
= \frac{4}{b} \int_{0}^{b} \frac{x cos(2\pi \pi x / b)}{2\pi \pi (b)} dx
$$
\n
$$
= \frac{4}{b} \int_{0}^{b} \frac{x cos(2\pi \pi x / b)}{2\pi \pi (b)} dx
$$
\n
$$
= \frac{4}{b} \int_{0}^{b} \frac{x cos(2\pi \pi x / b)}{2\pi \pi (b)} dx
$$
\n
$$
= \frac{4}{b} \int_{0}^{b} \frac{x cos(2\pi \pi x / b)}{2\pi \pi (b)} dx
$$
\n
$$
= \frac{4}{b} \int_{0}^{b} \frac{x cos(2\pi \pi x / b)}{2\pi \pi (b)} dx
$$
\n
$$
= \frac{4}{b} \int_{0}^{b} x cos(2\pi \pi x / b) dx
$$
\n
$$
= \frac{4}{b}
$$

 \mathcal{E}^{\pm}

Particule dans une boite cubique

 \mathcal{N}/\mathcal{Z}

1) Equation de Schodenger: AY (x, y, z) = E P (x, y, z) $-\frac{\pi^2}{2m}\left(\frac{3^2}{2a^2}+\frac{3^2}{2a^2}+\frac{3^2}{2a^2}\right)\Psi(a,y,3)=E\Psi(a,y,3)$ $0\leqslant \alpha \leqslant L$ $O\leq y \leq L$ 05352 $\Psi(q, y, z) = \Psi(L, y, z) = 0 \quad \forall y. z$ Conditions aux limites. $\Psi(\alpha,0,3) = \Psi(\alpha,1,3) = 0 \ \forall \alpha,3$ $\Psi(\alpha, y, \sigma) = \Psi(\alpha, y, L) = 0 \quad \forall \alpha, \beta$ 2) Separation des variables: $\psi(\alpha_1\gamma_1\gamma_2)=\varphi_\alpha(\alpha_1)\cdot\varphi_\alpha(\gamma_2)\cdot\varphi_\beta(\gamma_2)$ equation de Schiodinger devisée par $\varphi_\alpha(\alpha)\varphi_g(\zeta)\varphi_3(\zeta)$ Y_{393} (1) = $-\frac{f^{2}}{2m}\left(\frac{1}{\varphi_{\alpha}(a)}\right)^{2}\frac{\varphi_{\alpha}(a)}{\partial a^{2}}+\frac{1}{\varphi_{\alpha}(a)}\frac{\partial^{\alpha}\varphi_{\alpha}(a)}{\partial a^{2}}+\frac{1}{\varphi_{\alpha}(a)}\frac{\partial^{\alpha}\varphi_{\alpha}(a)}{\partial a^{2}}\right)=$ l' equation (1) est de la forme $\{(\lambda) + g(y) + h(y) = E \mid \forall \alpha, q, \beta\}$ vi on la dérive par rapport à α , à y, ou à 3, on obtent
 $\begin{cases} \n\partial_{\alpha} \int_{0}^{1} (a) = 0 \\
\partial_{\alpha} \int_{0}^{1} (y) = 0\n\end{cases}$
 $\begin{cases} \n\partial_{\alpha} \int_{0}^{1} (x) = 0 \\
\partial_{\beta} \int_{0}^{1} (y) = 0\n\end{cases}$
 $\begin{cases} \n\int_{0}^{1} (a) = \frac{1}{2m} \int_{0}^{1} \frac{a}{a} (y$ Les krois équations ainsi obtenues sont indépendante les unes des autres 213 si on remplace $f(x)$, g(g) et h(g) dans l'equation (1), on

Vouse

 $\int_{\Omega} \int_{\Omega} \left| \nabla \cdot \$

 \mathcal{L}_{max} and \mathcal{L}_{max} .

$$
E_{\alpha}+E_{\gamma}+E_{\gamma}=E
$$

4) conditions aux limites => même solutions que pour particule Sur ure ligne $ex: \Psi(a_{1319}) = 4a(0) \Psi_{18}(9)(2) = 4a(1) \Psi_{19}(9)(2) = 4(1, x_{19})$ $=$ 0

$$
\frac{\varphi_{n}(a) = \sqrt{\frac{2}{L}} \sin\left(\frac{m_{\mu}T}{L}\right) \qquad E_{\alpha} = \frac{m_{\alpha}^{2}T^{2}\ell^{2}}{2L^{2}m}
$$
\n
$$
\frac{\varphi_{q}(q) = \sqrt{\frac{2}{L}} \sin\left(\frac{m_{g}\pi\alpha}{L}\right) \qquad E_{q} = \frac{m_{g}^{2}\pi^{2}\ell^{2}}{2L^{2}m}
$$
\n
$$
\frac{\varphi_{q}(q) = \sqrt{\frac{2}{L}} \sin\left(\frac{m_{g}\pi\alpha}{L}\right) \qquad E_{q} = \frac{m_{g}^{2}\pi^{2}\ell^{2}}{2L^{2}m}
$$
\n
$$
\frac{\varphi_{q}(q) = \sqrt{\frac{2}{L}} \sin\left(\frac{m_{\alpha}\pi}{L}\right) \sin\left(\frac{m_{g}\pi}{L}\right) \qquad E_{q} = \frac{m_{g}^{2}\pi^{2}\ell^{2}}{2L^{2}m}
$$
\n
$$
E = \frac{\pi^{2}\ell^{2}}{2L^{2}m} \left(m_{\alpha}^{2} + m_{g}^{2} + m_{g}^{2}\right)
$$
\n
$$
E = \frac{\pi^{2}\ell^{2}}{2L^{2}m} \left(m_{\alpha}^{2} + m_{g}^{2} + m_{g}^{2}\right)
$$
\n
$$
E = \frac{\pi^{2}\ell^{2}}{2L^{2}m} \left(m_{\alpha}^{2} + m_{g}^{2} + m_{g}^{2}\right)
$$

7. Longue le volume de la boite devant infini, l'énergie n'est plus quantifiée. (DE = 50 entre 2 nuieaux)