## Tutorial: uncertainty in quantum mechanics

## 1. Standard deviation and interpretation

Let A denote an observable and  $\hat{A}$  be the associated hermitian operator. When a quantum system is in the normalized state  $|\Psi\rangle$ , the expectation values for A and  $A^2$  read  $\langle A\rangle_{\Psi} = \langle \Psi|\hat{A}|\Psi\rangle$  and  $\langle A^2\rangle_{\Psi} = \langle \Psi|\hat{A}^2|\Psi\rangle$ , respectively. The standard deviation  $(\Delta A)_{\Psi}$  is defined as follows,

$$(\Delta A)_{\Psi} = \sqrt{\langle A^2 \rangle_{\Psi} - \langle A \rangle_{\Psi}^2}.$$

The purpose of the exercise is to show that the standard deviation is a mathematical tool that quantifies the uncertainty in the value of A before measurement.

- 1. Show that  $\langle A^2 \rangle_{\Psi} \langle A \rangle_{\Psi}^2 = \left\langle \Psi \left| \left( \hat{A} \langle A \rangle_{\Psi} \right)^2 \right| \Psi \right\rangle$ . Conclude that the standard deviation is well defined.
- 2. Let  $|\Psi_a\rangle$  denote a normalized eigenstate of  $\hat{A}$  with eigenvalue a. Show that  $(\Delta A)_{\Psi_a} = 0$ . What value would be measured for A if the system were in the quantum state  $|\Psi_a\rangle$  just before measurement.
- **3.** We assume in the following that the quantum state of the system  $|\Psi\rangle$  is a linear combination of two orthonormal states  $|\Psi_a\rangle$  and  $|\Psi_b\rangle$  that are eigenstates of  $\hat{A}$  with eigenvalues a and b, respectively:

$$|\Psi\rangle = rac{1}{\sqrt{1+\delta^2}}\Big(|\Psi_a\rangle + \delta|\Psi_b\rangle\Big),$$

where  $\delta > 0$ . Explain why  $|\Psi_a\rangle$  and  $|\Psi_b\rangle$  are necessarily orthogonal when  $a \neq b$  and verify that  $|\Psi\rangle$  is normalized. Show that, in this particular case, the standard deviation can be simplified as follows,

$$(\Delta A)_{\Psi} = \frac{\delta |b - a|}{1 + \delta^2}.$$

Comment on this result.

## 2. Heisenberg inequalities

We consider in this exercise the particular case of a particle described by the normalized wavefunction  $\Psi(\mathbf{r})$ . We will show that the product of standard deviations for the position x and the x component of the momentum  $p_x$  has a lower bound that is equal to  $\hbar/2$ :

$$(\Delta x)_{\Psi}(\Delta p_x)_{\Psi} \ge \frac{\hbar}{2}.$$

This relation is one of the famous Heisenberg inequalities.

- 1. Give a physical interpretation to the above inequality.
- 2. Let  $\alpha$  be a real number that we use to construct the following ( $\alpha$ -dependent) quantum state,

$$|\Psi(\alpha)\rangle = \left[ (\hat{p_x} - \langle p_x \rangle_{\Psi}) + i\alpha(\hat{x} - \langle x \rangle_{\Psi}) \right] |\Psi\rangle,$$

where  $i^2 = -1$ . Show that the square norm  $N(\alpha) = \langle \Psi(\alpha) | \Psi(\alpha) \rangle$  can be written as

$$N(\alpha) = (\Delta x)_{\Psi}^{2} \alpha^{2} + (\Delta p_{x})_{\Psi}^{2} - i\alpha \langle \Psi | [\hat{x}, \hat{p_{x}}] | \Psi \rangle,$$

where  $[\hat{x}, \hat{p_x}] = \hat{x}\hat{p_x} - \hat{p_x}\hat{x}$  is the commutator of  $\hat{x}$  and  $\hat{p_x}$ .

- **3.** Show that  $[\hat{x}, \hat{p_x}] = i\hbar$ . [Hint: apply the operator  $[\hat{x}, \hat{p_x}]$  to a trial wavefunction  $\varphi(\mathbf{r})$ ]
- **4.** Deduce from question **3.** that

$$N(\alpha) = \left(\Delta x\right)_{\Psi}^{2}\alpha^{2} + \hbar\alpha + \left(\Delta p_{x}\right)_{\Psi}^{2} = \left(\Delta x\right)_{\Psi}^{2} \left[\left(\alpha + \frac{\hbar}{2\left(\Delta x\right)_{\Psi}^{2}}\right)^{2} + \frac{1}{\left(\Delta x\right)_{\Psi}^{2}}\left(\left(\Delta p_{x}\right)_{\Psi}^{2} - \frac{\hbar^{2}}{4\left(\Delta x\right)_{\Psi}^{2}}\right)\right].$$

**5.** Explain why  $N(\alpha) \geq 0$  for any  $\alpha$  value. Conclude by considering the particular case  $\alpha = -\frac{\hbar}{2(\Delta x)_W^2}$ .

+ type et sinterprétation 
$$\hat{A} = \langle A \rangle_{\psi}$$
 est une notation simple pour

1. 
$$(41(\hat{A} - \langle A \rangle)^2 | 4) = ((\hat{A} - \langle A \rangle)^{\frac{1}{4}} | \hat{A} - \langle A \rangle)^{\frac{1}{4}} | \hat{A} - \langle A \rangle |$$

Formules whiles:

② 
$$\forall 14),19$$
  $\forall 14) = \langle 41\hat{A} + \hat{B} | 4 \rangle = \langle 41\hat{A} | 9 \rangle + \langle 41\hat{B} | 9 \rangle$   
=  $\langle \hat{A}^{\dagger} + 419 \rangle + \langle \hat{B}^{\dagger} + 419 \rangle$ 

$$= \langle (\hat{A}^{++}\hat{B}^{+}) + | \Psi \rangle$$

$$= \langle (\hat{A}^{++}\hat{B}^{+}) + | \Psi \rangle$$

soit 
$$(\hat{A} + \hat{B})^{\dagger} = \hat{A}^{\dagger} + \hat{B}^{\dagger}$$

sait 
$$(\alpha \hat{A})^{+} = \alpha^{+} \hat{A}^{+}$$

D'aprèle formule 
$$2$$

$$(\hat{A} - \langle A \rangle \hat{1})^{\dagger} = \hat{A}^{\dagger} + (-\langle A \rangle \hat{1})^{\dagger}$$

$$= \hat{A}^{\dagger} - \langle A \rangle^{*} \hat{1}^{\dagger} \leftarrow \text{formule } 3$$

$$\langle A \rangle^* = \langle 4 | \hat{A} | 4 \rangle^* = \langle \hat{A} | 4 | 4 \rangle$$
  
=  $\langle \hat{A} | + 1 | 4 \rangle$   
=  $\langle 4 | \hat{A} | + 2 \rangle$   
=  $\langle 4 | \hat{A} | + 2 \rangle$   
=  $\langle A \rangle_4$ 

donc 
$$(\hat{A} - \langle A \rangle_{\psi})^{\dagger} = \hat{A} - \langle A \rangle_{\psi}$$

$$(4)(\hat{A} - \langle A \rangle_{\psi})^{2}|\Psi\rangle = \langle \Psi | \hat{A}^{2}|\Psi\rangle - 2\langle A \rangle_{\psi} \langle \Psi | \hat{A} | \Psi\rangle$$

$$+ \langle A \rangle_{\psi}^{2} \langle \Psi | \Psi\rangle$$

$$= \langle A^{2} \rangle_{\psi} - 2\langle A \rangle_{\psi}^{2} + \langle A \rangle_{\psi}^{2}$$

donc 
$$\langle A^2 \rangle_{\Psi} - \langle A \rangle_{\Psi}^2 = \langle \Psi | (\hat{A} - \langle A \rangle_{\Psi})^2 | \Psi \rangle \gamma_0$$

L'écart type at donc bien défini.

$$\hat{A}^{2}|4_{a}\rangle = \hat{A}(\hat{A}|4_{a}\rangle) = \alpha \hat{A}|4_{a}\rangle = \alpha^{2}|4_{a}\rangle$$

$$\Rightarrow \langle 4_{a}|\hat{A}^{2}|4_{a}\rangle = \alpha^{2}\langle 4_{a}|4_{a}\rangle = \alpha^{2} = \langle A^{2}\rangle_{4_{a}}^{2} = \langle A^{2}\rangle_{4_{a}}^{2}$$

5. 
$$|4\rangle = \frac{1}{\sqrt{1+8^2}} (|4_a\rangle + 8|4_b\rangle)$$

soit (414) = 1.

• 
$$\hat{A}|\Psi\rangle = \frac{1}{\sqrt{1+52}} \left( \hat{A}|\Psi_a\rangle + \delta \hat{A}|\Psi_b\rangle \right)$$
  
=  $\frac{1}{\sqrt{1+52}} \left( a|\Psi_a\rangle + \delta \hat{b}|\Psi_b\rangle \right)$ 

$$= \frac{1}{1+8^{2}} \left[ a < 4_{a} | 4_{a} > + 8b < 4_{a} | 4_{b} > + 8b < 4_{a} | 4_{a} > + 8b$$

2/<sub>ET</sub>

 $donc \left( A \right) = \frac{a+b\delta^2}{1+\delta^2}$ 

$$\langle A \rangle_{\Psi}^{2} = \frac{a^{2} + 2ab8^{2} + b^{2}8^{4}}{(1+8^{2})^{2}}$$

$$\hat{A}^{2}|4\rangle = \hat{A}(\hat{A}|4\rangle)$$

$$= \frac{1}{\sqrt{1+5^{2}}} (a \hat{A}|4_{a}\rangle + 5b \hat{A}|4_{b}\rangle)$$

Soit 
$$\hat{A}^2|\Psi\rangle = \frac{1}{\sqrt{1+5^2}} \left( a^2 |\Psi_a\rangle + 8b^2 |\Psi_b\rangle \right)$$

$$\langle 4|\hat{A}^{2}|4\rangle = \frac{1}{(1+\delta^{2})} \langle 4a + \delta 4b | a^{2} 4a + \delta b^{2} 4b \rangle$$

$$\langle A^{2}\rangle_{4} = \frac{1}{(1+\delta^{2})} \left[ a^{2} + b^{2} \delta^{2} \right]$$

$$D^{\prime} \circ u (\Delta A)^{2} = \frac{1}{(1+S^{2})^{2}} \left[ \frac{(a^{2}+b^{2}\delta^{2})(1+\delta^{2})}{a^{2}+\delta^{2}a^{2}+b^{2}\delta^{2}} + b^{2}\delta^{2} + b^{2}\delta^{2} + b^{2}\delta^{2} \right]$$

Ainh.  

$$(\Delta A)_{4}^{2} = \frac{1}{(1+\delta^{2})^{2}} [\delta^{2}] (a^{2}+b^{2}-2ab) = \frac{\delta^{2}(a-b)^{2}}{(1+\delta^{2})^{2}}$$

$$\Rightarrow \left( \Delta A \right)_{+} = \frac{S \left[ a - b \right]}{\left( 1 + S^{2} \right)}$$

14) n'est état propre de que lorsque  $\delta=0$ ou  $\delta$ — too puisque  $a \neq b$ . Dans ces deux  $\delta$  that'ors, le resultat de la mesure de A st connu. Ce ona a  $(\delta=0)$  on  $b(\delta\to +00)$ . Pour  $0<\delta<+00$ , la probabilité de mesurer a st  $|(\delta=1)|^2=\frac{1}{1+\delta^2}$  et alle de mesurer b est  $|(\delta+1)|^2=\frac{\delta^2}{1+\delta^2}$ , et  $|(\delta$ 

1. Mesurer simultaniment x et px revient à dire que, joiste après la mesure, x et px sont connuy et donc qu'il n'ny a anune incertifiede sur leurs valeurs. Ainsi le système (ici la particule) serait dans un état quantique It) kl que (DX) y = 0 ET (Dpx) y = 0 Soit (Dx) y (Dpx) y = 0 + impossible d'après la relation d'incertifiede d'Heisenberg.

2. 
$$N(\lambda) = \langle +(\lambda)|+(\lambda) \rangle = \langle \hat{\Delta}(\lambda) + |\hat{\Delta}(\lambda) + \rangle$$

$$\hat{\Delta}(\lambda) = \hat{p}_{x} - \langle p_{x} \rangle_{\psi} + i \lambda \left( \hat{x} - \langle x \rangle_{\psi} \right)$$

Formule utile: À opérateur que lanque.

Ainsi 
$$H(x) = \langle \Psi | \hat{\Delta}(x) \hat{\Delta}(x) | \Psi \rangle$$

or  $\hat{\Delta}^{\dagger}(x) = \hat{p}_{x}^{\dagger} - \langle p_{x} \rangle_{\Psi} - i x^{*} (\hat{x}^{\dagger} - \langle x \rangle_{\Psi})$ 

$$\hat{p}_{x}$$

$$\hat{p}$$

doit  $\hat{\Delta}(x) = \hat{p}_x - \langle p_x \rangle_{\psi} - \lambda' x (\hat{x} - \langle x \rangle_{\psi})$ at  $\hat{\Delta}^{\dagger}(\alpha) \hat{\Delta}(\alpha) = (\hat{p}_2 - \langle p_2 \rangle_{\psi} - \lambda^{\dagger} \alpha (\hat{x} - \langle x \rangle_{\psi}))$ · (p2 - <px)4 +ix(2-(x)4)) = Px - < Px>4 Px + ix (Px 2 - < x>4 Px) -(Pz)4 Pz + < Pz)4 -14 (< Px) 2 - $\langle b^{x} \rangle^{h} \langle x \rangle^{h}$  $+ x^{2} \left( \hat{\chi}^{2} - 2(x)_{4} \hat{\chi} + (x)_{4}^{2} \right)$ -  $i \times (\hat{\chi} - (x)_{4}) (\hat{p}_{x} - (p_{x})_{4})$ N(x) = < P22 4 - < P2/4 + 1x <41 p2 2 147 -id (2)4 (P2)4 - xpx2 + xpx2 - in (px) + in (px) + (x) 4  $+ x^{2} \langle x^{2} \rangle_{\psi} - 2x^{2} \langle x \rangle_{\psi}^{2} + x^{2} \langle x \rangle_{\psi}^{2}$ - ix (41 x bx 14) + ix (bx) + (x) 4  $N(x) = (\Delta p_x)_{+}^{2} + x^{2}(\Delta x)_{+}^{2} + i \times (4 | \hat{p}_{x} \hat{x} - \hat{x} \hat{p}_{x}|4)$ 

$$N(x) = (\Delta x)_{\psi}^{2} x^{2} - i x \langle \psi | [\hat{x}, \hat{p_{x}}] | \psi \rangle + (\Delta p_{x})_{\psi}^{2}$$

$$N(x) = (\Delta x)_{\psi}^{2} \alpha^{2} + \lambda \pi + (\Delta p_{x})_{\psi}^{2}$$

$$= (\Delta x)_{\psi}^{2} \left[ \alpha^{2} + \frac{\pi}{(\Delta x)_{\psi}^{2}} + \frac{(\Delta p_{x})_{\psi}^{2}}{(\Delta x)_{\psi}^{2}} \right]$$

$$= (\Delta x)_{\psi}^{2} \left[ (\alpha + \frac{\pi}{2(\Delta x)_{\psi}^{2}})^{2} + \frac{(\Delta p_{x})_{\psi}^{2}}{(\Delta x)_{\psi}^{2}} - \frac{\hbar^{2}}{4(\Delta x)_{\psi}^{4}} \right]$$

$$N(x) = (\Delta x)_{\psi}^{2} \left[ \left( \alpha + \frac{\pi}{2 (\Delta x)_{\psi}^{2}} \right)^{2} + \frac{1}{(\Delta x)_{\psi}^{2}} \left[ (\Delta p_{x})_{\psi}^{2} - \frac{\pi^{2}}{4 (\Delta x)_{\psi}^{2}} \right] \right]$$

$$N(-\frac{\pi}{2(\Delta x)_{+}^{2}}) = (\Delta P_{x})_{+}^{2} - \frac{\pi^{2}}{4(\Delta x)_{+}^{2}}$$

puisque  $N(\alpha) = (4(\alpha) | 14(\alpha) )$ 

horme an ocere!

d'où 
$$(\Delta p_{x})_{\psi}^{2} / \frac{h^{2}}{4 (\Delta x)_{\psi}^{2}} \Rightarrow (\Delta p_{x})_{\psi}^{2} (\Delta x)_{\psi}^{2} / \frac{h^{2}}{\psi}$$