Tutorial: projection of the angular momentum operator along the *z* **axis**

Spherical coordinates (r, θ, φ) rather than cartesian coordinates (x, y, z) will be used in this exercise. In addition, we assume that the wavefunction describing a given particle depends only on the angle φ . Thus the inner product of two wavefunctions ψ and χ can be written as $\langle \psi | \chi \rangle =$ $\int_0^{2\pi}$ $\int\limits_{0}^{1}d\varphi\;\psi^{*}(\varphi)\chi(\varphi).$

1. Prove that the *z* component of the angular momentum operator $\hat{L_z} \equiv -i\hbar \frac{\partial}{\partial \varphi}$ is hermitian. [Hint: show that $\forall \psi, \chi, \quad \langle \psi | \hat{L_z} | \chi \rangle = \langle \chi | \hat{L_z} | \psi \rangle^*$

2. Prove that the eigenvalues of $\hat{L_z}$ are $m\hbar$, where $m \in \mathbb{Z}$, and that the corresponding normalized eigenfunctions are $\Phi_m(\varphi) = \frac{1}{\sqrt{2\pi}} e^{im\varphi}$.

3. Let us consider that at a given time t_0 the wavefunction describing the particle equals $\psi_0(\varphi)$ = $A\cos^2(\varphi)$ where $A \in \mathbb{R}$. Expand ψ_0 in the basis of the Φ_m functions. Rewrite this expansion with Dirac notations (that is $|\psi_0\rangle = ...$) and deduce the value of *A* for which $|\psi_0\rangle$ is normalized.

4. What values can be measured for the observable L_z at time t_0 ? What are the probabilities ?

5. What are the expectation values for L_z and L_z^2 at time t_0 ?

Example 3:

\n
$$
\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \rho_{\text{total}} \, d\mathbf{r}
$$
\n
$$
1. \quad \forall \psi, \chi \quad \langle \psi | \hat{f}_{\mathbf{z}} | \chi \rangle = \int_{0}^{2\pi} d\mathbf{r} \, d\mathbf{r} \langle \psi \rangle \, (d\mathbf{r}) = \int_{0}^{2\pi} d\mathbf{r} \, d\mathbf{r} \langle \psi \rangle \, (d\mathbf{r}) = \int_{0}^{2\pi} d\mathbf{r} \, d\mathbf{r} \langle \psi \rangle \, (d\mathbf{r})
$$
\n
$$
= -i \frac{\hbar}{6} \int_{0}^{2\pi} d\mathbf{r} \, d\mathbf{r} \langle \psi \rangle \, (d\mathbf{r})
$$
\n
$$
= -i \frac{\hbar}{6} \int_{0}^{2\pi} d\mathbf{r} \, d\mathbf{r} \langle \psi \rangle \, (d\mathbf{r})
$$
\n
$$
\int_{0}^{2\pi} d\mathbf{r} \, d\mathbf{r} \langle \psi \rangle \, (d\mathbf{r})
$$
\n
$$
\Rightarrow \int_{0}^{2\pi} (d\mathbf{r}) \, d\mathbf{r} \langle \psi \rangle \, (d\mathbf{r})
$$
\n
$$
\Rightarrow \int_{0}^{2\pi} (d\mathbf{r}) \, d\mathbf{r} \langle \psi \rangle \, (d\mathbf{r})
$$
\n
$$
\Rightarrow \int_{0}^{2\pi} (d\mathbf{r}) \, d\mathbf{r} \langle \psi \rangle \, (d\mathbf{r})
$$
\n
$$
\Rightarrow \int_{0}^{2\pi} (d\mathbf{r}) \, d\mathbf{r} \langle \psi \rangle \, (d\mathbf{r})
$$
\n
$$
\Rightarrow \int_{0}^{2\pi} (d\mathbf{r}) \, d\mathbf{r} \langle \psi \rangle \, (d\mathbf{r})
$$
\n
$$
\Rightarrow \int_{0}^{2\pi} (d\mathbf{r}) \, d\mathbf{r} \langle \psi \rangle \, (d\mathbf{r})
$$
\n
$$
\Rightarrow \int_{0}^{2\pi} (d\mathbf{r}) \, d\mathbf{r} \langle \psi \
$$

$$
\begin{array}{lll}\n\mathcal{L}(\varphi_{\mu\sigma}) &= \mathbb{E}(\varphi_{\mu\pi\sigma}) &= \mathbb{E}(\varphi_{\mu\pi\pi}) &
$$

Thus
$$
1\frac{1}{6} = \frac{1}{\sqrt{6}}
$$
 $(21\frac{1}{2} + 1\frac{1}{2}) + 1\frac{1}{2} - 2$)
\n 4π
\n0 can be named with probability $1 \langle \frac{1}{2} |4\rangle|^2 = \frac{4}{6} = \frac{2}{3}$
\n+2th
\n $1 \langle \frac{1}{2} |4\rangle|^2 = \frac{1}{6}$
\n $-\frac{2\pi}{6}$
\n $-\frac{2\pi}{6}$
\n $-\frac{2\pi}{6}$
\n $-\frac{2\pi}{6}$
\n $-\frac{2\pi}{6} \langle 4, 1 \rangle^2 = \frac{1}{6}$
\n $-\frac{1}{6} \langle 4, 1 \rangle^2 = \frac{1}{2} \langle 4, 1 \rangle^2 = \frac{1}{2}$

At time to the graphm state
$$
|H_{e}\rangle
$$

\n $Imh =$ which in the family $\{|u_{i}\rangle$
\n $|q_{0}\rangle = \sum_{i} C_{i} |u_{i}\rangle$ where $\hat{A} |u_{i}\rangle = a_{i} |u_{i}\rangle$ and
\n $\langle\psi_{j}|\psi_{j}\rangle = 1$. The expectation value of \hat{A} for the state $|\psi_{j}\rangle$
\n $sinh \sim \frac{1}{4} \pi e^{i\phi} \frac{1}{2} \pi i \frac$

$$
\frac{12}{5}(46) = \frac{1}{5}(24\frac{1}{2}1\frac{1}{2} + \frac{12}{21}\frac{1}{2} + \frac{12}{21}\frac{1}{2})
$$

\n
$$
= \frac{4\pi^2}{5}(122) + 122)
$$

\n
$$
= \frac{4\pi^2}{5}(122) + 122)
$$

\n
$$
\frac{1}{5}(122) + 122
$$

\

$$
(\Delta L_{2})_{4_{5}}^{2} = \frac{4}{3}t^{2} \Rightarrow (\Delta L_{2})_{4_{5}} = \frac{2\pi}{\sqrt{3}}
$$

$$
= \langle \hat{L}_{2}^{2} \rangle_{4_{5}} - \langle \hat{L}_{2}^{2} \rangle_{4_{5}}
$$

 Λ

 $416x3$