Study of a two-state system : the ammonia molecule

We first consider the ammonia molecule in the absence of any external perturbation. The nitrogen atom can be above or below the plane *P* defined by the 3 hydrogen atoms. This defines 2 possible states of the molecule. We will denote by $|+\rangle$ the state where the nitrogen atom points towards the +z direction with respect to the plane *P* and by $|-\rangle$ the state where the nitrogen atom points towards the -*z* direction. The ammonia molecule always switches from the state $|+\rangle$ to the state $|-\rangle$.

1) Represent the molecule in the 2 states $|+\rangle$ and $|-\rangle$.

In the following we will assume the these two states form an orthonormal basis set of the accessible states of the molecule.

If $|\Psi(t)\rangle$ is the state of the system at time *t*, then the evolution of $|\Psi(t)\rangle$ with *t* is given by the time-dependent Schrödinger equation:

$$i\hbar \frac{d|\Psi(t)\rangle}{dt} = \dot{H}|\Psi(t)\rangle,$$

where H is the hamiltonian of the system.

2) Are the states $|+\rangle$ and $|-\rangle$ eigenstates of the system ? (justify your answer).

3) At time *t* the system is in the state $|\Psi(t)\rangle = C_{+}(t)|+\rangle + C_{-}(t)|-\rangle$ where $C_{+}(t)$ and $C_{-}(t)$ are two complex numbers that depend on time. What is their physical meaning ?

4) The matrix representation of the hamiltonian in the basis of the states $|+\rangle$ and $|-\rangle$ can be written as follows:

$$\begin{bmatrix} \hat{H} \\ H \end{bmatrix} = \begin{pmatrix} H_{++} & H_{+-} \\ H_{-+} & H_{--} \end{pmatrix}.$$

Show that H_{++} and H_{--} are real numbers and that $H_{+-}^{*} = H_{-+}$. Prove that the time-dependent Schrödinger equation is equivalent to:

$$\begin{cases} i\hbar \frac{dC_{+}}{dt} = H_{++}C_{+} + H_{+-}C_{-} \\ i\hbar \frac{dC_{-}}{dt} = H_{-+}C_{+} + H_{--}C_{-} \end{cases}$$

5) If $|+\rangle$ and $|-\rangle$ are not eigenstates of the system, what are the consequences on the coefficients H_{+-} and H_{-+} ? Prove that if the molecule can switch from the state $|+\rangle$ to the state $|-\rangle$, then switching from $|-\rangle$ to $|+\rangle$ is also possible.

6) For symmetry reasons $H_{++} = H_{--} = E_0$. In addition, the coupling term H_{+-} is assumed to be real and is denoted -A (A > 0). What are the normalized eigenvectors $|1\rangle$ and $|2\rangle$ of the hamiltonian ? What are the corresponding energies E_1 and E_2 ? The state $|2\rangle$ is chosen to be the ground state of the molecule, that is the state associated to the lowest energy E_2 .

7) If, at time t=0 the molecule is in the state $|+\rangle$, what is the probability that it is found in the state $|-\rangle$ at time *t* ? **Hint:** solve the time-dependent Schrödinger equation in the basis of the states $|1\rangle$ and $|2\rangle$ ($|\Psi(t)\rangle = C_1(t)|1\rangle + C_2(t)|2\rangle$).

8) We now perturb the system with a static electric field $\vec{E} = E \vec{e_z}$ (E > 0). The molecule has a permanent dipole moment $\vec{\mu}$. Its interaction energy with the electric field equals (in classical mechanics):

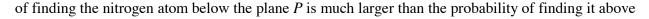
$$W = -\vec{\mu}.\vec{E} = -\mu_z E.$$

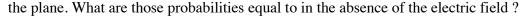
When the nitrogen atom is below the plane *P*, $\mu_z = \mu (\mu > 0)$.

Explain why, in quantum mechanics, $\hat{W}|-\rangle = -\mu E|-\rangle$ and $\hat{W}|+\rangle = \mu E|+\rangle$. Give the matrix representation of the hamiltonian in the presence of the electric field. What are the possible energies for the molecule ? We denote E_2 ' the ground state energy and $|2'\rangle$ its associated eigenvector.

9) For analysis purposes, we will assume that the geometry of the molecule is not affected by the electric field, which means that the coupling term -A can be considered as a constant. Show that,

when the electric field is strong $(\frac{A}{\mu E} \ll 1)$ and the molecule is in the ground state $|2'\rangle$, the probability





He take that
$$(t,h)_{ij} = t + t_{ij}$$
 is the later form $t = t_{ij}$ if $(h_{ij})_{ij} = t + t_{ij}$ if $(h_{ij})_{ij} = t +$

$$\begin{pmatrix} H_{++} = H_{--} = E_{\sigma} \\ H_{+-} = -A \in \mathbb{R} \rightarrow H_{-+} = H_{+-}^{A} = -A \\ TL_{L} \quad \left[\hat{H}\right] = \begin{pmatrix} E_{\sigma} & -A \\ -A & E_{\sigma} \end{pmatrix}$$

$$Eigenalus \in rf H_{+} \ low(hring fulfill) \ dt \left([\hat{H}] - E_{+}^{A} \right) = 0 \\ Figure lus \in rf H_{+} \ low(hring fulfill) \ dt \left([\hat{H}] - E_{+}^{A} \right) = 0 \\ H_{+-} = -A = -A = -A \\ Figure lus \in rf H_{+} \ low(hring fulfill) \ dt \left([\hat{H}] - E_{+}^{A} \right) = 0 \\ Figure lus \in rf H_{+} \ low(hring fulfill) \ dt \left([\hat{H}] - E_{+}^{A} \right) = 0 \\ Figure lus \in rf H_{+} \ low(hring fulfill) \ dt \left([\hat{H}] - E_{+}^{A} \right) = 0 \\ Figure lus = rf + Low(hring fulfill) \ dt \left([\hat{H}] - E_{+}^{A} \right) = 0 \\ Figure lus = rf + Low(hring fulfill) \ dt \left([\hat{H}] - E_{+}^{A} \right) = 0 \\ Figure lus = rf + Low(hring fulfill) \ dt \left([\hat{H}] - E_{+}^{A} \right) = 0 \\ Figure lus = rf + Low(hring fulfill) \ dt \left([\hat{H}] - E_{+}^{A} \right) = 0 \\ Figure lus = rf + Low(hring fulfill) \ dt \left([\hat{H}] - E_{+}^{A} \right) = 0 \\ Figure lus = rf + Low(hring fulfill) \ dt \left([\hat{H}] - E_{+}^{A} \right) = 0 \\ Figure lus = rf + Low(hring fulfill) \ dt \left([\hat{H}] - E_{+}^{A} \right) = 0 \\ Figure lus = rf + Low(hring fulfill) \ dt \left([\hat{H}] - E_{+}^{A} \right) = 0 \\ Figure lus = rf + Low(hring fulfill) \ dt \left([\hat{H}] - E_{+}^{A} \right) = 0 \\ Figure lus = rf + Figure lus = 0 \\$$

$$\begin{aligned} & G_{-} \quad \text{We also Hertine dipole & Schoolings equation with basis} \\ & r_{f} \text{ He eigenvectors } \notf \hat{H} (12) \text{ and } 12) \end{aligned}$$

$$& \forall t \quad |4(t)) = C_{1}(t) |1\rangle + C_{2}(t) |2\rangle \\ & |4(0)\rangle = |+\rangle = \frac{1}{\sqrt{2}} (12) + |2\rangle) \\ & \Rightarrow \quad C_{1}(0) = \frac{1}{\sqrt{2}} \text{ and } C_{2}(0) = \frac{1}{\sqrt{2}} \\ & & \hat{H} |4(t)\rangle = x \text{th } \frac{1}{\sqrt{2}} |1\rangle \\ & & \frac{1}{\sqrt{2}} \quad C_{1}(t) \hat{H} h_{1}^{*} \rangle = x \text{th } \frac{1}{\sqrt{2}} \hat{C}_{1}^{*} |1\rangle \\ & & = \frac{1}{\sqrt{2}} \quad C_{1}(t) \hat{H} h_{1}^{*} \rangle = x \text{th } \frac{1}{\sqrt{2}} \hat{C}_{1}^{*} |1\rangle \\ & & = \frac{1}{\sqrt{2}} \quad C_{1}(t) \hat{H} h_{1}^{*} \rangle = x \text{th } \frac{1}{\sqrt{2}} \hat{C}_{1}^{*} |1\rangle \\ & & = \frac{1}{\sqrt{2}} \quad C_{1}(t) \hat{E}_{1}^{*} = x \text{th } \hat{C}_{1}^{*} \\ & & = \frac{C_{1}(t)}{\sqrt{2}} \hat{E}_{1}^{*} |1\rangle \\ & = \frac{C_{1}(t)}{\sqrt{2}} \hat{E}_{1}^{*} |1\rangle \\ & = \frac{C_{1}(t)}{\sqrt{2}} \hat{E}_{1}^{*} \hat{E}_{1}^{*} \\ & = \frac{C_{1}(t)}{\sqrt{2}} \\ & = \frac{C_{1}(t)}{\sqrt{2}} \hat{E}_{1}^{*} \\ & = \frac{C_{1}(t)}{\sqrt{2}} \\ & = \frac{C_{1}(t)}{\sqrt{2}} \\ & = \frac{C_{1}(t$$

$$\frac{G_{1-k-1}}{(4|t|)^{1+1}} = \frac{\sum_{j=1}^{2} C_{j}(t) (4|t|)(j)}{\int_{j=1}^{2} (C_{j}(t))^{2}} = \frac{C_{j}(t)}{\int_{j=1}^{2} (C_{j}(t))^{2}} = \frac{C_{j}(t)}{\int_{j=1$$

.

41

$$\begin{split} & S_{-}(t) = \frac{1}{2} \left(1 - \cos \omega_{21} t \right) & \omega_{21} = \frac{E_{2} - E_{1}}{t_{1}} \\ & S_{-}(t) = \frac{1}{2} \left(\frac{1 - \cos \omega_{21} t}{t_{2}} \right) & T_{acber} k_{a} \text{ and } k_{a} \text{ if } t_{a} \text{ odd} k_{a} \text{$$

$$\begin{array}{c} \underbrace{\operatorname{ch}}_{k} \operatorname{ch}_{k} \operatorname{ch}_$$