
M1 franco-allemand "Ingénierie des polymères" & M1 "Matériaux et nanosciences"

Exam in quantum mechanics

December 2015

duration of the exam session: 2h

Neither documents nor calculators are allowed.

The grading scale might be changed.

1. Questions about the lectures (9 points)

Give detailed answers to the following questions:

a) [2 pts] How is the time-independent Schrödinger equation related to the time-dependent one ?

b) [2 pts] Can we talk about determinism in quantum mechanics ?

c) [2 pts] Explain briefly what time-independent perturbation theory is and what it is useful for ?

d) [1 pt] What do Hückel and Hartree–Fock methods have in common ?

e) [2 pts] What is the electron correlation energy ?

2. Problem: density matrices and mean-field approximation for two particles (13 points)

Let us consider two identical but distinguishable particles that can occupy one-particle states

{|ÏiÍ}i=1,2,...,N . The latter states will simply be referred to as orbitals in the following. The space of

quantum states for the two particles consists of the N2 two-particle states {|Ïi, ÏjÍ}i=1,2,...,N ;j=1,2,...,N in

which the first particle occupies the orbital Ïi while the second particle occupies the orbital Ïj . Note that, in

our model, the two particles can occupy the same orbital. For simplicity, we will use real algebra as well

as the notation |i, jÍ = |Ïi, ÏjÍ. Moreover, the basis of two-particle states is considered to be orthonormal:

Èp, l|i, jÍ = ”pi”lj . (1)
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a) [1 pt] Let |�Í =
Nÿ

i,j=1
Cij |i, jÍ be an arbitrary two-particle state. Show that, according to Eq. (1),

Cpl = Èp, l|�Í. Deduce the resolution of the identity:
Nÿ

i,j=1
|i, jÍÈi, j| = 1̂.

b) [3 pts] Let us first consider that the two particles do not interact. The total Hamiltonian can be written

as ĥ = ĥ1+ĥ2 where ĥ1 and ĥ2 are the Hamiltonians of the first and second particles, respectively. Explain

briefly why they act as follows on the two-particle states: ĥ1|i, jÍ =
Nÿ

k=1
hki|k, jÍ and ĥ2|i, jÍ =

Nÿ

k=1
hkj |i, kÍ.

Show that Èp, l|ĥ1|i, jÍ = hpi”lj and Èp, l|ĥ2|i, jÍ = hlj”ip. Conclude from question 2. a) that

ĥ = 1̂ĥ1̂ =
Nÿ

p,i=1
hpin̂pi, (2)

where the one-particle density matrix operator equals n̂pi =
Nÿ

j=1

A

|p, jÍÈi, j| + |j, pÍÈj, i|
B

.

c) [2 pts] Let us assume that the two particles are in the normalized quantum state |�Í. Explain without

calculations why 0 Æ È�|n̂ii|�Í Æ 2. What is the physical meaning of È�|n̂ii|�Í ?

d) [2 pts] Let us consider the more realistic situation where the two particles interact. The total Hamiltonian

equals Ĥ = ĥ + Û12 where Û12 =
Nÿ

i,j,k,l=1
Uijkl n̂ijkl is the operator that describes the interaction between

the particles. The two-particle density matrix operator is defined as n̂ijkl = |i, jÍÈk, l|. We denote

|�0Í the exact normalized ground state of Ĥ associated with the ground-state energy E0. Show that

E0 = È�0|Ĥ|�0Í and conclude that, in order to calculate E0, both one-particle npi = È�0|n̂pi|�0Í and

two-particle nijkl = È�0|n̂ijkl|�0Í density matrices are needed.

e) [1 pt] Show that the one-particle density matrix can be deduced from the two-particle one. Hint: use

question 2. b) to simplify the sum
Nÿ

j=1

1
npjij + njpji

2
and conclude.

f) [2 pts] Within the so-called mean-field (MF) approximation, it is assumed that the ground state can

be written as |�MFÍ =
Nÿ

i,j=1
CiCj |i, jÍ where

Nÿ

j=1
C2

j = 1. Show that the mean-field two-particle density

matrix nMF
ijkl = È�MF|n̂ijkl|�MFÍ can be deduced from the one-particle one nMF

pi = È�MF|n̂pi|�MFÍ.

Hint: Show that Èk, l|�MFÍ = CkCl, È�MF|i, jÍ = CiCj , nMF
pi = 2CpCi and conclude.

g) [2 pts] Express the mean-field energy È�MF|Ĥ|�MFÍ in terms of the one-particle density matrix elements

nMF
pi , the one- and two-particle Hamiltonian matrix elements hpi and Uijkl. How can we obtain the

coe�cients {Ci}i=1,2,...,N that give the "best" mean-field approximation to the exact ground state |�0Í ?
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