M1 franco-allemand "Ingénierie des polymeres" & M1 "Matériaux et nanosciences'

Exam in quantum mechanics

December 2015

duration of the exam session: 2h

Neither documents nor calculators are allowed.

The grading scale might be changed.

1. Questions about the lectures (9 points)

Give detailed answers to the following questions:
a) [2 pts] How is the time-independent Schrédinger equation related to the time-dependent one 7
b) [2 pts] Can we talk about determinism in quantum mechanics ?
c) [2 pts] Explain briefly what time-independent perturbation theory is and what it is useful for ?
d) [1 pt] What do Hiickel and Hartree-Fock methods have in common ?

e) [2 pts] What is the electron correlation energy ?

2. Problem: density matrices and mean-field approximation for two particles (13 points)

Let us consider two identical but distinguishable particles that can occupy one-particle states
{lgi) ti=1,2,..n. The latter states will simply be referred to as orbitals in the following. The space of
quantum states for the two particles consists of the N? two-particle states {leis05) tiz1,2,... Nyj=1,2,..N in
which the first particle occupies the orbital ¢; while the second particle occupies the orbital ¢;. Note that, in
our model, the two particles can occupy the same orbital. For simplicity, we will use real algebra as well

as the notation |4, j) = |p;, ¢;). Moreover, the basis of two-particle states is considered to be orthonormal:



a)

N
[1 pt] Let |¥) = Z Cijli, j) be an arbitrary two-particle state. Show that, according to Eq. (1),

ij=1
N A
Cpi = (p,1|¥). Deduce the resolution of the identity: Z li, 7)(i, 5| = 1.
ij=1

[3 pts] Let us first consider that the two particles do not interact. The total Hamiltonian can be written

ash = le —i—ﬁg where ill and ng are the Hamiltonians of the first and second particles, respectively. Explain
N N

briefly why they act as follows on the two-particle states: ﬁ1|z’, Jj)y = Z hiilk, j) and Bg]i,j> = Z hijli, k).
k=1
Show that (p,1|h1]i,j) = hpidy; and (p, I|hali, j) = hy;j0ip. Conclude from question 2. a) that

N
=1nl = Z Popifipi, (2)

N
where the one-particle density matrix operator equals fi,; = Z <|p, N, 3+ 14, ) (s z\)
=1

[2 pts] Let us assume that the two particles are in the normalized quantum state |¥). Explain without

calculations why 0 < (U|n,;|¥) < 2. What is the physical meaning of (¥|f;|¥) ?

[2 pts] Let us consider the more realistic situation where the two particles interact. The total Hamiltonian

N
equals H=h+ (712 where Ulg = Z Uijki Mijr is the operator that describes the interaction between
i,3,kl=1
the particles. The two-particle density matrix operator is defined as 7, = |i,7)(k,l]. We denote

|¥o) the exact normalized ground state of H associated with the ground-state energy FEjy. Show that
Eo = (Ug|H|¥) and conclude that, in order to calculate Fp, both one-particle n,; = (Uo|f,i|¥o) and

two-particle nijr = (Yo || ¥o) density matrices are needed.

[1 pt] Show that the one-particle density matrix can be deduced from the two-particle one. Hint: use

N
question 2. b) to simplify the sum Z (npjij + njpji> and conclude.
j=1

[2 pts] Within the so-called mean-field (MF) approximation, it is assumed that the ground state can
N

N
be written as [®MF) = > CiCjli, j) where Y C’]2 = 1. Show that the mean-field two-particle density
ij=1 j=1
matrix n%{g (®MF| 751 |@ME) can be deduced from the one-particle one n%F (®ME |7, | OMEY).

Hint: Show that (k,l|®M) = C,.Cy, (@MF|i, j) = C;C;, nMF = 2C,C; and conclude.

[2 pts] Express the mean-field energy (®MF|H|®MF) in terms of the one-particle density matrix elements

n%F, the one- and two-particle Hamiltonian matrix elements hy; and U;j,. How can we obtain the

coefficients {C;}i=1 2

yLyerey

~ that give the "best" mean-field approximation to the exact ground state |¥g) ?
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