M1 franco-allemand "Ingénierie des polymeres" & M1 "Matériaux et nanosciences"

Exam in quantum mechanics

December 2017

duration of the exam session: 2h

Neither documents nor calculators are allowed.

The grading scale might be changed.

1. Questions about the lectures (6 points)

a) [3 pts| Let H denote the Hamiltonian operator of the hydrogen atom and O, (z,y,2) = e~ a trial

wavefunction where r = /22 + y2+ 22 and o > 0 . Give the explicit expression for H. Let E(a) =

D, |H|D
M Is there any value of a such that F(a) equals the exact ground-state energy FEy of the

(Pa|Pa)
hydrogen atom ? Justify your answer. If not, how can we find the value of o such that E(«) is as close

as possible to Ey 7

b) [3 pts] What is the purpose of both Hartree-Fock and Hiickel methods ? What is the main advantage

of the former over the latter 7 Is the Hartree-Fock approach in principle exact 7 Justify your answers.

2. Problem I: the Heisenberg inequality and the harmonic oscillator (12 points)

According to the Heisenberg inequality, the standard deviations Az = \/ (U|22|¥) — (¥|2|P)? and

Ap, = \/<\I/]ﬁ%|\11) — (¥|p,|¥)? for the position  and momentum p, of a particle described by a quan-

tum state |¥) are such that

Ax Apy > h/2. (1)

In this exercise, we consider a particle with mass m attached to a spring of constant k moving along the x

axis. The corresponding (so-called one-dimensional harmonic oscillator) Hamiltonian reads

-2
A 1
H= % + imwQQAcQ, (2)

|k
where w = {/—. It can be shown that, by introducing the so-called annihilation operator a defined as
m



follows,

1 mw i
a=—— —2Z+ ——pP. |, where i2 = —1, 3
V2 ( h \/mhwpx) ®)

and its adjoint & (referred to as creation operator), the Hamiltonian in Eq. (2) can be rewritten as
N ~ 1
where N = afa is the so-called counting operator. By using the commutation rule
la,a1] = aat - afa =1, (5)

it can finally be shown that the eigenvalues n of the counting operator are integers (n = 0,1,2,...) and that

the associated orthonormalized eigenvectors {\\I'n>} are connected by the relation
n=0,1,2,...

A Wn) = vV + 1| W), (6)

a) [2 pts] Show that

&= Q:M(a“ra) and P, = iy]

Conclude from Eq. (6) that (V,,|Z|Vy,) =0 = (Vp|pz|Vn).

b) [1 pt] Explain why, according to Eq. (4), the energies of the one-dimensional harmonic oscillator are

1
E, = hw (n + 2) and the corresponding eigenstates are |¥,,) with n =0,1,2,...

¢) [1 pt] Deduce from question 2. b) and Eq. (2) that, for a given eigenstate |¥,,), the expectation value of

p2 is obtained from the one of #2 as follows,

(Unlp2| W) = mhw(2n + 1) = m*w? (U, |2 Py,). (8)

d) [0.5 pt] In order to determine the expectation value of 22 for |¥,), we propose to introduce a real

variable A and the A-dependent Hamiltonian

N b2 A
H(\) = ;’72 + Smw?i? (9)

Its normalized eigenvectors and associated eigenvalues are denoted |V, (\)) and E,()), respectively.

What is the connection between H (M) and the problem we are interested in ?



e) [2.5 pts] Explain why E,(\) = <\Pn()\))1{[()\)’\1/n()\)> Prove the Hellmann—Feynman theorem,

dE,(\) OH(N)
5 _<wn(A)‘ o\ ‘\Iln()\)>, (10)

2 dB,()

and conclude that <\Ijn()‘)|'f2"ll"()\)> - mw?  d)\

1
f) [1 pt] Explain why, according to Eqs. (2) and (9), E,(\) = vV w (n—i— 2). Hint: introduce the A-
dependent frequency w(\) = wv/A, rewrite H(\) in terms of w()\) and compare the expression with the

one in Eq. (2). Conclude from question 2. b).

1
g) [1 pt] Conclude from questions 2. d), e), and f) that (¥, |2%|¥,) = N (n + 2).
mw

1
h) [1 pt] Deduce from questions 2. ¢) and g) that (¥, |p2|¥,,) = mhw (n + 2).

i) [2 pts] Verify from questions 2. a), g) and h) that the solutions to the Schrédinger equation for the one-
dimensional harmonic oscillator fulfill the Heisenberg inequality in Eq. (1). What is remarkable about

the ground state |Wq) 7

3. Problem II: one-dimensional harmonic oscillator in the presence of a uniform and static

electric field (4 points)

Let us consider a particle with charge ¢ and mass m that is attached to a spring of constant k& and
that moves along the = axis. In the presence of a uniform and static electric field of intensity &, the total
Hamiltonian operator varies with &€ as follows, H €)= H — ¢€#, where the operators H and # are defined
in Eqgs. (4) and (7), respectively.

¢
wV2mhw’

a) [2 pts] Let us introduce the &-dependent creation and annihilation operators, af(£) = af —

&
d . Show that {d(é’), &T(E)} = 1 and that the £-dependent Hamiltonian can be

wV 2mhw
1 q*E?

i 7(6) = o (@t (€)a() + 1) —
rewritten as H(&) = hw (a (&)a(€) + 2) 52"

and a(€) =a—

b) [1 pt] Conclude from the introduction of Problem I that the exact energies of the one-dimensional

1 g2

harmonic oscillator in the presence of the electric field are E,(£) = hw <n + 2) — % Hint: let
mw

|¥,,(€)) be an eigenvector of N(£) = al(€)a(£). Explain why, according to question 3. a), the associated

eigenvalue is an integer n and conclude.

c¢) [1 pt] Explain briefly why, for this particular system, perturbation theory through second order is ezact
for the energy.
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