M1 "Sciences et Génies des Matériaux" & M1 franco-allemand "Polymères"

Exam in Quantum Mechanics

January 2020

two-hour exam

Neither documents nor calculators are allowed.

1. Questions on the lecture material (5 points)

- a) [2 pts] Let us consider the two-electron Hartree product $\Phi(\mathbf{r}_1, \mathbf{r}_2) = \varphi(\mathbf{r}_1)\varphi(\mathbf{r}_2)$, where φ is an orbital, \mathbf{r}_1 and \mathbf{r}_2 are the space coordinates of the first and second electron, respectively. Does $\Phi(\mathbf{r}_1, \mathbf{r}_2)$ describe the ground state of two non-interacting electrons exactly ? Explain briefly how the orbital φ is determined in this case.
- b) [3 pts] The Hartree–Fock method relies on a Hartree product (when applied to two interacting electrons).
 Does it mean that it neglects the two-electron repulsion ? Does it provide an exact description of the electronic structure ? Define the concept of electron correlation and explain (briefly) how the correlation energy can be calculated in practice.

2. Problem: imaginary-time-dependent Schrödinger equation (16 points)

We consider in this exercise any quantum system with time-independent and hermitian Hamiltonian H.

- a) [2 pts] Verify that the solution to the conventional time-dependent Schrödinger equation can be written as |Ψ(t)⟩ = e^{-iĤt/ħ} |Ψ(0)⟩ where |Ψ(0)⟩ ≡ |Ψ(t = 0)⟩ is the quantum state of the system at time t = 0. Hint: the operator e^{-iĤt/ħ} can be differentiated with respect to t as if Ĥ was just a number.
- b) [1 pt] We will now proceed with a transformation, which is a priori unphysical, where (real) time t is replaced by a pure imaginary time: $|\Psi(t \to -i\tau)\rangle = |\tilde{\chi}(\tau)\rangle = e^{-\hat{H}\tau/\hbar} |\Psi(0)\rangle$, where $\tau > 0$ and $i^2 = -1$. Show that $\frac{d|\tilde{\chi}(\tau)\rangle}{d\tau} = -\frac{1}{\hbar}\hat{H}|\tilde{\chi}(\tau)\rangle$.
- c) [2 pts] We consider the initial normalized state decomposition $|\Psi(0)\rangle = \sum_{I\geq 0} C_I |\Psi_I\rangle$ in the orthonormal basis $\{\Psi_I\}_{I\geq 0}$ of eigenvectors of \hat{H} , i.e. $\hat{H} |\Psi_I\rangle = E_I |\Psi_I\rangle$. Show that $|\tilde{\chi}(\tau)\rangle = \sum_{I\geq 0} C_I e^{-E_I\tau/\hbar} |\Psi_I\rangle$ and $\langle \tilde{\chi}(\tau)|\tilde{\chi}(\tau)\rangle = \sum_{I\geq 0} |C_I|^2 e^{-2E_I\tau/\hbar}$. Hint: use the Taylor-expanded expressions $e^{-\hat{H}\tau/\hbar} = \sum_{n=0}^{+\infty} \frac{(-\tau)^n}{\hbar^n n!} \hat{H}^n$ and $e^{\xi} = \sum_{n=0}^{+\infty} \frac{\xi^n}{n!}$ where ξ is any number.

- d) [1 pt] Conclude from question 2. c) that, unlike $|\Psi(t)\rangle$, the quantum state $|\tilde{\chi}(\tau)\rangle$ does not remain normalized as the so-called *imaginary time* τ evolves.
- e) [2 pts] Let $E(\tau) = \langle \chi(\tau) | \hat{H} | \chi(\tau) \rangle$ be the imaginary-time-dependent *energy* where

$$|\chi(\tau)\rangle = \frac{|\tilde{\chi}(\tau)\rangle}{\sqrt{\langle \tilde{\chi}(\tau) |\tilde{\chi}(\tau)\rangle}}.$$
(1)

Show that $|\chi(\tau)\rangle$ is normalized and that

$$E(\tau) = \frac{\sum_{I \ge 0} |C_I|^2 E_I e^{-2E_I \tau/\hbar}}{\sum_{I \ge 0} |C_I|^2 e^{-2E_I \tau/\hbar}} = \frac{|C_0|^2 E_0 + \sum_{I \ge 0} |C_I|^2 E_I e^{-2(E_I - E_0)\tau/\hbar}}{|C_0|^2 + \sum_{I \ge 0} |C_I|^2 e^{-2(E_I - E_0)\tau/\hbar}}.$$
(2)

- f) [1 pt] We assume in the following that $C_0 \neq 0$ and that the ground-state energy E_0 is not degenerate. Show that the latter is recovered at infinite imaginary time, whatever the values of the excited-state coefficients $\{C_I\}_{I>0}$ are, i.e. $E_0 = \lim_{\tau \to +\infty} E(\tau)$.
- g) [1 pt] We now assume that, at the initial time $\tau = 0$, the coefficients are all equal, i.e. $C_I = C$ for $I \ge 0$. Show that, in this case, the energy at finite imaginary time τ is formally identical to the average energy $\sum_{I\ge 0} E_I e^{-\beta E_I} / \sum_{I\ge 0} e^{-\beta E_I}$ of a canonical ensemble at temperature $T = \frac{1}{k_B\beta}$ where k_B is Boltzmann's constant. How is the (fictitious) temperature T connected to the imaginary time τ ?
- h) [3 pts] Show that, according to question 2. b) and Eq. (1), the normalized quantum state $|\chi(\tau)\rangle$ fulfills the following imaginary-time-dependent Schrödinger equation:

$$-\hbar \frac{d |\chi(\tau)\rangle}{d\tau} = \left(\hat{H} - E(\tau)\right) |\chi(\tau)\rangle.$$
(3)

 $\begin{array}{l} \textbf{Hint: prove that } \frac{d}{d\tau} \left(\frac{1}{\sqrt{\langle \tilde{\chi}(\tau) | \tilde{\chi}(\tau) \rangle}} \right) = \frac{\langle \tilde{\chi}(\tau) | \, \hat{H} \, | \tilde{\chi}(\tau) \rangle}{\hbar \, \langle \tilde{\chi}(\tau) | \tilde{\chi}(\tau) \rangle^{3/2}} = \frac{E(\tau)}{\hbar \sqrt{\langle \tilde{\chi}(\tau) | \tilde{\chi}(\tau) \rangle}}. \ \text{Then, show that } \frac{d \, | \chi(\tau) \rangle}{d\tau} = -\frac{1}{\hbar} \hat{H} \, | \chi(\tau) \rangle + \frac{E(\tau)}{\hbar} \, | \chi(\tau) \rangle \ \text{and conclude.} \end{array}$

i) [3 pts] Let \hat{A} be any time-independent operator. Deduce from Eq. (3) the Ehrenfest theorem in imaginary times:

$$\frac{d\langle\chi(\tau)|\hat{A}|\chi(\tau)\rangle}{d\tau} = -\frac{1}{\hbar}\langle\chi(\tau)|\left(\hat{H}\hat{A} + \hat{A}\hat{H}\right)|\chi(\tau)\rangle + \frac{2E(\tau)}{\hbar}\langle\chi(\tau)|\hat{A}|\chi(\tau)\rangle.$$
(4)

Show, by considering the particular case $\hat{A} = \hat{H}$, that $\frac{dE(\tau)}{d\tau} = -\frac{2}{\hbar} (\Delta H)^2_{\chi(\tau)}$, where the standard deviation for the energy and any quantum state $|\Psi\rangle$ reads $(\Delta H)_{\Psi} = \sqrt{\langle \Psi | \hat{H}^2 | \Psi \rangle - \langle \Psi | \hat{H} | \Psi \rangle^2}$. Comment on this result.