M1 "Sciences et Génies des Matériaux" & M1 franco-allemand "Polymères"

Exam in Quantum Mechanics

January 2020

two-hour exam

Neither documents nor calculators are allowed.

1. Questions on the lecture material (5 points)

- a) **[2 pts]** Let us consider the two-electron Hartree product $\Phi(\mathbf{r}_1, \mathbf{r}_2) = \varphi(\mathbf{r}_1)\varphi(\mathbf{r}_2)$, where φ is an orbital, \mathbf{r}_1 and **r**₂ are the space coordinates of the first and second electron, respectively. Does $\Phi(\mathbf{r}_1, \mathbf{r}_2)$ describe the ground state of two non-interacting electrons exactly ? Explain briefly how the orbital φ is determined in this case.
- b) **[3 pts]** The Hartree–Fock method relies on a Hartree product (when applied to two interacting electrons). Does it mean that it neglects the two-electron repulsion ? Does it provide an exact description of the electronic structure ? Define the concept of electron correlation and explain (briefly) how the correlation energy can be calculated in practice.

2. Problem: imaginary-time-dependent Schrödinger equation (16 points)

We consider in this exercise any quantum system with time-independent and *hermitian* Hamiltonian \hat{H} .

- a) **[2 pts]** Verify that the solution to the conventional time-dependent Schrödinger equation can be written as $|\Psi(t)\rangle = e^{-i\hat{H}t/\hbar} |\Psi(0)\rangle$ where $|\Psi(0)\rangle \equiv |\Psi(t=0)\rangle$ is the quantum state of the system at time $t=0$. **Hint**: the operator $e^{-i\hat{H}t/\hbar}$ can be differentiated with respect to *t* as if \hat{H} was just a number.
- b) **[1 pt]** We will now proceed with a transformation, which is *a priori* unphysical, where (real) time *t* is replaced by a *pure imaginary time*: $|\Psi(t \to -i\tau)\rangle = |\tilde{\chi}(\tau)\rangle = e^{-\hat{H}\tau/\hbar} |\Psi(0)\rangle$, where $\tau > 0$ and $i^2 = -1$. Show that $\frac{d |\tilde{\chi}(\tau)\rangle}{d\tau} = -\frac{1}{\hbar}$ $\frac{1}{\hbar} \hat{H} \ket{\tilde{\chi}(\tau)}.$
- c) **[2 pts]** We consider the initial *normalized* state decomposition $|\Psi(0)\rangle = \sum_{I\geq 0} C_I |\Psi_I\rangle$ in the orthonormal basis $\{\Psi_I\}_{I\geq 0}$ of eigenvectors of \hat{H} , i.e. $\hat{H}|\Psi_I\rangle = E_I|\Psi_I\rangle$. Show that $|\tilde{\chi}(\tau)\rangle = \sum_{I\geq 0} C_I e^{-E_I \tau/\hbar} |\Psi_I\rangle$ and $\langle \tilde{\chi}(\tau) | \tilde{\chi}(\tau) \rangle = \sum_{I \geq 0} |C_I|^2 e^{-2E_I \tau/\hbar}$. **Hint**: use the Taylor-expanded expressions $e^{-\hat{H}\tau/\hbar} = \sum_{I \geq 0}$ *n*=0 $(-\tau)^n$ $\frac{(-\tau)}{\hbar^n n!} \hat{H}^n$ and $e^{\xi} =$ $+\infty$ *ξ n* $\frac{S}{n!}$ where ξ is any number.

n=0

- d) **[1 pt]** Conclude from question 2. c) that, unlike $|\Psi(t)\rangle$, the quantum state $|\tilde{\chi}(\tau)\rangle$ does not remain normalized as the so-called *imaginary time τ* evolves.
- e) **[2 pts]** Let $E(\tau) = \langle \chi(\tau) | \hat{H} | \chi(\tau) \rangle$ be the imaginary-time-dependent *energy* where

$$
|\chi(\tau)\rangle = \frac{|\tilde{\chi}(\tau)\rangle}{\sqrt{\langle\tilde{\chi}(\tau)|\tilde{\chi}(\tau)\rangle}}.\tag{1}
$$

Show that $|\chi(\tau)\rangle$ is normalized and that

$$
E(\tau) = \frac{\sum_{I\geq 0} |C_I|^2 E_I e^{-2E_I \tau/\hbar}}{\sum_{I\geq 0} |C_I|^2 e^{-2E_I \tau/\hbar}} = \frac{|C_0|^2 E_0 + \sum_{I>0} |C_I|^2 E_I e^{-2(E_I - E_0)\tau/\hbar}}{|C_0|^2 + \sum_{I>0} |C_I|^2 e^{-2(E_I - E_0)\tau/\hbar}}.
$$
\n(2)

- f) **[1 pt]** We assume in the following that $C_0 \neq 0$ and that the ground-state energy E_0 is not degenerate. Show that the latter is recovered at infinite imaginary time, whatever the values of the excited-state coefficients $\{C_I\}_{I>0}$ are, i.e. $E_0 = \lim_{\tau \to +\infty} E(\tau)$.
- g) **[1 pt]** We now assume that, at the initial time $\tau = 0$, the coefficients are all equal, i.e. $C_I = C$ for $I \geq 0$. Show that, in this case, the energy at finite imaginary time τ is formally identical to the average energy $\sum_{I\geq 0} E_I e^{-\beta E_I} / \sum_{I\geq 0} e^{-\beta E_I}$ of a canonical ensemble at temperature $T = \frac{1}{k_B \beta}$ where k_B is Boltzmann's constant. How is the (fictitious) temperature T connected to the imaginary time τ ?
- h) **[3 pts]** Show that, according to question 2. b) and Eq. (1), the normalized quantum state $|\chi(\tau)\rangle$ fulfills the following imaginary-time-dependent Schrödinger equation:

$$
-\hbar \frac{d\left|\chi(\tau)\right\rangle}{d\tau} = \left(\hat{H} - E(\tau)\right)\left|\chi(\tau)\right\rangle. \tag{3}
$$

Hint: prove that
$$
\frac{d}{d\tau} \left(\frac{1}{\sqrt{\langle \tilde{\chi}(\tau) | \tilde{\chi}(\tau) \rangle}} \right) = \frac{\langle \tilde{\chi}(\tau) | \hat{H} | \tilde{\chi}(\tau) \rangle}{\hbar \langle \tilde{\chi}(\tau) | \tilde{\chi}(\tau) \rangle^{3/2}} = \frac{E(\tau)}{\hbar \sqrt{\langle \tilde{\chi}(\tau) | \tilde{\chi}(\tau) \rangle}}. \text{ Then, show that } \frac{d |\chi(\tau)\rangle}{d\tau} = -\frac{1}{\hbar} \hat{H} |\chi(\tau)\rangle + \frac{E(\tau)}{\hbar} |\chi(\tau)\rangle \text{ and conclude.}
$$

i) **[3 pts]** Let \hat{A} be any time-independent operator. Deduce from Eq. (3) the Ehrenfest theorem in imaginary times:

$$
\frac{d\left\langle \chi(\tau)\right|\hat{A}\left|\chi(\tau)\right\rangle}{d\tau} = -\frac{1}{\hbar}\left\langle \chi(\tau)\right|\left(\hat{H}\hat{A} + \hat{A}\hat{H}\right)\left|\chi(\tau)\right\rangle + \frac{2E(\tau)}{\hbar}\left\langle \chi(\tau)\right|\hat{A}\left|\chi(\tau)\right\rangle. \tag{4}
$$

Show, by considering the particular case $\hat{A} = \hat{H}$, that $\frac{dE(\tau)}{d\tau} = -\frac{2}{\hbar}$ $\frac{2}{\hbar} \left(\Delta H\right)^2_{\lambda}$ $\chi(\tau)$, where the standard $\det(\Delta H)_{\Psi} = \sqrt{\bra{\Psi} \hat{H}^2 \ket{\Psi} - \bra{\Psi} \hat{H} \ket{\Psi}^2}.$ Comment on this result.