M1 "Sciences et Génies des Matériaux" & M1 franco-allemand "Polymères"

Quantum Mechanics course

Two-hour exam, January 2021

Neither documents nor calculators are allowed.

1. Questions on the lecture material [9 points]

- a) **[3 pts]** Discuss the various strategies that can be implemented for constructing approximate solutions to the Schrödinger equation. Illustrate your answer with an example.
- b) **[2 pts]** Is the two-electron repulsion neglected in the Hartree–Fock method? If not, how is it described?
- c) **[2 pts]** Does the Hückel method provide exact solutions to the many-electron Schrödinger equation? Justify your answer. What is the advantage of Hartree–Fock over Hückel?
- d) **[2 pts]** How would you define the concept of electron correlation? How can we evaluate its impact on the energy?

2. Problem: Why is the ground-state energy of the harmonic oscillator nonzero? [12 points]

In order to answer the above question, we consider the following (more general) Schrödinger equation (in *one dimension*) for a particle of mass *m*,

$$
\hat{H}_{\lambda} |\Psi_{\lambda,n}\rangle = E_{\lambda,n} |\Psi_{\lambda,n}\rangle, \quad \text{where} \quad \hat{H}_{\lambda} = \hat{T} + \lambda \hat{V}, \quad \hat{T} = \frac{\hat{p}_x^2}{2m}, \quad \hat{V} = \frac{1}{2} k \hat{x}^{2\ell}, \quad \hat{x}^{2\ell} \equiv x^{2\ell} \times,
$$
 (1)

and $\hat{p}_x \equiv -i\hbar \frac{d}{dt}$ $\frac{d}{dx}$ is the momentum operator. The real number λ modulates the *strength* of the potential energy while $k > 0$ and the real exponent $\ell \neq 0$ are *constants*. The subscript *n* in Eq. (1) refers to an energy level $(n = 0$ for the ground state).

a) **[2 pts]** Let $\Psi_{\lambda,n}(x)$ be the wave function that represents $|\Psi_{\lambda,n}\rangle$. We want to show that $E_{\lambda,n}$ can be determined from $E_{\lambda=1,n} = E_n$. For that purpose, we consider the following change of variable $x \to \tilde{x} = \alpha \times x$ and denote $\Psi_{\lambda,n}(x) = \tilde{\Psi}_{\lambda,n}(\alpha \times x)$. Show that

$$
-\alpha^2 \frac{\hbar^2}{2m} \frac{\mathrm{d}^2 \tilde{\Psi}_{\lambda,n}(\tilde{x})}{\mathrm{d}\tilde{x}^2} + \alpha^{-2\ell} \lambda \times \frac{1}{2} k \tilde{x}^{2\ell} \tilde{\Psi}_{\lambda,n}(\tilde{x}) = E_{\lambda,n} \tilde{\Psi}_{\lambda,n}(\tilde{x}).\tag{2}
$$

The Schrödinger reads

$$
-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\Psi_{\lambda,n}(x)}{\mathrm{d}x^2} + \frac{1}{2}k\lambda x^{2\ell}\Psi_{\lambda,n}(x) = E_{\lambda,n}\Psi_{\lambda,n}(x). \tag{3}
$$

 $Since \frac{d\Psi_{\lambda,n}(x)}{dx} = \frac{d}{dx}$ d*x* $\left[\tilde{\Psi}_{\lambda,n}(\alpha x)\right] = \alpha \frac{\mathrm{d}\tilde{\Psi}_{\lambda,n}(\tilde{x})}{\mathrm{d}\tilde{x}}$ $d\tilde{x}$ $\Big|_{\tilde{x}=\alpha x}$ *, it comes* $\frac{d^2 \Psi_{\lambda,n}(x)}{dx^n}$ $\frac{d\Psi_{\lambda,n}(x)}{\mathrm{d}x^2} = \alpha^2 \frac{\mathrm{d}^2 \tilde{\Psi}_{\lambda,n}(\tilde{x})}{\mathrm{d}\tilde{x}^2}$ $d\tilde{x}^2$ $\Big|$ _{$\tilde{x} = \alpha x$} *, thus leading, once* $x^{2\ell}$ *has been replaced by* $(\tilde{x}/\alpha)^{2\ell}$ *, to Eq. (2).*

Explain why, if we choose $\alpha^2 = \alpha^{-2\ell}\lambda$ or, equivalently, $\alpha = \lambda^{\frac{1}{2(\ell+1)}}$, then $\tilde{\Psi}_{\lambda,n}$ becomes solution to the Schrödinger equation that is obtained from Eq. (1) when λ is set to $\lambda = 1$. Conclude that $E_{\lambda,n} = \lambda^{\frac{1}{\ell+1}} E_n$. *If* $\alpha^2 = \alpha^{-2\ell} \lambda$ *then Eq.* (2) *reads*

$$
-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\tilde{\Psi}_{\lambda,n}(\tilde{x})}{\mathrm{d}\tilde{x}^2} + \frac{1}{2}k\tilde{x}^{2\ell} \times \tilde{\Psi}_{\lambda,n}(\tilde{x}) = \frac{E_{\lambda,n}}{\alpha^2}\tilde{\Psi}_{\lambda,n}(\tilde{x}),\tag{4}
$$

which is formally identical to the Schrödinger Eq. (3) in the particular case $\lambda = 1$ *. As a result,*

$$
\frac{E_{\lambda,n}}{\alpha^2} = E_n,\tag{5}
$$

or, equivalently,

$$
E_{\lambda,n} = \alpha^2 E_n = \lambda^{\frac{1}{\ell+1}} E_n.
$$
\n⁽⁶⁾

We also note that $\tilde{\Psi}_{\lambda,n}(\tilde{x}) \sim \Psi_{\lambda=1,n}(\tilde{x})$ or, equivalently, $\Psi_{\lambda,n}(x) = \tilde{\Psi}_{\lambda,n}(\alpha x) \sim \Psi_{\lambda=1,n}(\lambda^{\frac{1}{2(\ell+1)}} \times x)$.

b) **[2 pts]** We assume that $|\Psi_{\lambda,n}\rangle$ in Eq. (1) is *normalized* for any λ . Prove the Hellmann–Feynman theorem $dE_{\lambda,n}$ $\frac{\Delta \lambda, n}{d\lambda}$ = * $\Psi_{\lambda,n}$ $\begin{array}{c} \hline \end{array}$ *∂H*ˆ *λ ∂λ* $\Psi_{\lambda,n}$ and conclude from the previous question that $E_{\lambda,n} = (\ell+1)\lambda \langle \hat{\mathcal{V}} \rangle$ $\Psi_{\lambda,n}$ [,] where $\langle \hat{A} \rangle$ $\Psi \stackrel{notation}{=} \langle \Psi | \, \hat{A} \, | \Psi \rangle.$

We have shown previously that

$$
E_{\lambda,n} = \lambda^{\frac{1}{\ell+1}} E_n. \tag{7}
$$

Therefore

$$
\frac{\mathrm{d}E_{\lambda,n}}{\mathrm{d}\lambda} = \left\langle \hat{\mathcal{V}} \right\rangle_{\Psi_{\lambda,n}} \stackrel{Eq. (7)}{=} \frac{1}{\ell+1} \frac{\lambda^{\frac{1}{\ell+1}}}{\lambda} E_n,\tag{8}
$$

thus leading to

$$
\lambda^{\frac{1}{\ell+1}} E_n = E_{\lambda,n} = (\ell+1)\lambda \left\langle \hat{\mathcal{V}} \right\rangle_{\Psi_{\lambda,n}}.
$$
\n(9)

c) **[2 pts]** Explain why $\langle \hat{T} \rangle$ $\mathcal{L}_{\lambda,n} \;=\; E_{\lambda,n} \,-\, \lambda \left\langle \hat{\mathcal{V}} \right\rangle$ $\Psi_{\lambda,n}$. Deduce from question 2. b) the virial theorem $\langle \hat{T} \rangle$ $\mathop{\Psi}_{\lambda,n} = \ell\left\langle \lambda \hat{\mathcal{V}}\right\rangle$ $\Psi_{\lambda,n}$, and conclude that

$$
\left\langle \hat{p}_x^2 \right\rangle_{\Psi_{\lambda,n}} = \frac{2m\ell}{\ell+1} E_{\lambda,n} \quad \text{and} \quad \left\langle \hat{x}^{2\ell} \right\rangle_{\Psi_{\lambda,n}} = \frac{2}{k\lambda(\ell+1)} E_{\lambda,n}.
$$
 (10)

Since

$$
\left\langle \hat{H}(\lambda) \right\rangle_{\Psi_{\lambda,n}} = \left\langle \Psi_{\lambda,n} \right| \hat{H}(\lambda) \left| \Psi_{\lambda,n} \right\rangle \stackrel{Eq. (1)}{=} E_{\lambda,n} \left\langle \Psi_{\lambda,n} \right| \Psi_{\lambda,n} \right\rangle = E_{\lambda,n},\tag{11}
$$

it comes $E_{\lambda,n} = \langle \hat{T} \rangle$ $\frac{1}{\Psi_{\lambda,n}}+\lambda\left\langle \hat{\mathcal{V}}\right\rangle$ $\Psi_{\lambda,n}$ ^{*, thus leading to*}

$$
\left\langle \hat{T} \right\rangle_{\Psi_{\lambda,n}} = E_{\lambda,n} - \lambda \left\langle \hat{\mathcal{V}} \right\rangle_{\Psi_{\lambda,n}} \stackrel{Eq. (9)}{=} \ell \lambda \left\langle \hat{\mathcal{V}} \right\rangle_{\Psi_{\lambda,n}}.
$$
 (12)

Therefore,

$$
\left\langle \hat{T} \right\rangle_{\Psi_{\lambda,n}} = E_{\lambda,n} - \frac{1}{\ell} \left\langle \hat{T} \right\rangle_{\Psi_{\lambda,n}} \Leftrightarrow \left\langle \hat{T} \right\rangle_{\Psi_{\lambda,n}} = \frac{\ell}{\ell+1} E_{\lambda,n}
$$
\n(13)

and

$$
\left\langle \hat{\mathcal{V}} \right\rangle_{\Psi_{\lambda,n}} = \frac{1}{\ell \lambda} \left\langle \hat{T} \right\rangle_{\Psi_{\lambda,n}} = \frac{E_{\lambda,n}}{\lambda(\ell+1)}.
$$
\n(14)

We obtain Eq. (10) from Eqs. (13) and (14) by noticing that $\langle \hat{p}_x^2 \rangle_{\Psi_{\lambda,n}} = 2m \langle \hat{T} \rangle$ $\mathcal{L}_{\lambda,n}$ and $\left\langle \hat{x}^{2\ell} \right\rangle$ $\frac{1}{\Psi_{\lambda,n}} =$ 2 *k* $\langle \hat{\mathcal{V}} \rangle$ $\Psi_{\lambda,n}$ [.]

d) [2 pts] We assume that $\Psi_{\lambda,n}(x)$ is a *real* wave function and that $|\Psi_{\lambda,n}(-x)|^2 = |\Psi_{\lambda,n}(x)|^2$. These assumptions are justified in questions 2. f) and g). Explain briefly why, in this case, $\langle \hat{p}_x \rangle_{\Psi_{\lambda,n}} = \langle \hat{x} \rangle_{\Psi_{\lambda,n}} = 0.$ Let $(\Delta A)_{\Psi}$ ^{notation} $\sqrt{\langle \hat{A}^2 \rangle}$ $_{\Psi}^{} - \left\langle \hat{A} \right\rangle^2_{\Psi}$ ψ . Conclude, by evaluating $(Δp_x)_{\Psi_{λ,n}}$ from Eq. (10), that fluctuations in the momentum can occur only if the energy $E_{\lambda,n}$ associated to $|\Psi_{\lambda,n}\rangle$ is nonzero [we recall that $\ell \neq 0$]. *As readily seen from the following equation,*

$$
(\Delta p_x)_{\Psi_{\lambda,n}} = \sqrt{\langle \hat{p}_x^2 \rangle_{\Psi_{\lambda,n}}} \stackrel{Eq. (10)}{=} \sqrt{\frac{2m\ell}{\ell+1}} \times \sqrt{E_{\lambda,n}},
$$
\n(15)

the standard deviation from zero of the momentum vanishes (which means that there are no fluctuations) if and only if the energy $E_{\lambda,n}$ *equals zero. The amplitude of the fluctuations is therefore directly connected to the value of the energy.*

e) **[2 pts]** We now want to describe the harmonic oscillator with spring constant *k*. For that purpose, which values of ℓ and λ should we use in Eq. (1)? We denote $\Psi_n := \Psi_{\lambda=1,n}$ and $E_n := E_{\lambda=1,n}$. Show that, according to Eq. (10) and question 2. d),

$$
\left(\Delta p_x\right)_{\Psi_n}\left(\Delta x\right)_{\Psi_n} = \frac{E_n}{\omega},\tag{16}
$$

where $\omega = \sqrt{\frac{k}{k}}$ $\frac{n}{m}$. Explain why, according to the Heisenberg uncertainty principle, the lowest (so-called ground-state) energy E_0 of the harmonic oscillator cannot be equal to zero. It can be shown that $E_0 = \hbar \omega/2$. What is remarkable in this case?

We have $\lambda = 1$ *and* $\ell = 1$ *for a spring with constant k. Note that, according to question 2. d)*, $(\Delta x)_{\Psi_n} = \sqrt{\langle \hat{x}^2 \rangle_{\Psi_n}}$ *. Therefore, in this case,*

$$
\left(\Delta p_x\right)_{\Psi_n}\left(\Delta x\right)_{\Psi_n} \stackrel{Eq. (15)}{=} \sqrt{m} \sqrt{E_{\lambda=1,n}} \sqrt{\langle \hat{x}^2 \rangle_{\Psi_n}} \stackrel{Eq. (10)}{=} \sqrt{\frac{m}{k}} E_{\lambda=1,n} = \frac{E_n}{\omega}.\tag{17}
$$

According to the Heisenberg uncertainty principle, we can conclude that

$$
E_n = \omega \left(\Delta p_x\right)_{\Psi_n} \left(\Delta x\right)_{\Psi_n} \ge \hbar \omega / 2. \tag{18}
$$

Note that the lower bound $\hbar \omega/2$ *is actually reached when the harmonic oscillator is in its ground state. In other words, in this very special case, the Heisenberg inequality becomes an equality, which is remarkable.*

- f) **[1 pt]** We return to the general problem where λ and ℓ values are not specified. Show that the complex conjugate $\Psi_{\lambda,n}^*(x)$ of the wave function $\Psi_{\lambda,n}(x)$ is solution to the Schrödinger equation with the same energy $E_{\lambda,n}$. By considering the linear combinations $\Psi_{\lambda,n}^*(x) \pm \Psi_{\lambda,n}(x)$, conclude that it is relevant to consider *real* wave functions only, as we did in question 2. d).
- g) **[1 pt]** Show, by considering the particular case $\alpha = -1$ in Eq. (2), that $\Psi_{\lambda,n}(-x)$ is solution to the Schrödinger equation with the same energy $E_{\lambda,n}$ as $\Psi_{\lambda,n}(x)$. Deduce that the combinations

 $\Psi_{\lambda,n}(-x) \pm \Psi_{\lambda,n}(x)$ are also solutions. Explain finally why this allows us to consider only wave functions that are either *even* [*i.e.* $\Psi(-x) = \Psi(x)$] or *odd* [*i.e.* $\Psi(-x) = -\Psi(x)$], as we did in question 2. d)