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Quantum Mechanics course

Two-hour exam, January 2021

Neither documents nor calculators are allowed.

1. Questions on the lecture material [9 points]

a) [3 pts] Discuss the various strategies that can be implemented for constructing approximate solutions

to the Schrödinger equation. Illustrate your answer with an example.

b) [2 pts] Is the two-electron repulsion neglected in the Hartree–Fock method? If not, how is it described?

c) [2 pts] Does the Hückel method provide exact solutions to the many-electron Schrödinger equation?

Justify your answer. What is the advantage of Hartree–Fock over Hückel?

d) [2 pts] How would you define the concept of electron correlation? How can we evaluate its impact on

the energy?

2. Problem: Why is the ground-state energy of the harmonic oscillator nonzero? [12 points]

In order to answer the above question, we consider the following (more general) Schrödinger equation

(in one dimension) for a particle of mass m,

Ĥλ |Ψλ,n〉 = Eλ,n |Ψλ,n〉 , where Ĥλ = T̂ + λV̂, T̂ = p̂2
x

2m, V̂ = 1
2kx̂

2`, x̂2` ≡ x2`×, (1)

and p̂x ≡ −i~ d
dx is the momentum operator. The real number λ modulates the strength of the potential

energy while k > 0 and the real exponent ` 6= 0 are constants. The subscript n in Eq. (1) refers to an energy

level (n = 0 for the ground state).

a) [2 pts] Let Ψλ,n(x) be the wave function that represents |Ψλ,n〉. We want to show that Eλ,n can

be determined from Eλ=1,n = En. For that purpose, we consider the following change of variable

x→ x̃ = α× x and denote Ψλ,n(x) = Ψ̃λ,n(α× x). Show that

−α2 ~2

2m
d2Ψ̃λ,n(x̃)

dx̃2 + α−2`λ× 1
2kx̃

2`Ψ̃λ,n(x̃) = Eλ,nΨ̃λ,n(x̃). (2)
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The Schrödinger reads

− ~2

2m
d2Ψλ,n(x)

dx2 + 1
2kλx

2`Ψλ,n(x) = Eλ,nΨλ,n(x). (3)

Since dΨλ,n(x)
dx = d

dx
[
Ψ̃λ,n(αx)

]
= α

dΨ̃λ,n(x̃)
dx̃

∣∣∣∣∣
x̃=αx

, it comes d2Ψλ,n(x)
dx2 = α2 d2Ψ̃λ,n(x̃)

dx̃2

∣∣∣∣∣
x̃=αx

, thus

leading, once x2` has been replaced by (x̃/α)2`, to Eq. (2).

Explain why, if we choose α2 = α−2`λ or, equivalently, α = λ
1

2(`+1) , then Ψ̃λ,n becomes solution to the

Schrödinger equation that is obtained from Eq. (1) when λ is set to λ = 1. Conclude that Eλ,n = λ
1
`+1En.

If α2 = α−2`λ then Eq. (2) reads

− ~2

2m
d2Ψ̃λ,n(x̃)

dx̃2 + 1
2kx̃

2` × Ψ̃λ,n(x̃) = Eλ,n
α2 Ψ̃λ,n(x̃), (4)

which is formally identical to the Schrödinger Eq. (3) in the particular case λ = 1. As a result,

Eλ,n
α2 = En, (5)

or, equivalently,

Eλ,n = α2En = λ
1
`+1En. (6)

We also note that Ψ̃λ,n(x̃) ∼ Ψλ=1,n(x̃) or, equivalently, Ψλ,n(x) = Ψ̃λ,n(αx) ∼ Ψλ=1,n

(
λ

1
2(`+1) × x

)
.

b) [2 pts] We assume that |Ψλ,n〉 in Eq. (1) is normalized for any λ. Prove the Hellmann–Feynman theorem
dEλ,n

dλ =
〈

Ψλ,n

∣∣∣∣∣∂Ĥλ

∂λ

∣∣∣∣∣Ψλ,n

〉
and conclude from the previous question that Eλ,n = (` + 1)λ

〈
V̂
〉

Ψλ,n
,

where
〈
Â
〉

Ψ
notation= 〈Ψ| Â |Ψ〉.

We have shown previously that

Eλ,n = λ
1
`+1En. (7)

Therefore

dEλ,n
dλ =

〈
V̂
〉

Ψλ,n

Eq.(7)
= 1

`+ 1
λ

1
`+1

λ
En, (8)
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thus leading to

λ
1
`+1En = Eλ,n = (`+ 1)λ

〈
V̂
〉

Ψλ,n
. (9)

c) [2 pts] Explain why
〈
T̂
〉

Ψλ,n
= Eλ,n − λ

〈
V̂
〉

Ψλ,n
. Deduce from question 2. b) the virial theorem〈

T̂
〉

Ψλ,n
= `

〈
λV̂
〉

Ψλ,n
, and conclude that

〈
p̂2
x

〉
Ψλ,n

= 2m`
`+ 1Eλ,n and

〈
x̂2`
〉

Ψλ,n
= 2
kλ(`+ 1)Eλ,n. (10)

Since

〈
Ĥ(λ)

〉
Ψλ,n

= 〈Ψλ,n| Ĥ(λ) |Ψλ,n〉
Eq. (1)= Eλ,n 〈Ψλ,n|Ψλ,n〉 = Eλ,n, (11)

it comes Eλ,n =
〈
T̂
〉

Ψλ,n
+ λ

〈
V̂
〉

Ψλ,n
, thus leading to

〈
T̂
〉

Ψλ,n
= Eλ,n − λ

〈
V̂
〉

Ψλ,n

Eq. (9)= `λ
〈
V̂
〉

Ψλ,n
. (12)

Therefore,

〈
T̂
〉

Ψλ,n
= Eλ,n −

1
`

〈
T̂
〉

Ψλ,n
⇔
〈
T̂
〉

Ψλ,n
= `

`+ 1Eλ,n (13)

and

〈
V̂
〉

Ψλ,n
= 1
`λ

〈
T̂
〉

Ψλ,n
= Eλ,n
λ(`+ 1) . (14)

We obtain Eq. (10) from Eqs. (13) and (14) by noticing that
〈
p̂2
x

〉
Ψλ,n = 2m

〈
T̂
〉

Ψλ,n
and

〈
x̂2`
〉

Ψλ,n
=

2
k

〈
V̂
〉

Ψλ,n
.

d) [2 pts] We assume that Ψλ,n(x) is a real wave function and that |Ψλ,n(−x)|2 = |Ψλ,n(x)|2. These as-

sumptions are justified in questions 2. f) and g). Explain briefly why, in this case, 〈p̂x〉Ψλ,n = 〈x̂〉Ψλ,n = 0.

Let (∆A)Ψ
notation=

√〈
Â2
〉

Ψ
−
〈
Â
〉2

Ψ
. Conclude, by evaluating (∆px)Ψλ,n from Eq. (10), that fluctuations

in the momentum can occur only if the energy Eλ,n associated to |Ψλ,n〉 is nonzero [we recall that ` 6= 0].
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As readily seen from the following equation,

(∆px)Ψλ,n =
√
〈p̂2
x〉Ψλ,n

Eq. (10)=

√
2m`
`+ 1 ×

√
Eλ,n, (15)

the standard deviation from zero of the momentum vanishes (which means that there are no fluctuations)

if and only if the energy Eλ,n equals zero. The amplitude of the fluctuations is therefore directly connected

to the value of the energy.

e) [2 pts] We now want to describe the harmonic oscillator with spring constant k. For that purpose, which

values of ` and λ should we use in Eq. (1)? We denote Ψn := Ψλ=1,n and En := Eλ=1,n. Show that,

according to Eq. (10) and question 2. d),

(∆px)Ψn (∆x)Ψn = En
ω
, (16)

where ω =
√
k

m
. Explain why, according to the Heisenberg uncertainty principle, the lowest (so-called

ground-state) energy E0 of the harmonic oscillator cannot be equal to zero. It can be shown that

E0 = ~ω/2. What is remarkable in this case?

We have λ = 1 and ` = 1 for a spring with constant k. Note that, according to question 2. d),

(∆x)Ψn =
√
〈x̂2〉Ψn. Therefore, in this case,

(∆px)Ψn (∆x)Ψn
Eq. (15)=

√
m
√
Eλ=1,n

√
〈x̂2〉Ψn

Eq. (10)=
√
m

k
Eλ=1,n = En

ω
. (17)

According to the Heisenberg uncertainty principle, we can conclude that

En = ω (∆px)Ψn (∆x)Ψn ≥ ~ω/2. (18)

Note that the lower bound ~ω/2 is actually reached when the harmonic oscillator is in its ground state. In

other words, in this very special case, the Heisenberg inequality becomes an equality, which is remarkable.

f) [1 pt] We return to the general problem where λ and ` values are not specified. Show that the complex

conjugate Ψ∗
λ,n(x) of the wave function Ψλ,n(x) is solution to the Schrödinger equation with the same

energy Eλ,n. By considering the linear combinations Ψ∗
λ,n(x) ± Ψλ,n(x), conclude that it is relevant to

consider real wave functions only, as we did in question 2. d).

g) [1 pt] Show, by considering the particular case α = −1 in Eq. (2), that Ψλ,n(−x) is solution to the

Schrödinger equation with the same energy Eλ,n as Ψλ,n(x). Deduce that the combinations
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Ψλ,n(−x)±Ψλ,n(x) are also solutions. Explain finally why this allows us to consider only wave functions

that are either even [i.e. Ψ(−x) = Ψ(x)] or odd [i.e. Ψ(−x) = −Ψ(x)], as we did in question 2. d)
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