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1. Questions on the lecture material [6 points]

a) [3 pts] Discuss the various strategies that can be implemented for constructing approximate solutions

to the time-independent Schrödinger equation. Illustrate your answer with two examples.

b) [1 pt] Does the Hückel method provide exact solutions to the many-electron Schrödinger equation?

Justify your answer.

c) [2 pts] How similar and different are the Rayleigh–Ritz variational principle and the stationarity condi-

tion for the energy?

2. Exercise: Perturbation theory through infinite order [16 points]

We explore in the following a formally exact construction of the solutions to the time-independent Schrödinger

equation,

Ĥ |Ψ〉 = E |Ψ〉 , (1)

where the Hamiltonian operator Ĥ = Ĥ0 +Ŵ is decomposed into a so-called unperturbed one Ĥ0, for which

the Schrödinger equation is easy to solve, and the complementary (so-called perturbation) operator Ŵ . Let

{|uj〉} be the complete orthonormal basis of solutions to the unperturbed Schrödinger equation,

Ĥ0 |uj〉 = Ej |uj〉 , ∀j, (2)

where {Ej} are the unperturbed energies.

a) [2 pts] Let us introduce the quantum operators P̂ = |ui〉 〈ui| and Q̂ =
∑
k 6=i

|uk〉 〈uk|, where |ui〉 is one

of the unperturbed solutions and {|uk〉}k 6=i are all the remaining ones. Explain why P̂ is referred to as

the projector operator onto the unperturbed solution |ui〉. Show that P̂ 2 = P̂ . Explain why P̂ + Q̂ = 1̂,
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where 1̂ is the identity operator. You may answer the latter question by considering the expansion of

any quantum state |χ〉 in the basis of the unperturbed solutions, i.e., |χ〉 = Ci |ui〉+
∑

l 6=iCl |ul〉, so that

you can evaluate
(
P̂ + Q̂

)
|χ〉. Finally, conclude that Q̂2 =

(
1̂− P̂

)2
= Q̂.

b) [2 pts] Explain why, if
∣∣∣Ψ̃〉 is a solution to the true Schrödinger Eq. (1) for the energy E, then |Ψ〉 = ξ

∣∣∣Ψ̃〉,
where ξ 6= 0, is also a solution. We will assume in the following that

P̂ |Ψ〉 = |ui〉 . (3)

Which value of ξ should we use to ensure that the above (so-called intermediate normalization) condition

is fulfilled? One can read in textbooks that perturbation theory, which relies on Eq. (3), breaks down

when the solution to the true Schrödinger equation does not overlap with the unperturbed one. Comment

on this statement by calculating the value of ξ in the latter special case.

c) [2 pts] Explain why, in the light of question 2. a) and Eq. (3), |Ψ〉 = P̂ |ui〉+ Q̂ |Ψ〉, where, according to

Eq. (1), Q̂Ĥ
(
P̂ |ui〉+ Q̂ |Ψ〉

)
= EQ̂ |Ψ〉 , or, equivalently,

Q̂ |Ψ〉 =
[
EQ̂− Q̂ĤQ̂

]−1
Q̂ĤP̂ |ui〉 , (4)

where
[
EQ̂− Q̂ĤQ̂

]−1
denotes the inverse of the operator EQ̂− Q̂ĤQ̂.

d) [2 pts] Explain why, according to Eqs. (1) and (3), P̂ Ĥ
(
P̂ |ui〉+ Q̂ |Ψ〉

)
= E |ui〉, and deduce from

question 2. c) that the unperturbed solution |ui〉 is solution to a so-called effective Schrödinger equation

Ĥeff(E) |ui〉 = E |ui〉 , (5)

where

Ĥeff(E) = P̂ ĤP̂ + P̂ Ĥ
[
EQ̂− Q̂ĤQ̂

]−1
Q̂ĤP̂ . (6)

By comparing Eqs. (1), (2) and (5), explain why the energy-dependent Hamiltonian Ĥeff(E) is referred

to as effective Hamiltonian. Show finally that the true energy can be expressed exactly as follows:

E = 〈ui|Ĥeff(E)|ui〉 = Ei + 〈ui|Ŵ |ui〉+ 〈ui|Ĥ
[
EQ̂− Q̂ĤQ̂

]−1
Q̂Ĥ|ui〉 . (7)

e) [2 pts] We want to express the exact (so-called resolvent) operator R̂(E) =
[
EQ̂− Q̂ĤQ̂

]−1
in terms of

the unperturbed one R̂0(E) =
[
EQ̂− Q̂Ĥ0Q̂

]−1
. Show that R̂−1(E) = R̂−1

0 (E)− Σ̂, where Σ̂ = Q̂Ŵ Q̂,
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and deduce that R̂0(E)Σ̂R̂(E) = R̂(E)− R̂0(E). Conclude that

R̂(E) = R̂0(E) + R̂0(E)Σ̂R̂(E) = R̂0(E) + R̂0(E)Σ̂R̂0(E) + R̂0(E)Σ̂R̂0(E)Σ̂R̂(E)

=
+∞∑
p=0

(
R̂0(E)Σ̂

)p
R̂0(E).

(8)

f) [1 pt] Deduce from Eqs. (7) and (8) that

E = Ei + 〈ui|Ŵ |ui〉+
+∞∑
p=0
〈ui|Ĥ

(
R̂0(E)Q̂Ŵ Q̂

)p
R̂0(E)Q̂Ĥ|ui〉 . (9)

g) [1 pt] Explain why R̂0(E) =
∑
l 6=i

|ul〉 〈ul|
E − El

.

Hint: Show that Q̂ |ul〉
l 6=i= |ul〉 [see question 2. a)] and then verify, according to the definition in question

2. e) and Eq. (2), that R̂−1
0 (E)

∑
l 6=i

|ul〉 〈ul|
E − El

=
(
EQ̂− Q̂Ĥ0Q̂

)∑
l 6=i

|ul〉 〈ul|
E − El

=
∑
l 6=i

|ul〉 〈ul|. Conclude.

h) [2 pts] Show that, according to question 2. g), R̂0(E)Ĥ |ui〉 = R̂0(E)
(
Ei1̂ + Ŵ

)
|ui〉 = R̂0(E)Ŵ |ui〉,

Q̂Ĥ |ui〉 = Q̂
(
Ei1̂ + Ŵ

)
|ui〉 = Q̂Ŵ |ui〉, and R̂0(E)Q̂ = R̂0(E). Deduce from Eq. (9) the formally exact

expansion of the energy through infinite order in Ŵ :

E = Ei + 〈ui|Ŵ |ui〉+
+∞∑
p=0
〈ui|Ŵ

(
R̂0(E)Ŵ Q̂

)p
R̂0(E)Ŵ |ui〉 . (10)

Implementing the above expression for practical calculations is not trivial, even through a given finite

order p. Why?

i) [2 pts] In order to establish a clearer connection with regular perturbation theory, we proceed with the

following substitution, Ŵ → αŴ , where 0 ≤ α ≤ 1. Explain why the expansion through second order in

α of the energy can be written as

E → E(α) = Ei + α 〈ui|Ŵ |ui〉+ α2 〈ui|Ŵ R̂0
(
E(α)

)
Ŵ |ui〉+ . . . (11)

≈ Ei + α 〈ui|Ŵ |ui〉+ α2 〈ui|Ŵ R̂0 (Ei) Ŵ |ui〉 . (12)

Conclude from question 2. g) that, within the present formalism, the regular perturbation expansion of

the energy is recovered through second order:

E(α) ≈ Ei + α 〈ui|Ŵ |ui〉+ α2∑
l 6=i

〈ui|Ŵ |ul〉 〈ul|Ŵ |ui〉
Ei − El

. (13)
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