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1. Questions on the lectures [10 points]

a) [4 pts] Which mathematical functions are used for describing the state of a particle moving along the x

axis in classical Newton and quantum mechanics, respectively? Write the fundamental time-dependent

equations that these functions are supposed to fulfill.

b) [4 pts] How does the wave function Ψ(~r ), where ~r ≡ (x, y, z) denotes a position that the particle under

study could have in the three-dimensional real space, relate to the quantum state |Ψ〉 of that particle?

Explain the notation Ψ(~r ′) = 〈~r ′|Ψ〉, where ~r ′ ≡ (x′, y′, z′) is some given fixed position. Let x̂ denote the

x coordinate position operator. Why, according to the postulates of quantum mechanics, should we expect

the following equality to be fulfilled: x̂ |~r ′〉 = x′ |~r ′〉? Deduce that (x̂Ψ) (~r ′) = 〈~r ′|x̂|Ψ〉 = x′ ×Ψ(~r ′).

c) [2 pts] What is the general idea behind perturbation theory? How do we technically derive the pertur-

bation expansion of the energies for a given Hamiltonian Ĥ?

2. Exercise I: Generalization of the Heisenberg inequality [5 points]

Let A and B be two observables to which we associate the Hermitian quantum operators Â and B̂,

respectively. The purpose of the exercise is to show that, for any normalized quantum state |Ψ〉, the

following inequality holds,

(
∆A

)
Ψ
(
∆B

)
Ψ ≥

1
2

∣∣∣〈Ψ|[Â, B̂]|Ψ〉
∣∣∣ , (1)

where
(
∆A

)
Ψ =

√〈
Ψ
∣∣∣∣(Â− 〈Ψ|Â|Ψ〉 × 1̂)2

∣∣∣∣Ψ〉 and
(
∆B

)
Ψ =

√〈
Ψ
∣∣∣∣(B̂ − 〈Ψ|B̂|Ψ〉 × 1̂)2

∣∣∣∣Ψ〉 are the

standard deviations for the measurement of A and B, respectively. The operator [Â, B̂] = ÂB̂− B̂Â is the

commutator of Â and B̂, and 1̂ is the identity operator.

a) [1.5 pts] Let α be a real number that we use to construct the α-dependent quantum state

|Ψ(α)〉 =
[ (
Â− 〈Ψ|Â|Ψ〉 × 1̂

)
+iα

(
B̂ − 〈Ψ|B̂|Ψ〉 × 1̂

) ]
|Ψ〉, where i2 = −1. Show that the square norm

N(α) = 〈Ψ(α)|Ψ(α)〉 can be written as N(α) =
(
∆A

)2
Ψ +

(
∆B

)2
Ψ α

2 + αCΨ, where CΨ = 〈Ψ|Ĉ|Ψ〉 and

Ĉ = i[Â, B̂].
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b) [1 pt] Why do we expect CΨ to be a real number? Prove it by showing that Ĉ is Hermitian.

c) [0.5 pts] Show that N(α) =
(
∆B

)2
Ψ

[(
α+ CΨ

2
(
∆B

)2
Ψ

)2

+ 1(
∆B

)2
Ψ

((
∆A

)2
Ψ −

C2
Ψ

4
(
∆B

)2
Ψ

)]
.

d) [1 pt] Explain why N(α) is positive for any value of α [Hint: See its definition in question 2. a)]. Show

that the generalized Heisenberg inequality of Eq. (1) is recovered when α = − CΨ

2
(
∆B

)2
Ψ

.

e) [1 pt] Conclude that the commutator of two operators determines if the corresponding observables can

be measured simultaneously or not. Show that the famous inequality of Heisenberg is recovered from

Eq. (1) when Â and B̂ are the position x̂ ≡ x× and momentum p̂x ≡ −i~∂/∂x operators, respectively.

3. Exercise II: Second-order perturbation theory and energy fluctuations [6 points]

From the decomposition Ĥ = Ĥ0+Ŵ of the Hamiltonian of interest into a simpler (so-called unperturbed)

Hamiltonian Ĥ0 and the perturbation operator Ŵ = Ĥ − Ĥ0, it can be shown that the difference in

expectation value for Ĥ between the true normalized ground state |Ψ0〉 of Ĥ and the unperturbed normalized

ground state |Φ0〉, which is eigenvector of Ĥ0 associated to the unperturbed energy E0, reads through second

order 〈Ψ0|Ĥ|Ψ0〉 − 〈Φ0|Ĥ|Φ0〉 =
∑
j>0

|〈Φ0|Ŵ |Φj〉|2

E0 − Ej
+ . . . , where {|Φj〉}j>0 are the orthonormalized excited

states of Ĥ0 associated to the unperturbed excited-state energies {Ej}j>0.

a) [1 pt] Show that 〈Φ0|Ŵ |Φj〉 =
j>0
〈Φ0|Ĥ|Φj〉 and conclude that |〈Φ0|Ŵ |Φj〉|2 =

j>0
〈Φ0|Ĥ|Φj〉〈Φj |Ĥ|Φ0〉.

b) [0.5 pts] We assume that the unperturbed “0→ j” excitation energy does not vary significantly with j,

i.e., Ej − E0
j>0
≈ Ω0. Deduce from the previous question that

〈Ψ0|Ĥ|Ψ0〉 − 〈Φ0|Ĥ|Φ0〉 ≈ −
1

Ω0

〈
Φ0

∣∣∣∣∣∣Ĥ
∑

j>0
|Φj〉 〈Φj |

 Ĥ
∣∣∣∣∣∣Φ0

〉
+ . . . (2)

c) [1 pt] Deduce from the resolution of the identity that

〈Ψ0|Ĥ|Ψ0〉 − 〈Φ0|Ĥ|Φ0〉 ≈ −
1

Ω0

[
〈Φ0|Ĥ2|Φ0〉 −

(
〈Φ0|Ĥ|Φ0〉

)2
]

+ . . .

d) [2 pts] We consider the standard deviation in energy for the true system when it is in the unperturbed

ground state, i.e., (∆H)Φ0
=
√〈

Φ0

∣∣∣∣(Ĥ − 〈Φ0|Ĥ|Φ0〉 × 1̂
)2
∣∣∣∣Φ0

〉
. Show that (∆H)2

Φ0
= 〈Φ0|Ĥ2|Φ0〉 −(

〈Φ0|Ĥ|Φ0〉
)2
. What is the fundamental reason why (∆H)Φ0

differs from zero? How does this observa-

tion connect to the concept of energy fluctuation? Hint: You may begin your answer with a comparison

of (∆H)2
Ψ0

with (∆H)2
Φ0
.

e) [1.5 pts] Conclude from question 3. c) that applying second-order perturbation theory to the ground state

essentially consists in describing ground-state energy fluctuations around the energy obtained through

first order.
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