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Solving the electronic structure problem for molecules or solids consists in solving
the electronic Schrédinger equation,

HY; = Er¥;.
The electronic wavefunction ¥y = ¥y (r1,r2,...,ry) depends on the position
(and spin) of the (V) electrons.
H is the Hamiltonian operator.
There is in principle an infinite number of solutions.

The solution with the lowest energy (usually labelled as I = 0) is referred to as the
ground-state solution.

The higher-energy solutions (I > 0) are the excited-state solutions.

In this course, we will work within the Born—Oppenheimer approximation.
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Electronic structure theo

@ In other words, the positions of the nuclei will be fixed while we are solving the
Schrodinger equation for the electrons.

@ Vibronic effects will not be discussed.
@ The N-electron Hamiltonian reads H = T + Wee + Vie where
N

X h? 5 n? A A L
T 2:1 Ve =— Z:l 712 + P + 71 — kinetic energy

n 2Me

1=

N
A e? .
Wee = E -————————X — two-electron repulsion
4 €0 |I'1' —r;

i<j
N
Vae = E Une(T7) X ——  electron-nuclei attraction
i=1
nuclei
Z

where (r) Z AC
Une(r) = — —_—
ne ~ dmeo [r — Ra|

@ Note that the operators are written in S/ units.
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Atomic units

@ It is convenient to use unitless coordinates and energies where the Bohr radius

o 4W60ﬁ2

a0 = 5~ ~ 0.529A
Me€

and twice the ionization energy of the hydrogen atom

4
Me€
Ei= ———— x13.6eV
U (dmeo)2h2 ¢
are used as reference:
x — T==z/ao
y — §=uy/ao
z — Z=z/ao
E — FE=E/(22Er)

@ This is the system of so-called atomic units (a.u.).
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@ In practice, the "tilde" symbol is dropped.

@ It can be shown that, when atomic units are employed, the Hamiltonian looks like
if “h=me=e?/(4meo) = 17.

@ As a result, the operators will be written as follows from now on:

N 1
Wee = — X
ee Z [r; — ;]

1<j

nuclei

) e - NS Za
0=- X R

Emmanuel Fromager (UdS) Modelling 2: Extended systems in DFT



1D extended system: linear chain of hydrogen atoms

@ Nuclear potential energy (in atomic units) for a linear and periodic chain of atoms:

Une(r) = vne(z, 9, 2 Z

I

where Z = {0,+1,+2,...} and a is the lattice constant.

@ For simplicity, we will consider a chain of hydrogen atoms (Z = 1) in the following.
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Nuclear potential for M hydrogen atoms and a = 3.0 a.u.
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Nuclear potential for M hydrogen atoms and a = 3.0 a.u.
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Nuclear potential for M hydrogen atoms and a = 3.0 a.u.

'Une(x7y = 07 z
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Nuclear potential for M hydrogen atoms and a = 3.0 a.u.
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Nuclear potential for M hydrogen atoms and a = 3.0 a.u.

M =101

Une(z,y =0, 2
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The Chemist's approach to periodic systems

@ In order to get some insight into the effect of a periodic nuclear potential on the
wavefunction we will (for now) restrict the discussion to one-electron systems.

@ By analogy with chemistry, we can use, as a starting point, the concept of linear
combination of atomic orbitals (LCAO).

@ Let's start with a single atom at position z = 0:

Uy(z) = %e"’”‘

0.6 T
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04 1
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Bonding orbital in the diatomic (M = 2)

1
Po(x) = Ners (e_|z|+6_"_“|) with @ = 3.0 a.u.
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Bonding/antibonding orbitals in the diatomic (M = 2)

1
V()= N (e"”:ﬁ:e"m’“‘) with a = 3.0 a.u.
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Bonding/antibonding densities in the diatomic (M = 2)

1
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1 (M-1)/2

Uy (z) = Z e~lztnxal where a = 3.0 a.u.
VI e (M-1)/2
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(M-1)/2
Uy(x) = Z e~lztnxal where a = 3.0 a.u.
n=—(M—1)/2
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(M-1)/2

1
Uo(x) = e~lTtnxal - Ghere @ = 3.0 au.
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(M—1)/2
Uo(r) = Z e~ltmxal  where a = 3.0 a.u.
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Hiickel (or tight-binding

@ Let us try to rationalize our chemical approach from first principles.
@ How can we generate (approximate) solutions to the Schrédinger equation?

@ We can project the latter onto a basis of (localized) 1s atomic orbitals:

1 — z—na)? 2422
n(r) = —ze VT

Nz

@ The (one-electron) Hamiltonian matrix elements are

hnm = <¢n

o) = /dr G1.(1) X b (),

. 1
where h = —§Vf + Une(r)X.

Emmanuel Fromager (UdS) Modelling 2: Extended systems in DFT



Hiickel (or tight-binding)
[solution available here]

(1) Show that the diagonal elements h,, have the same value (the “a” of Hiickel
theory).

(2) Show that the matrix elements h,,(,41) between two neighboring 1s orbitals have
the same value (the “3"” of Hiickel theory, also denoted “t” or “—t").

(3) Show that, if we neglect the overlap between non-neighboring 1s orbitals in the
calculation of the Hamiltonian matrix elements, then the latter can be written as follows,

hn'm = a5n7n + /3(5n(m+1) + 6n(m—1))

Comment 1: for sake of simplicity, the overlap between neighboring orbitals is usually
neglected when diagonalizing the one-electron Hamiltonian matrix. In other words, the
orbital basis is assumed to be orthonormal.

Comment 2: o and [ are often used as parameters. They might be optimized in order to
reproduce experimental data. In the latter case, they will also simulate (some part of)

the effect of the two-electron repulsion.
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https://lcqs.unistra.fr/wordpress/wp-content/uploads/dlm_uploads/2023/10/solutions_huckel_eur_dft.pdf

@ Let us now return to the exact one-electron Schrédinger equation:

—%Vf\ll(r) + vne(r) x U(r) = BU(r)

@ The potential exhibits periodicity along the z axis (symmetry property):

’Une(LE =+ a,y, Z) = Uﬂe(x7y7 Z)

@ We would like to transform the initial three-dimensional problem into the following
one-dimensional one,

where  v(z 4 a) = v(z).
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Let us consider the exact wavefunction separation

\I/(I') = \Ij(xvyvz) = SOyz(-’L') X X(xvyaz)v

where the wavefunction ¢,.(z), which is parameterized by the coordinates y and z,
fulfills the following one-dimensional Schrodinger equation,

1 d?

T de? + vz (@) X | pyz(T) = yzpy=(x) | with vy2(2) = vae(w, Y, 2).

Note that the above equation describes a one-dimensional periodic problem since
vy (T + a) = vy ().
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(1) Show that the complementary wavefunction x fulfills

1x(z,y,2) | 1 192 10°
( 2o pn) [* 207 5@] (#v=(@x(:v. )

L1 p-(@) Ox(e.2) )
@yz(l') 837 8:10 + Eyz X X(Cﬂ,y7 Z) - EX(SU»% Z)

(2) Show that, if (i) we neglect the variation in both y and z of ¢,., and (ii) x does not
vary with z, then the above equation becomes

10> 107
—5? - 5?} X(y, 2) + ey2 X x(y,2) = Ex(y, 2).
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Periodicity in the wavefunction

@ Our task is now to solve
L x| e@) = cple)  where w(z+a) = o()
52 TV p(x) =ep(x where v(z + a) = v(x).

@ Let us warm up with the free particle problem [v(z) = 0]:

(i) the solution reads () = C\, ¢'*® and its energy e(k) = k?/2 is a function of k.

=1 is the mass of the electron in atomic units”.

.. 1
(i) Note that ()
dk?

(iii) The variation of ¢(k) with k, which will be modified by the nuclear potential,
is referred to as the dispersion relation.

h2 kK2 1 1 d2%e(k)
thus leadingto m_ = —

* In Sl units, (k) = = .
(k) 2me € h2  dk2
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Periodicity in the wavefunction

@ In the presence of the atoms the wavefunction will have the more general form

+oo .
o(z) = / dk C,p(k)

—o0

@ The function C, (k) is the Fourier transform of the wavefunction ¢.

Note that ¢(z) =0 Vz & Cy(k)=0 Vk.
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Periodicity in the wavefunction
[partial solution available here]

Let us introduce the Fourier transform of the nuclear potential:

v(z) = / o dk C, (k) €**

—o0

(1) Show that the periodicity condition, v(z + a) = v(z) Vz, implies
Cv(k)(l - e”“) =0 Vk.

(2) Deduce that the potential can be written as

Z Vi e | = Z Cy (QWm) %,

Ke2ryg m=—00

The ensemble of K values is called the reciprocal lattice space.
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Periodicity in the wavefunction

(3) Show, from the Fourier transform expressions of the potential and the wavefunction,
that the Schrédinger equation can be rewritten as follows

(%2—5) Colt)+ 3 Vi Colk—K)=0, ¥k (1)

KeZry

or, equivalently (k — k — K'),

(k_K/)Z / 2] !
S e | Colk - K + > Viw—xnColk—K") =0, Vk, VK' (2)

K e2ry,

(4) Check that the free-particle solutions are recovered from Eq. (1).
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Periodicity in the wavefunction

(5) Show that, if Eq. (2) is solved for a given and fixed k value, it becomes equivalent
to the following diagonalization problem

H(k)X (k) = e(k)X(k) 3)
where
X(k) = Xgi(k)=Culk—K")
H(k) = Hpr (k)= @51«1@ + Vi — k)

(6) Eq. (3) has in principle an infinite number of solutions {X(”)(k)} with the

n
corresponding energies {a(")(k)} where n is a quantum number. Show that the

n
corresponding wavefunction reads

o™ (k, x) = > i (k — K')elth=1De (4)

2
Kie2nz
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Interlude on the first Brillouin zone

(n)(k .T Z C(n) k— K) i(k—K")x

2
K'e (Z"Z

Note that

C(‘(on) (k‘ o K-,y)ei(ka")z

|
(]

o™ ( ket 2T ,:E)
a
K e(2zz-2x)

_ Z Cén)(k_K/)ei(k—I(')z (5)

|
©

3
/‘:/ ISl ‘
=]
&

Conclusion: The solutions to the k-dependent Schrodinger equation (3) are periodic in
k with the period 27" Therefore we only need to solve Eq. (3) for k values that belong
to an interval of length 27" We usually consider the range —% < k < +7, which is
referred to as the first Brillouin zone.
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Periodicity in the wavefunction

(7) Bloch's theorem states that the wavefunction can be written as follows,

") (k,2) = & x u™ (k) |

where  u™(k,z 4+ a) =u™ (k,z) < periodicity of the lattice!

Show that this theorem is indeed recovered from Eq. (4).

Let us recall our chemical approach:

(M—-1)/2

1 _
u(")(k,a:) — lim g~ letnxal

M —+o0 M

n=—(M-1)/2

ikx k=0
&

+1 for any z (bonding!)

e 8% 41 forx=0 and —1 forx=a (antibonding!)
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Periodicity of the density

[k ) = & x (ko)

Note that, unlike the wave function, the density has the periodicity of the lattice:

2 o2 2 2
‘cp(")(k,ac)‘ = |e'*® X‘u(")(k,x)‘ :‘u(")(kﬂc)‘

)

so that

2

2 2 2
e (ko4 a)| = [u® hwt a)| = [u )| = [0 (k)
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One-electron picture of the many-electron problem

@ The one-electron picture consists in (i) calculating the energy levels of a single
electron and (ii) distributing all the electrons among them (Aufbau principle).

LUMO — wi(r),

™
N

HOMO

@ As you know, this picture does not give an exact description of the true electronic
structure because of the two-electron repulsion. It becomes formally exact in
Kohn—-Sham DFT as, in this case, the one-electron picture reproduces the exact
ground-state density.
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Concept of band structure

PHYSICAL REVIEW B 93, 205205 (2016)

More realistic band gaps from meta-generalized gradient approximations: Only in a generalized
Kohn-Sham scheme

Zeng-hui Yang, Haowei Peng, Jianwei Sun, and John P. Perdew
Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
(Received 1 March 2016; revised manuscript received 6 May 2016; published 24 May 2016)
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FIG. 3. The band structure of Si calculated with PBE, gKS
SCAN, and KS(KLI) SCAN.
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Simplification of the many-electron problem

@ The exact ground-state electronic structure is in principle described by a
many-electron wavefunction Wo (X1,X2,...,XN)-

@ When it comes to describe an extended system, where the number of electrons N
may go to infinity, it is natural to wonder if the wave function is actually a well
defined and reachable mathematical object.

@ From a practical point of view, this is for sure not the way to go.

@ State-of-the-art methods in condensed matter physics do not rely on
many-electron wavefunctions.

@ They use reduced quantities instead.

@ The most famous one (in the physics community) is the time-ordered one-electron
Green function G(x,t1;x',t2).

@ Another important (and simpler) quantity is the electron density

n(r) = —i E lim  G(x,t1;%x,t2), where x = (r,0).
11 to—t1,t1 <t2
o=%35

@ The latter is the basic variable in density-functional theory.
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The time-ordered one-electron Green function

G(X’ t]; X/a t2) =
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The time-ordered one-electron Green function

— (W | P(x, 1)V (X, 1) | P)

6>

———

G(X’ t]; X/a t2) =
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The time-ordered one-electron Green function

— (W | P(x, 1)V (X, 1) | P)

6>

———

G(X’ t]; X/a t2) =
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n Green function

Creates an electron at
position/spin X' at time t,

|

— (W | P(x, 1)V (X, 1) | P)

>t
- Removes an electron from
) _ position/spin X at time t;
G(X’ t]a X ’ t2) -
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n Green function

Creates an electron at
position/spin X' at time t,

|

— (W | P(x, 1)V (X, 1) | P)

>t l
- Removes an electron from
) _ position/spin X at time t
G(X’ t]a X ’ t2) -
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The time-ordered one-electron Green function

6>

o

G(X’ t]; X/a t2) =

Emmanuel Fromager (UdS)

Creates an electron at
position/spin X' at time t,

—i(Y, | P(x, tl)‘iﬁ(x’, t,)| W) Electron affinity
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The time-ordered one-electron Green function

Creates an electron at
position/spin X' at time t,

|

—i(Y, | P(x, tl)‘iﬁ(x’, t,)| W) Electron affinity

6>

o

G(X’ t]; X/a t2) =

f < tz\

(W, |V (x', 1) P(x, 1) | W)
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The time-ordered one-electron Green function

Creates an electron at
position/spin X' at time t,

|

—i(Y, | P(x, tl)‘iﬁ(x’, t,)| W) Electron affinity

6>

G(X’ t]; X/a t2) =
H < tz\

(W | V(. 1) P(x. 1) W)

|

Removes an electron from
position/spin X at time t,
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The time-ordered one-electron Green function

Creates an electron at
position/spin X' at time t,

|

—i(Y, | P(x, tl)‘iﬁ(x’, t,)| W) Electron affinity

6>

G(X’ t]; X/a t2) =
H < tz\

lonization

(W | V(. 1) P(x. 1) W)

|

Removes an electron from
position/spin X at time t,
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The time-ordered one-electron Green function

FfFx=x..

G(Xs t]; X’ t2) =

L =t

(W, | Vi(x, 1) P(x, 1)) | W)
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The time-ordered one-electron Green function

G(Xs t]; X’ t2) =

L =t

(W, | Vi(x, 1)P(x,1,) | ¥,) = in(x) Density!
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