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Molecular orbital energy diagram and gaps
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Limitations of the one-electron picture

Mind the gap!

Jean-Luc Bredasab

The energy gap between the highest occupied and lowest unoccupied electronic levels is a critical

parameter determining the electronic, optical, redox, and transport (electrical) properties of a material.

However, the energy gap comes in many flavors, such as the band gap, HOMO–LUMO gap,

fundamental gap, optical gap, or transport gap, with each of these terms carrying a specific meaning.

Failure to appreciate the distinctions among these different energy gaps has caused much confusion in

the literature, which is manifested by the frequent use of improper terminology, in particular, in the case

of organic molecular or macromolecular materials. Thus, it is our goal here to clarify the meaning of the

various energy gaps that can be measured experimentally or evaluated computationally, with a focus on

p-conjugated materials of interest for organic electronics and photonics applications.

It is useful to start our discussion at the molecular level.
Without losing generality, we will assume the most common,
simple case of p-conjugated systems with a closed-shell, singlet
electronic ground state. Currently, in the organic materials
community, there is widespread use of readily available
quantum-chemistry computational codes based on the Hartree–
Fock (HF) method or density functional theory (DFT). As a
consequence, a large number of manuscripts present the results
of molecular orbital (MO) calculations on the neutral mole-
cules. From the outset, it is important to keep in mind that MOs
correspond to one-electron wave functions, each associated
with a specic energy level; of special interest then are the
energies of the highest occupied and lowest unoccupied
molecular orbitals, the HOMO and LUMO. Importantly,
however, what is measured experimentally upon excitation [or
ionization] is the difference in energy between the N-electron
ground state of the molecule and its N-electron excited state [or
its N ! 1-electron ionized state].

In the context of Hartree–Fock calculations, following Koop-
mans’ theorem, the energy of the HOMO level can be considered
as (minus) the vertical ionization potential (IP) while the LUMO
energy represents (minus) the vertical electron affinity (EA,
where we adopt the IUPAC denition, i.e., the electron affinity is
the negative of the energy change when adding an electron to the
neutral species; within this denition, most p-conjugated
systems have positive EA values since the extra electron is
bound). Koopmans’ theorem in fact constitutes a rather crude
approximation since the ionization potential, from a rigorous
standpoint, corresponds to the difference between the total

energies of the N " 1-electron and N-electron states while the
electron affinity is the difference between the total energies of
the N-electron and N + 1-electron states. (It is interesting to
realize that the application of Koopmans’ theorem somehow
works for a number of systems because of a compensation of
errors related to neglecting the impact upon vertical ionization
of both electron relaxations and electron correlations). In the
context of DFT, we note that the exact functional obeys the
property that the HOMO energy corresponds exactly to (minus)
the vertical ionization potential; the electron affinity is then
obtained as (minus) the HOMO energy of the N + 1-electron
system. At this point in time, however, nding the exact func-
tional remains the holy grail of DFT practitioners.

In the molecular case, the fundamental gap is dened as the
difference between the ionization potential and electron affinity:
Efund ¼ IP " EA. Experimentally, it can be determined via a
combination of gas-phase ultraviolet photoelectron spectroscopy
and electron attachment spectroscopy; at the computational
level, it requires the comparison between the total energy of the
N-electron ground state and that of the N + 1-electron state (to
determine EA) or that of the N " 1-electron state (to determine
IP). The calculated HOMO–LUMO gap, i.e., the difference between
the calculated HOMO and LUMO energy levels, only provides an
approximation to the fundamental gap; the quality of that
approximation strongly depends on the specics of the compu-
tational methodology (for instance, in the case of DFT, it very
much depends on the nature of the exchange–correlation func-
tional and the amount of Hartree–Fock exchange it includes).

The optical gap of a molecule corresponds to the energy of
the lowest electronic transition accessible via absorption of a
single photon. (Note that in both molecule and material cases,
our discussion will assume that the lowest transition involves
the rst excited state and neglects the more complex instances
where this state is optically forbidden). The optical gap Eopt is
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generally substantially lower than the fundamental gap; the
reason is that, in the excited state (contrary to the ionized state),
the electron and hole remain electrostatically bound to one
another. The difference between the fundamental gap and the
optical gap (when the latter reects the transition from the
ground state to the lowest excited state) is then a measure of
the electron–hole pair binding energy, EB. Fig. 1 provides a
general illustration of the fundamental and optical gaps when
considering molecular state energies.

We now turn our attention from organic molecules to
organic molecular (or polymeric) materials. Here, intermolec-
ular interactions broaden the molecular energy levels into
electronic bands. The widths of these bands depend on the
strengths of these interactions, i.e., on the electronic couplings
between adjacent molecules. As in the case of inorganic semi-
conductors, the upper occupied band can be referred to as the
valence band and the lower unoccupied band as the conduction
band. In perfectly ordered structures, such as defect-free single
crystals, the wave functions delocalize over the whole system.
However, in the disordered structures commonly found in
organic thin lms, the wave functions tend to localize over a few
neighboring molecules or even a single molecule. We note that
the degree of localization/delocalization is a function of the
balance between the strength of the intermolecular electronic
couplings, which favors delocalization, and the extent of
disorder, which leads to localization.

The band gap is dened as the energy difference between the
top of the valence band and the bottom of the conduction band.
Thus, rigorously speaking, it corresponds to the energy differ-
ence between the ionization potential and electron affinity of
the material. The band gap is also referred to as the transport
gap since it represents the minimum energy necessary to create
a positive charge carrier somewhere in the material (IP) minus
the energy gained by adding a negative charge carrier (EA)
elsewhere. The band gap or transport gap can be estimated

experimentally via a combination of ultraviolet photoelectron
spectroscopy (UPS) and inverse photoemission spectroscopy
(IPES). Thus, the band gap is the equivalent, at the materials
level, of the molecular fundamental gap. It is important to note,
however, that the band gap is typically considerably smaller in
energy than the molecular fundamental gap; this is due to the
fact that, in the solid state, p-conjugated molecules adjacent to
the one carrying a charge do strongly polarize, an effect that
stabilizes the cationic and anionic states (each generally by
about one eV in p-conjugated materials).

Upon photon absorption in a p-conjugated organic material,
the lowest optical transition denes the optical gap. It also leads
to the formation of a bound electron–hole pair, termed an
exciton in the context of condensed-matter physics (the elec-
tron–hole pair can indeed be considered as a quasiparticle as it
can move from molecule to molecule). Then, the difference
between, on the one hand, the band gap or transport gap and, on
the other hand, the optical gap between the ground state and the
lowest excited state denes the exciton binding energy; in
p-conjugatedmaterials, EB is usually on the order of a few tenths
of eV (again, a value smaller than the electron–hole pair binding
energy in the gas phase due to stabilization of both cations and
anions by polarization of surrounding molecules). It is useful to
bear inmind that themagnitude of the exciton binding energy is
due not only to the small dielectric constant (3! 3–5) but also to
substantial electron–electron and electron–vibration interac-
tions typical of p-conjugated materials. In contrast, in conven-
tional inorganic semiconductor crystals, the exciton binding
energy is oen so small (a few meV) that at room temperature
optical excitation directly leads to the formation of free charge
carriers (and thus in these systems Eopt ! Etransport).

Finally, it is useful to mention that the solid-state values of
ionization potential and electron affinity are, in many instances,
approximated experimentally via cyclic voltammetry measure-
ments of the oxidation and reduction potentials carried out in
solution. Conversion factors, assessed on a limited set of systems,
are then used to translate the redox potentials into solid-state
ionization energies. The values of ionization potential and elec-
tron affinity determined in this way have thus to be taken with
much caution. Moreover, given the use of several approaches to
the conversion factors, it is difficult to compare values from
different sources; to minimize this issue, it is highly desirable
that, in addition to the estimated IP and EA values, the experi-
mental electrode potentials and the approximations and
assumptions used in the conversions be reported. (Oen, these
cyclic-voltammetry-based ionization potentials and electron
affinities are inappropriately referred to as “HOMO” and “LUMO”
energies).

In a number of instances, either the oxidation potential or the
reduction potential is experimentally not accessible. A common
procedure is then to use the optical gap to deduce the missing
potential. For instance, in the absence of a measurable reduction
potential, the electron affinity would be assessed by subtracting
the optical gap from the ionization potential. As should be clear
from our discussion, this practice is highly misleading since it
ignores the exciton binding energy built into the optical gap.
Other complications also arise with this practice when the

Fig. 1 Illustration of gap energies in the molecular case:S0 denotes the
(singlet) electronic ground state and S1 the lowest (singlet) excited state
(considered here to be accessible via one-photon absorption). The S1" S0
energy difference then corresponds to the optical gap Eopt. The magni-
tude of the ionization potential is given by the blue vertical line and the
magnitude of the electron affinity by the green vertical line; the IP " EA
difference represents the fundamental gap, Efund. The electron–hole pair
binding energy, EB, is given by Efund " Eopt.
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Many-body problem in density-functional theory

In quantum mechanics, the ground-state N-electron electronic repulsion energy is
expressed (in atomic units) as follows,

Wee =
N(N − 1)

2

∫
R3

dr1

∫
R3

dr2

∫
R3

dr3 . . .

∫
R3

drN
|Ψ0(r1, r2, r3, . . . , rN)|2

|r1 − r2|
,

where Ψ0(r1, r2, r3, . . . , rN) is the N-electron ground-state wave function.

In DFT, Wee is determined from the ground-state N-electron density nN
0 (r), which

is a much simpler mathematical object than the ground-state wave function.

For that purpose, the so-called Hartree-exchange-correlation (Hxc) density
functional has been introduced by Kohn and Sham (KS),

Wee ← EHxc [n ]|n=nN0
,

where the density is determined exactly from the KS orbitals as follows,

nN
0 (r) =

N∑
i=1

|ϕi (r)|2 .
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Self-consistent equations fulfilled by the KS orbitals:

−1

2
∇2

rϕi (r) +

[
vext(r) +

δEHxc

[
nN

0

]
δn(r)

]
× ϕi (r) = εiϕi (r),

where vext(r) is any external local (multiplicative) interaction potential energy (the
nuclear-electron attraction potential for example) at position r.

The additional Hxc potential δEHxc

[
nN

0

]
/δn(r) ensures that the density of the

true system is recovered, in principle exactly, from the KS orbitals.

HOMO '6(r), "6

'1(r), "1

'2(r), "2

'3(r), '4(r), '5(r), "3 = "4 = "5

'7(r), "7

'8(r), "8

LUMO

2

Emmanuel Fromager (Unistra) Modelling 2: Extended systems in DFT 5 / 14



Concept of band structure

MORE REALISTIC BAND GAPS FROM META- . . . PHYSICAL REVIEW B 93, 205205 (2016)
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FIG. 2. Comparison of vXC’s of bulk Si along the Si-Si bond
for SCAN, LDA, and GGA. The Si atoms are located at r = 0 and
r = 2.35Å. The vertical dashed line is a numerical artifact and does
not affect the band structure.

differ in small details. Similar to Fig. 1, the vXC’s of SCAN
for bulk Si also have small bumps. Though the meta-GGA is a
higher rung functional on the Jacob’s ladder than the GGA, the
improvement in vXC is small going from GGA to meta-GGA,
unlike going from LDA to GGA. The differences between the
KS meta-GGA gaps and the PBE gaps in Table I are small as
a consequence.

The band structures of Si and GaAs calculated with PBE
and SCAN are plotted in Figs. 3 and 4. The KS(KLI) SCAN
band structure is very close to the PBE band structure, due to
the corresponding vXC being similar to the PBE vXC. The gKS
SCAN band structure has the same overall shape as that of the
PBE and the KS(KLI), and the main difference is in the band
gap.

Though the gKS meta-GGA band gaps improve over the
PBE gaps in general, it is disappointing that gKS meta-GGA
gaps for Ge, InN, and CdO still vanish. However, it is possible
for meta-GGAs to open the gap for gapless materials in GGA.
gKS SCAN has [57] a 0.4 eV gap for β-MnO2, which is
gapless in GGA, and the value is close to the experimental
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FIG. 3. The band structure of Si calculated with PBE, gKS
SCAN, and KS(KLI) SCAN.
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FIG. 4. The band structure of GaAs calculated with PBE, gKS
SCAN, and KS(KLI) SCAN.

value 0.3 eV. The M06L metaGGA was reported to open the
gap of Ge at 0.14 eV [11,58].

The improvement of the band gap occurs since, unlike the
KS gap, the gKS gap is an approximation to the fundamental
gap of the meta-GGA. A Janak-type [59] theorem has been
proven for the OEP [9], and it states that the gKS gap
approximately equals the fundamental gap for the same
functional, assuming fixed orbitals. This assumption does not
apply to finite systems, but it is true for periodic systems,
since the charge density and the orbitals of a periodic system
undergo only an infinitesimal change when the number of
electrons changes by one.

GGA band gaps should be compared with the OEP meta-
GGA band gaps for a fair comparison between approximated
functionals, since the OEP meta-GGA band gap is the KS gap.
The SCAN functional is the only functional that satisfies all
the known exact conditions, but the KS(KLI) SCAN gaps do
not have significant improvements over the PBE gaps. This is
probably due to the fact that the GGA and SCAN OEP gaps
closely approximate the exact KS gap, which underestimates
the fundamental gap. This has been illustrated in Fig. 5,
where the errors of the EXX+RPA(OEP) KS gaps [56] are
also plotted. EXX+RPA (exact exchange plus random phase
approximation for correlation) is a high-level (fifth rung)
method, and its OEP gaps are expected to be very close to those
of the corresponding exact KS potential. Figure 5 shows that
both PBE and KS SCAN gaps are already good approximations
to the exact KS gap.

Some of the gKS band gaps of MS2 and TPSS are smaller
than the corresponding OEP band gaps. We do not find this
behavior in other functionals. Many of the KS(KLI) TPSS
calculations fail to converge. This is probably a numerical
issue in the calculation of ∇(∂eXC/∂τσ ), due to the complicated
functional form of TPSS.

The energy functional of the exact DFT has deriva-
tive discontinuities %XC at integer electron numbers [7],
where %XC = Eg − EKS

g . The exact KS potential jumps up
by the positive constant %XC as the electron number crosses
the value that makes the solid electrically neutral. LDA and
GGA miss much or all of the derivative discontinuity due to the

205205-5
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More realistic band gaps from meta-generalized gradient approximations: Only in a generalized
Kohn-Sham scheme

Zeng-hui Yang, Haowei Peng, Jianwei Sun, and John P. Perdew
Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA

(Received 1 March 2016; revised manuscript received 6 May 2016; published 24 May 2016)

Unlike the local density approximation (LDA) and the generalized gradient approximation (GGA), calculations
with meta-generalized gradient approximations (meta-GGA) are usually done according to the generalized
Kohn-Sham (gKS) formalism. The exchange-correlation potential of the gKS equation is nonmultiplicative,
which prevents systematic comparison of meta-GGA band structures to those of the LDA and the GGA. We
implement the optimized effective potential (OEP) of the meta-GGA for periodic systems, which allows us to
carry out meta-GGA calculations in the same KS manner as for the LDA and the GGA. We apply the OEP to
several meta-GGAs, including the new SCAN functional [Phys. Rev. Lett. 115, 036402 (2015)]. We find that
the KS gaps and KS band structures of meta-GGAs are close to those of GGAs. They are smaller than the more
realistic gKS gaps of meta-GGAs, but probably close to the less-realistic gaps in the band structure of the exact
KS potential, as can be seen by comparing with the gaps of the EXX+RPA OEP potential. The well-known grid
sensitivity of meta-GGAs is much more severe in OEP calculations.

DOI: 10.1103/PhysRevB.93.205205

I. INTRODUCTION

Semiconductor devices play an important role in modern
technologies, and the rapid development of electronic structure
theory methods has made computational design of such
devices possible. The band gap and the band structure are
undoubtedly the most important properties of semiconductors,
since these are the properties that distinguish semiconductors
from other periodic systems [1]. Computational evaluation of
the band gap and the band structure is thus a topic of active
research.

The fundamental band gap is a ground-state property, and
it is defined as Eg = I − A, where I is the ionization energy
and A is the electron affinity. I and A are ground-state energy
differences. Eg is also an excited-state property since it is
the unbound limit of the exciton series. Eg is very difficult to
calculate for periodic systems, since there is no systematic way
of adding/removing one electron to/from the solid in a periodic
calculation, and the bulk limit can only be approached by the
calculation of very big clusters. Many-body methods such as
the GW method [2] calculate Eg and the quasiparticle band
structure accurately, but the computational cost is high.

The density-functional theory (DFT) [3–5] is a formally
exact electronic structure method for the ground-state energy
and electron density with an excellent balance of accuracy and
computational efficiency, which is achieved by mapping the
real interacting system to a fictitious Kohn-Sham (KS) system
of noninteracting electrons with a multiplicative effective
exchange-correlation (xc) potential (the functional derivative
of the exchange-correlation energy with respect to the density).
The exact Kohn-Sham potential yields the exact density but
not the exact quasiparticle band structure and gap. Though the
exact energy functional of the DFT is unknown, there exists a
plethora of approximations, which has been ordered into the
“Jacob’s ladder” [6] hierarchy. The first and the second rungs of
the Jacob’s ladder are the local density approximation (LDA)
and the generalized gradient approximation (GGA), and
they severely underestimate the fundamental gap in periodic
systems. For periodic systems, KS DFT cannot calculate Eg

from its definition, and one commonly approximates Eg with
the KS gap EKS

g = ϵKS
LUMO − ϵKS

HOMO, where ϵKS
HOMO and ϵKS

LUMO
are the KS orbital energies of the highest occupied orbital and
of the lowest unoccupied orbital, respectively. However, EKS

g

is not equal to Eg even with the exact functional, due to the
derivative discontinuity (DD) [7]. The band gap problem has
been an obstacle in the application of DFT to periodic systems.

The generalized Kohn-Sham (gKS) [8] scheme is a different
formulation of the DFT, which allows a nonmultiplicative but
still Hermitian xc potential operator. The gKS gap E

gKS
g =

ϵ
gKS
LUMO − ϵ

gKS
HOMO can be a better approximation to Eg than

is the KS gap [9]. The third rung of the Jacob’s ladder,
the meta-generalized gradient approximation (meta-GGA), is
commonly implemented in the gKS scheme according to the
method of Neumann, Nobes, and Handy (also denoted as gKS
in this paper) [10]. The gKS meta-GGA band gap of periodic
systems improves [11] over the KS GGA gaps as expected. In
this work we find that, with the recently proposed strongly
constrained and appropriately normed (SCAN) functional
[12,13], the gKS meta-GGA gap corrects about 20%–50%
of the difference between the experimental fundamental gap
and the GGA KS gap.

Due to the restriction in the functional form of GGA, a GGA
cannot perform well for finite systems and periodic systems
at the same time [14]. On the other hand, the functional form
of meta-GGA can satisfy more exact conditions and has a
wider range of applicability than the GGA form. The SCAN
functional is a nonempirical functional that satisfies all known
exact constraints appropriate to a semilocal functional, and
is expected to perform well for systems with very different
kinds of bonds. The computational accuracies of the SCAN
functional for many properties improve over those of the
GGAs, with only marginal increase of computational cost
[12]. We find that SCAN also improves band gaps, but the
comparison is between meta-GGA gKS gaps and GGA KS
gaps, which are not the same quantity. It is unclear whether
the KS gap itself is improved, or just the gKS gap is improved.
One needs to do meta-GGA calculations in the KS scheme to

2469-9950/2016/93(20)/205205(9) 205205-1 ©2016 American Physical Society

Band gap
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Concept of band structure

MORE REALISTIC BAND GAPS FROM META- . . . PHYSICAL REVIEW B 93, 205205 (2016)

−2.5

−2

−1.5

−1

−0.5

 0  1  2  3

v x
c 

(a
.u

.)

r (Å)

LDA
PBE

KS(KLI) SCAN

FIG. 2. Comparison of vXC’s of bulk Si along the Si-Si bond
for SCAN, LDA, and GGA. The Si atoms are located at r = 0 and
r = 2.35Å. The vertical dashed line is a numerical artifact and does
not affect the band structure.

differ in small details. Similar to Fig. 1, the vXC’s of SCAN
for bulk Si also have small bumps. Though the meta-GGA is a
higher rung functional on the Jacob’s ladder than the GGA, the
improvement in vXC is small going from GGA to meta-GGA,
unlike going from LDA to GGA. The differences between the
KS meta-GGA gaps and the PBE gaps in Table I are small as
a consequence.

The band structures of Si and GaAs calculated with PBE
and SCAN are plotted in Figs. 3 and 4. The KS(KLI) SCAN
band structure is very close to the PBE band structure, due to
the corresponding vXC being similar to the PBE vXC. The gKS
SCAN band structure has the same overall shape as that of the
PBE and the KS(KLI), and the main difference is in the band
gap.

Though the gKS meta-GGA band gaps improve over the
PBE gaps in general, it is disappointing that gKS meta-GGA
gaps for Ge, InN, and CdO still vanish. However, it is possible
for meta-GGAs to open the gap for gapless materials in GGA.
gKS SCAN has [57] a 0.4 eV gap for β-MnO2, which is
gapless in GGA, and the value is close to the experimental
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value 0.3 eV. The M06L metaGGA was reported to open the
gap of Ge at 0.14 eV [11,58].

The improvement of the band gap occurs since, unlike the
KS gap, the gKS gap is an approximation to the fundamental
gap of the meta-GGA. A Janak-type [59] theorem has been
proven for the OEP [9], and it states that the gKS gap
approximately equals the fundamental gap for the same
functional, assuming fixed orbitals. This assumption does not
apply to finite systems, but it is true for periodic systems,
since the charge density and the orbitals of a periodic system
undergo only an infinitesimal change when the number of
electrons changes by one.

GGA band gaps should be compared with the OEP meta-
GGA band gaps for a fair comparison between approximated
functionals, since the OEP meta-GGA band gap is the KS gap.
The SCAN functional is the only functional that satisfies all
the known exact conditions, but the KS(KLI) SCAN gaps do
not have significant improvements over the PBE gaps. This is
probably due to the fact that the GGA and SCAN OEP gaps
closely approximate the exact KS gap, which underestimates
the fundamental gap. This has been illustrated in Fig. 5,
where the errors of the EXX+RPA(OEP) KS gaps [56] are
also plotted. EXX+RPA (exact exchange plus random phase
approximation for correlation) is a high-level (fifth rung)
method, and its OEP gaps are expected to be very close to those
of the corresponding exact KS potential. Figure 5 shows that
both PBE and KS SCAN gaps are already good approximations
to the exact KS gap.

Some of the gKS band gaps of MS2 and TPSS are smaller
than the corresponding OEP band gaps. We do not find this
behavior in other functionals. Many of the KS(KLI) TPSS
calculations fail to converge. This is probably a numerical
issue in the calculation of ∇(∂eXC/∂τσ ), due to the complicated
functional form of TPSS.

The energy functional of the exact DFT has deriva-
tive discontinuities %XC at integer electron numbers [7],
where %XC = Eg − EKS

g . The exact KS potential jumps up
by the positive constant %XC as the electron number crosses
the value that makes the solid electrically neutral. LDA and
GGA miss much or all of the derivative discontinuity due to the
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Kohn-Sham (gKS) formalism. The exchange-correlation potential of the gKS equation is nonmultiplicative,
which prevents systematic comparison of meta-GGA band structures to those of the LDA and the GGA. We
implement the optimized effective potential (OEP) of the meta-GGA for periodic systems, which allows us to
carry out meta-GGA calculations in the same KS manner as for the LDA and the GGA. We apply the OEP to
several meta-GGAs, including the new SCAN functional [Phys. Rev. Lett. 115, 036402 (2015)]. We find that
the KS gaps and KS band structures of meta-GGAs are close to those of GGAs. They are smaller than the more
realistic gKS gaps of meta-GGAs, but probably close to the less-realistic gaps in the band structure of the exact
KS potential, as can be seen by comparing with the gaps of the EXX+RPA OEP potential. The well-known grid
sensitivity of meta-GGAs is much more severe in OEP calculations.
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I. INTRODUCTION

Semiconductor devices play an important role in modern
technologies, and the rapid development of electronic structure
theory methods has made computational design of such
devices possible. The band gap and the band structure are
undoubtedly the most important properties of semiconductors,
since these are the properties that distinguish semiconductors
from other periodic systems [1]. Computational evaluation of
the band gap and the band structure is thus a topic of active
research.

The fundamental band gap is a ground-state property, and
it is defined as Eg = I − A, where I is the ionization energy
and A is the electron affinity. I and A are ground-state energy
differences. Eg is also an excited-state property since it is
the unbound limit of the exciton series. Eg is very difficult to
calculate for periodic systems, since there is no systematic way
of adding/removing one electron to/from the solid in a periodic
calculation, and the bulk limit can only be approached by the
calculation of very big clusters. Many-body methods such as
the GW method [2] calculate Eg and the quasiparticle band
structure accurately, but the computational cost is high.

The density-functional theory (DFT) [3–5] is a formally
exact electronic structure method for the ground-state energy
and electron density with an excellent balance of accuracy and
computational efficiency, which is achieved by mapping the
real interacting system to a fictitious Kohn-Sham (KS) system
of noninteracting electrons with a multiplicative effective
exchange-correlation (xc) potential (the functional derivative
of the exchange-correlation energy with respect to the density).
The exact Kohn-Sham potential yields the exact density but
not the exact quasiparticle band structure and gap. Though the
exact energy functional of the DFT is unknown, there exists a
plethora of approximations, which has been ordered into the
“Jacob’s ladder” [6] hierarchy. The first and the second rungs of
the Jacob’s ladder are the local density approximation (LDA)
and the generalized gradient approximation (GGA), and
they severely underestimate the fundamental gap in periodic
systems. For periodic systems, KS DFT cannot calculate Eg

from its definition, and one commonly approximates Eg with
the KS gap EKS

g = εKS
LUMO − εKS

HOMO, where εKS
HOMO and εKS

LUMO
are the KS orbital energies of the highest occupied orbital and
of the lowest unoccupied orbital, respectively. However, EKS

g

is not equal to Eg even with the exact functional, due to the
derivative discontinuity (DD) [7]. The band gap problem has
been an obstacle in the application of DFT to periodic systems.

The generalized Kohn-Sham (gKS) [8] scheme is a different
formulation of the DFT, which allows a nonmultiplicative but
still Hermitian xc potential operator. The gKS gap E

gKS
g =

ε
gKS
LUMO − ε

gKS
HOMO can be a better approximation to Eg than

is the KS gap [9]. The third rung of the Jacob’s ladder,
the meta-generalized gradient approximation (meta-GGA), is
commonly implemented in the gKS scheme according to the
method of Neumann, Nobes, and Handy (also denoted as gKS
in this paper) [10]. The gKS meta-GGA band gap of periodic
systems improves [11] over the KS GGA gaps as expected. In
this work we find that, with the recently proposed strongly
constrained and appropriately normed (SCAN) functional
[12,13], the gKS meta-GGA gap corrects about 20%–50%
of the difference between the experimental fundamental gap
and the GGA KS gap.

Due to the restriction in the functional form of GGA, a GGA
cannot perform well for finite systems and periodic systems
at the same time [14]. On the other hand, the functional form
of meta-GGA can satisfy more exact conditions and has a
wider range of applicability than the GGA form. The SCAN
functional is a nonempirical functional that satisfies all known
exact constraints appropriate to a semilocal functional, and
is expected to perform well for systems with very different
kinds of bonds. The computational accuracies of the SCAN
functional for many properties improve over those of the
GGAs, with only marginal increase of computational cost
[12]. We find that SCAN also improves band gaps, but the
comparison is between meta-GGA gKS gaps and GGA KS
gaps, which are not the same quantity. It is unclear whether
the KS gap itself is improved, or just the gKS gap is improved.
One needs to do meta-GGA calculations in the KS scheme to
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FIG. 2. Comparison of vXC’s of bulk Si along the Si-Si bond
for SCAN, LDA, and GGA. The Si atoms are located at r = 0 and
r = 2.35Å. The vertical dashed line is a numerical artifact and does
not affect the band structure.

differ in small details. Similar to Fig. 1, the vXC’s of SCAN
for bulk Si also have small bumps. Though the meta-GGA is a
higher rung functional on the Jacob’s ladder than the GGA, the
improvement in vXC is small going from GGA to meta-GGA,
unlike going from LDA to GGA. The differences between the
KS meta-GGA gaps and the PBE gaps in Table I are small as
a consequence.

The band structures of Si and GaAs calculated with PBE
and SCAN are plotted in Figs. 3 and 4. The KS(KLI) SCAN
band structure is very close to the PBE band structure, due to
the corresponding vXC being similar to the PBE vXC. The gKS
SCAN band structure has the same overall shape as that of the
PBE and the KS(KLI), and the main difference is in the band
gap.

Though the gKS meta-GGA band gaps improve over the
PBE gaps in general, it is disappointing that gKS meta-GGA
gaps for Ge, InN, and CdO still vanish. However, it is possible
for meta-GGAs to open the gap for gapless materials in GGA.
gKS SCAN has [57] a 0.4 eV gap for β-MnO2, which is
gapless in GGA, and the value is close to the experimental

−8

−4

 0

 4

 8

L Λ Γ ∆ X U,K Σ Γ

E
 (

eV
)

k

PBE
gKS SCAN

KS(KLI) SCAN

FIG. 3. The band structure of Si calculated with PBE, gKS
SCAN, and KS(KLI) SCAN.
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FIG. 4. The band structure of GaAs calculated with PBE, gKS
SCAN, and KS(KLI) SCAN.

value 0.3 eV. The M06L metaGGA was reported to open the
gap of Ge at 0.14 eV [11,58].

The improvement of the band gap occurs since, unlike the
KS gap, the gKS gap is an approximation to the fundamental
gap of the meta-GGA. A Janak-type [59] theorem has been
proven for the OEP [9], and it states that the gKS gap
approximately equals the fundamental gap for the same
functional, assuming fixed orbitals. This assumption does not
apply to finite systems, but it is true for periodic systems,
since the charge density and the orbitals of a periodic system
undergo only an infinitesimal change when the number of
electrons changes by one.

GGA band gaps should be compared with the OEP meta-
GGA band gaps for a fair comparison between approximated
functionals, since the OEP meta-GGA band gap is the KS gap.
The SCAN functional is the only functional that satisfies all
the known exact conditions, but the KS(KLI) SCAN gaps do
not have significant improvements over the PBE gaps. This is
probably due to the fact that the GGA and SCAN OEP gaps
closely approximate the exact KS gap, which underestimates
the fundamental gap. This has been illustrated in Fig. 5,
where the errors of the EXX+RPA(OEP) KS gaps [56] are
also plotted. EXX+RPA (exact exchange plus random phase
approximation for correlation) is a high-level (fifth rung)
method, and its OEP gaps are expected to be very close to those
of the corresponding exact KS potential. Figure 5 shows that
both PBE and KS SCAN gaps are already good approximations
to the exact KS gap.

Some of the gKS band gaps of MS2 and TPSS are smaller
than the corresponding OEP band gaps. We do not find this
behavior in other functionals. Many of the KS(KLI) TPSS
calculations fail to converge. This is probably a numerical
issue in the calculation of ∇(∂eXC/∂τσ ), due to the complicated
functional form of TPSS.

The energy functional of the exact DFT has deriva-
tive discontinuities %XC at integer electron numbers [7],
where %XC = Eg − EKS

g . The exact KS potential jumps up
by the positive constant %XC as the electron number crosses
the value that makes the solid electrically neutral. LDA and
GGA miss much or all of the derivative discontinuity due to the
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I. INTRODUCTION

Semiconductor devices play an important role in modern
technologies, and the rapid development of electronic structure
theory methods has made computational design of such
devices possible. The band gap and the band structure are
undoubtedly the most important properties of semiconductors,
since these are the properties that distinguish semiconductors
from other periodic systems [1]. Computational evaluation of
the band gap and the band structure is thus a topic of active
research.

The fundamental band gap is a ground-state property, and
it is defined as Eg = I − A, where I is the ionization energy
and A is the electron affinity. I and A are ground-state energy
differences. Eg is also an excited-state property since it is
the unbound limit of the exciton series. Eg is very difficult to
calculate for periodic systems, since there is no systematic way
of adding/removing one electron to/from the solid in a periodic
calculation, and the bulk limit can only be approached by the
calculation of very big clusters. Many-body methods such as
the GW method [2] calculate Eg and the quasiparticle band
structure accurately, but the computational cost is high.

The density-functional theory (DFT) [3–5] is a formally
exact electronic structure method for the ground-state energy
and electron density with an excellent balance of accuracy and
computational efficiency, which is achieved by mapping the
real interacting system to a fictitious Kohn-Sham (KS) system
of noninteracting electrons with a multiplicative effective
exchange-correlation (xc) potential (the functional derivative
of the exchange-correlation energy with respect to the density).
The exact Kohn-Sham potential yields the exact density but
not the exact quasiparticle band structure and gap. Though the
exact energy functional of the DFT is unknown, there exists a
plethora of approximations, which has been ordered into the
“Jacob’s ladder” [6] hierarchy. The first and the second rungs of
the Jacob’s ladder are the local density approximation (LDA)
and the generalized gradient approximation (GGA), and
they severely underestimate the fundamental gap in periodic
systems. For periodic systems, KS DFT cannot calculate Eg

from its definition, and one commonly approximates Eg with
the KS gap EKS

g = εKS
LUMO − εKS

HOMO, where εKS
HOMO and εKS

LUMO
are the KS orbital energies of the highest occupied orbital and
of the lowest unoccupied orbital, respectively. However, EKS

g

is not equal to Eg even with the exact functional, due to the
derivative discontinuity (DD) [7]. The band gap problem has
been an obstacle in the application of DFT to periodic systems.

The generalized Kohn-Sham (gKS) [8] scheme is a different
formulation of the DFT, which allows a nonmultiplicative but
still Hermitian xc potential operator. The gKS gap E

gKS
g =

ε
gKS
LUMO − ε

gKS
HOMO can be a better approximation to Eg than

is the KS gap [9]. The third rung of the Jacob’s ladder,
the meta-generalized gradient approximation (meta-GGA), is
commonly implemented in the gKS scheme according to the
method of Neumann, Nobes, and Handy (also denoted as gKS
in this paper) [10]. The gKS meta-GGA band gap of periodic
systems improves [11] over the KS GGA gaps as expected. In
this work we find that, with the recently proposed strongly
constrained and appropriately normed (SCAN) functional
[12,13], the gKS meta-GGA gap corrects about 20%–50%
of the difference between the experimental fundamental gap
and the GGA KS gap.

Due to the restriction in the functional form of GGA, a GGA
cannot perform well for finite systems and periodic systems
at the same time [14]. On the other hand, the functional form
of meta-GGA can satisfy more exact conditions and has a
wider range of applicability than the GGA form. The SCAN
functional is a nonempirical functional that satisfies all known
exact constraints appropriate to a semilocal functional, and
is expected to perform well for systems with very different
kinds of bonds. The computational accuracies of the SCAN
functional for many properties improve over those of the
GGAs, with only marginal increase of computational cost
[12]. We find that SCAN also improves band gaps, but the
comparison is between meta-GGA gKS gaps and GGA KS
gaps, which are not the same quantity. It is unclear whether
the KS gap itself is improved, or just the gKS gap is improved.
One needs to do meta-GGA calculations in the KS scheme to
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FIG. 2. Comparison of vXC’s of bulk Si along the Si-Si bond
for SCAN, LDA, and GGA. The Si atoms are located at r = 0 and
r = 2.35Å. The vertical dashed line is a numerical artifact and does
not affect the band structure.

differ in small details. Similar to Fig. 1, the vXC’s of SCAN
for bulk Si also have small bumps. Though the meta-GGA is a
higher rung functional on the Jacob’s ladder than the GGA, the
improvement in vXC is small going from GGA to meta-GGA,
unlike going from LDA to GGA. The differences between the
KS meta-GGA gaps and the PBE gaps in Table I are small as
a consequence.

The band structures of Si and GaAs calculated with PBE
and SCAN are plotted in Figs. 3 and 4. The KS(KLI) SCAN
band structure is very close to the PBE band structure, due to
the corresponding vXC being similar to the PBE vXC. The gKS
SCAN band structure has the same overall shape as that of the
PBE and the KS(KLI), and the main difference is in the band
gap.

Though the gKS meta-GGA band gaps improve over the
PBE gaps in general, it is disappointing that gKS meta-GGA
gaps for Ge, InN, and CdO still vanish. However, it is possible
for meta-GGAs to open the gap for gapless materials in GGA.
gKS SCAN has [57] a 0.4 eV gap for β-MnO2, which is
gapless in GGA, and the value is close to the experimental
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FIG. 3. The band structure of Si calculated with PBE, gKS
SCAN, and KS(KLI) SCAN.
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FIG. 4. The band structure of GaAs calculated with PBE, gKS
SCAN, and KS(KLI) SCAN.

value 0.3 eV. The M06L metaGGA was reported to open the
gap of Ge at 0.14 eV [11,58].

The improvement of the band gap occurs since, unlike the
KS gap, the gKS gap is an approximation to the fundamental
gap of the meta-GGA. A Janak-type [59] theorem has been
proven for the OEP [9], and it states that the gKS gap
approximately equals the fundamental gap for the same
functional, assuming fixed orbitals. This assumption does not
apply to finite systems, but it is true for periodic systems,
since the charge density and the orbitals of a periodic system
undergo only an infinitesimal change when the number of
electrons changes by one.

GGA band gaps should be compared with the OEP meta-
GGA band gaps for a fair comparison between approximated
functionals, since the OEP meta-GGA band gap is the KS gap.
The SCAN functional is the only functional that satisfies all
the known exact conditions, but the KS(KLI) SCAN gaps do
not have significant improvements over the PBE gaps. This is
probably due to the fact that the GGA and SCAN OEP gaps
closely approximate the exact KS gap, which underestimates
the fundamental gap. This has been illustrated in Fig. 5,
where the errors of the EXX+RPA(OEP) KS gaps [56] are
also plotted. EXX+RPA (exact exchange plus random phase
approximation for correlation) is a high-level (fifth rung)
method, and its OEP gaps are expected to be very close to those
of the corresponding exact KS potential. Figure 5 shows that
both PBE and KS SCAN gaps are already good approximations
to the exact KS gap.

Some of the gKS band gaps of MS2 and TPSS are smaller
than the corresponding OEP band gaps. We do not find this
behavior in other functionals. Many of the KS(KLI) TPSS
calculations fail to converge. This is probably a numerical
issue in the calculation of ∇(∂eXC/∂τσ ), due to the complicated
functional form of TPSS.

The energy functional of the exact DFT has deriva-
tive discontinuities %XC at integer electron numbers [7],
where %XC = Eg − EKS

g . The exact KS potential jumps up
by the positive constant %XC as the electron number crosses
the value that makes the solid electrically neutral. LDA and
GGA miss much or all of the derivative discontinuity due to the
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I. INTRODUCTION

Semiconductor devices play an important role in modern
technologies, and the rapid development of electronic structure
theory methods has made computational design of such
devices possible. The band gap and the band structure are
undoubtedly the most important properties of semiconductors,
since these are the properties that distinguish semiconductors
from other periodic systems [1]. Computational evaluation of
the band gap and the band structure is thus a topic of active
research.

The fundamental band gap is a ground-state property, and
it is defined as Eg = I − A, where I is the ionization energy
and A is the electron affinity. I and A are ground-state energy
differences. Eg is also an excited-state property since it is
the unbound limit of the exciton series. Eg is very difficult to
calculate for periodic systems, since there is no systematic way
of adding/removing one electron to/from the solid in a periodic
calculation, and the bulk limit can only be approached by the
calculation of very big clusters. Many-body methods such as
the GW method [2] calculate Eg and the quasiparticle band
structure accurately, but the computational cost is high.

The density-functional theory (DFT) [3–5] is a formally
exact electronic structure method for the ground-state energy
and electron density with an excellent balance of accuracy and
computational efficiency, which is achieved by mapping the
real interacting system to a fictitious Kohn-Sham (KS) system
of noninteracting electrons with a multiplicative effective
exchange-correlation (xc) potential (the functional derivative
of the exchange-correlation energy with respect to the density).
The exact Kohn-Sham potential yields the exact density but
not the exact quasiparticle band structure and gap. Though the
exact energy functional of the DFT is unknown, there exists a
plethora of approximations, which has been ordered into the
“Jacob’s ladder” [6] hierarchy. The first and the second rungs of
the Jacob’s ladder are the local density approximation (LDA)
and the generalized gradient approximation (GGA), and
they severely underestimate the fundamental gap in periodic
systems. For periodic systems, KS DFT cannot calculate Eg

from its definition, and one commonly approximates Eg with
the KS gap EKS

g = εKS
LUMO − εKS

HOMO, where εKS
HOMO and εKS

LUMO
are the KS orbital energies of the highest occupied orbital and
of the lowest unoccupied orbital, respectively. However, EKS

g

is not equal to Eg even with the exact functional, due to the
derivative discontinuity (DD) [7]. The band gap problem has
been an obstacle in the application of DFT to periodic systems.

The generalized Kohn-Sham (gKS) [8] scheme is a different
formulation of the DFT, which allows a nonmultiplicative but
still Hermitian xc potential operator. The gKS gap E

gKS
g =

ε
gKS
LUMO − ε

gKS
HOMO can be a better approximation to Eg than

is the KS gap [9]. The third rung of the Jacob’s ladder,
the meta-generalized gradient approximation (meta-GGA), is
commonly implemented in the gKS scheme according to the
method of Neumann, Nobes, and Handy (also denoted as gKS
in this paper) [10]. The gKS meta-GGA band gap of periodic
systems improves [11] over the KS GGA gaps as expected. In
this work we find that, with the recently proposed strongly
constrained and appropriately normed (SCAN) functional
[12,13], the gKS meta-GGA gap corrects about 20%–50%
of the difference between the experimental fundamental gap
and the GGA KS gap.

Due to the restriction in the functional form of GGA, a GGA
cannot perform well for finite systems and periodic systems
at the same time [14]. On the other hand, the functional form
of meta-GGA can satisfy more exact conditions and has a
wider range of applicability than the GGA form. The SCAN
functional is a nonempirical functional that satisfies all known
exact constraints appropriate to a semilocal functional, and
is expected to perform well for systems with very different
kinds of bonds. The computational accuracies of the SCAN
functional for many properties improve over those of the
GGAs, with only marginal increase of computational cost
[12]. We find that SCAN also improves band gaps, but the
comparison is between meta-GGA gKS gaps and GGA KS
gaps, which are not the same quantity. It is unclear whether
the KS gap itself is improved, or just the gKS gap is improved.
One needs to do meta-GGA calculations in the KS scheme to
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FIG. 2. Comparison of vXC’s of bulk Si along the Si-Si bond
for SCAN, LDA, and GGA. The Si atoms are located at r = 0 and
r = 2.35Å. The vertical dashed line is a numerical artifact and does
not affect the band structure.

differ in small details. Similar to Fig. 1, the vXC’s of SCAN
for bulk Si also have small bumps. Though the meta-GGA is a
higher rung functional on the Jacob’s ladder than the GGA, the
improvement in vXC is small going from GGA to meta-GGA,
unlike going from LDA to GGA. The differences between the
KS meta-GGA gaps and the PBE gaps in Table I are small as
a consequence.

The band structures of Si and GaAs calculated with PBE
and SCAN are plotted in Figs. 3 and 4. The KS(KLI) SCAN
band structure is very close to the PBE band structure, due to
the corresponding vXC being similar to the PBE vXC. The gKS
SCAN band structure has the same overall shape as that of the
PBE and the KS(KLI), and the main difference is in the band
gap.

Though the gKS meta-GGA band gaps improve over the
PBE gaps in general, it is disappointing that gKS meta-GGA
gaps for Ge, InN, and CdO still vanish. However, it is possible
for meta-GGAs to open the gap for gapless materials in GGA.
gKS SCAN has [57] a 0.4 eV gap for β-MnO2, which is
gapless in GGA, and the value is close to the experimental
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value 0.3 eV. The M06L metaGGA was reported to open the
gap of Ge at 0.14 eV [11,58].

The improvement of the band gap occurs since, unlike the
KS gap, the gKS gap is an approximation to the fundamental
gap of the meta-GGA. A Janak-type [59] theorem has been
proven for the OEP [9], and it states that the gKS gap
approximately equals the fundamental gap for the same
functional, assuming fixed orbitals. This assumption does not
apply to finite systems, but it is true for periodic systems,
since the charge density and the orbitals of a periodic system
undergo only an infinitesimal change when the number of
electrons changes by one.

GGA band gaps should be compared with the OEP meta-
GGA band gaps for a fair comparison between approximated
functionals, since the OEP meta-GGA band gap is the KS gap.
The SCAN functional is the only functional that satisfies all
the known exact conditions, but the KS(KLI) SCAN gaps do
not have significant improvements over the PBE gaps. This is
probably due to the fact that the GGA and SCAN OEP gaps
closely approximate the exact KS gap, which underestimates
the fundamental gap. This has been illustrated in Fig. 5,
where the errors of the EXX+RPA(OEP) KS gaps [56] are
also plotted. EXX+RPA (exact exchange plus random phase
approximation for correlation) is a high-level (fifth rung)
method, and its OEP gaps are expected to be very close to those
of the corresponding exact KS potential. Figure 5 shows that
both PBE and KS SCAN gaps are already good approximations
to the exact KS gap.

Some of the gKS band gaps of MS2 and TPSS are smaller
than the corresponding OEP band gaps. We do not find this
behavior in other functionals. Many of the KS(KLI) TPSS
calculations fail to converge. This is probably a numerical
issue in the calculation of ∇(∂eXC/∂τσ ), due to the complicated
functional form of TPSS.

The energy functional of the exact DFT has deriva-
tive discontinuities %XC at integer electron numbers [7],
where %XC = Eg − EKS

g . The exact KS potential jumps up
by the positive constant %XC as the electron number crosses
the value that makes the solid electrically neutral. LDA and
GGA miss much or all of the derivative discontinuity due to the
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Unlike the local density approximation (LDA) and the generalized gradient approximation (GGA), calculations
with meta-generalized gradient approximations (meta-GGA) are usually done according to the generalized
Kohn-Sham (gKS) formalism. The exchange-correlation potential of the gKS equation is nonmultiplicative,
which prevents systematic comparison of meta-GGA band structures to those of the LDA and the GGA. We
implement the optimized effective potential (OEP) of the meta-GGA for periodic systems, which allows us to
carry out meta-GGA calculations in the same KS manner as for the LDA and the GGA. We apply the OEP to
several meta-GGAs, including the new SCAN functional [Phys. Rev. Lett. 115, 036402 (2015)]. We find that
the KS gaps and KS band structures of meta-GGAs are close to those of GGAs. They are smaller than the more
realistic gKS gaps of meta-GGAs, but probably close to the less-realistic gaps in the band structure of the exact
KS potential, as can be seen by comparing with the gaps of the EXX+RPA OEP potential. The well-known grid
sensitivity of meta-GGAs is much more severe in OEP calculations.

DOI: 10.1103/PhysRevB.93.205205

I. INTRODUCTION

Semiconductor devices play an important role in modern
technologies, and the rapid development of electronic structure
theory methods has made computational design of such
devices possible. The band gap and the band structure are
undoubtedly the most important properties of semiconductors,
since these are the properties that distinguish semiconductors
from other periodic systems [1]. Computational evaluation of
the band gap and the band structure is thus a topic of active
research.

The fundamental band gap is a ground-state property, and
it is defined as Eg = I − A, where I is the ionization energy
and A is the electron affinity. I and A are ground-state energy
differences. Eg is also an excited-state property since it is
the unbound limit of the exciton series. Eg is very difficult to
calculate for periodic systems, since there is no systematic way
of adding/removing one electron to/from the solid in a periodic
calculation, and the bulk limit can only be approached by the
calculation of very big clusters. Many-body methods such as
the GW method [2] calculate Eg and the quasiparticle band
structure accurately, but the computational cost is high.

The density-functional theory (DFT) [3–5] is a formally
exact electronic structure method for the ground-state energy
and electron density with an excellent balance of accuracy and
computational efficiency, which is achieved by mapping the
real interacting system to a fictitious Kohn-Sham (KS) system
of noninteracting electrons with a multiplicative effective
exchange-correlation (xc) potential (the functional derivative
of the exchange-correlation energy with respect to the density).
The exact Kohn-Sham potential yields the exact density but
not the exact quasiparticle band structure and gap. Though the
exact energy functional of the DFT is unknown, there exists a
plethora of approximations, which has been ordered into the
“Jacob’s ladder” [6] hierarchy. The first and the second rungs of
the Jacob’s ladder are the local density approximation (LDA)
and the generalized gradient approximation (GGA), and
they severely underestimate the fundamental gap in periodic
systems. For periodic systems, KS DFT cannot calculate Eg

from its definition, and one commonly approximates Eg with
the KS gap EKS

g = εKS
LUMO − εKS

HOMO, where εKS
HOMO and εKS

LUMO
are the KS orbital energies of the highest occupied orbital and
of the lowest unoccupied orbital, respectively. However, EKS

g

is not equal to Eg even with the exact functional, due to the
derivative discontinuity (DD) [7]. The band gap problem has
been an obstacle in the application of DFT to periodic systems.

The generalized Kohn-Sham (gKS) [8] scheme is a different
formulation of the DFT, which allows a nonmultiplicative but
still Hermitian xc potential operator. The gKS gap E

gKS
g =

ε
gKS
LUMO − ε

gKS
HOMO can be a better approximation to Eg than

is the KS gap [9]. The third rung of the Jacob’s ladder,
the meta-generalized gradient approximation (meta-GGA), is
commonly implemented in the gKS scheme according to the
method of Neumann, Nobes, and Handy (also denoted as gKS
in this paper) [10]. The gKS meta-GGA band gap of periodic
systems improves [11] over the KS GGA gaps as expected. In
this work we find that, with the recently proposed strongly
constrained and appropriately normed (SCAN) functional
[12,13], the gKS meta-GGA gap corrects about 20%–50%
of the difference between the experimental fundamental gap
and the GGA KS gap.

Due to the restriction in the functional form of GGA, a GGA
cannot perform well for finite systems and periodic systems
at the same time [14]. On the other hand, the functional form
of meta-GGA can satisfy more exact conditions and has a
wider range of applicability than the GGA form. The SCAN
functional is a nonempirical functional that satisfies all known
exact constraints appropriate to a semilocal functional, and
is expected to perform well for systems with very different
kinds of bonds. The computational accuracies of the SCAN
functional for many properties improve over those of the
GGAs, with only marginal increase of computational cost
[12]. We find that SCAN also improves band gaps, but the
comparison is between meta-GGA gKS gaps and GGA KS
gaps, which are not the same quantity. It is unclear whether
the KS gap itself is improved, or just the gKS gap is improved.
One needs to do meta-GGA calculations in the KS scheme to

2469-9950/2016/93(20)/205205(9) 205205-1 ©2016 American Physical Society

KS band gap

PBE value  eV

LDA value  eV 

= 0.80
= 0.63

Experimental fund. gap

  eV
= 1.17

Accurate KS gap 

  eV


*
= 0.82

A. Aouina, “A novel shortcut for computational materials design”, PhD thesis, February 2022.*
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Concept of band structure

The exact KS gap is actually not supposed to match the exact fundamental gap!
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N-centered ensemble DFT

Let us introduce the so-called N-centered ground-state ensemble energy Eξ0 :

Eξ0 = ξEN−1
0 + ξEN+1

0 +
(

1− 2ξ
)
EN

0 , where 0 ≤ ξ ≤ 1/2.

Eξ0 is linear in ξ and its slope is equal to the fundamental gap.

The N-centered ensemble energy is a functional of the N-centered ensemble density

nξ0 (r) = ξnN−1
0 (r) + ξnN+1

0 (r) +
(

1− 2ξ
)
nN

0 (r),

which, by construction, integrates to N for any ξ, hence the name “N-centered”.

Conventional (N-electron) DFT is recovered when ξ = 0 i.e. EξHxc[n]
ξ=0→ EHxc[n] .

integral number M of electrons

EM
0

N � 1 N N + 1

•

•
•

1

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018).
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Derivative discontinuity

It has been known for a long time that the true (interacting) and KS gaps do not
match1,2,6.

This fact appears (more) explicitly within the N-centered ensemble DFT formalism 3−6:

Eg =

εKS
L +

∂EξHxc

[
nN

0

]
∂ξ

∣∣∣∣∣
ξ=0︸ ︷︷ ︸
− εKS

H ≡ ε̃KS
L − εKS

H .

derivative discontinuity

1J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).
2J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
3B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018).
4B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190.
5 M. J. P. Hodgson, J. Wetherell, and E. Fromager, Phys. Rev. A 103, 012806 (2021).
6 F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).
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Proof: Lieb maximization in N-centered ensemble DFT

∀v , Eλ,ξ0 [v ] = min
n

{
Fλ,ξ[n] +

∫
dr v(r)n(r)

}

⇔ ∀v , ∀n, Eλ,ξ0 [v ] ≤ Fλ,ξ[n] +

∫
dr v(r)n(r)

⇔ ∀v , ∀n, Fλ,ξ[n]≥Eλ,ξ0 [v ]−
∫

dr v(r)n(r)

⇔ ∀n, Fλ,ξ[n] = max
v

{
Eλ,ξ0 [v ]−

∫
dr v(r)n(r)

}

If vλ,ξ[n] is the maximizing potential then
∂Fλ,ξ[n]

∂ξ
=

∂Eλ,ξ0 [v ]

∂ξ

∣∣∣∣∣
v=vλ,ξ [n]

= Eλ,ξg [n] is

nothing but a density-functional fundamental gap.

When considering the conventional KS-DFT limit (ξ = 0) we obtain

Eg = Eλ=1,ξ=0
g

[
nN

0

]
= Eλ=0,ξ=0

g

[
nN

0

]
+
(
Eλ=1,ξ=0
g

[
nN

0

]
− Eλ=0,ξ=0

g

[
nN

0

] )
= εKS

L − εKS
H +

∂EξHxc

[
nN

0

]
∂ξ

∣∣∣∣∣
ξ=0

= Eg

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018).
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