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Exact exchange and correlation functionals

Decomposition into exchange and correlation contributions:

Exc[n] = Ex[n] + Ec[n].

Exact density-functional exchange energy:

Ex[n] =
〈

ΦKS[n]
∣∣∣ Ŵee

∣∣∣ΦKS[n]
〉
− EH[n].

Exact correlation functional:

Ec[n] = F [n]− Ts[n]− EH[n]− Ex[n]

= 〈Ψ[n]| T̂ + Ŵee |Ψ[n]〉 −
〈

ΦKS[n]
∣∣∣ T̂ + Ŵee

∣∣∣ΦKS[n]
〉
.
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Uniform coordinate scaling in wavefunctions and densities

Let γ > 0 be a scaling factor.

Applying a uniform coordinate scaling consists in multiplying each space
coordinate by γ:

r ≡ (x, y, z) → γr ≡ (γx, γy, γz)

dr = dxdydz → γ3dr

Uniform coordinate scaling applied to the density:

n(r) → nγ(r) = γ3n(γr)

Uniform coordinate scaling applied to an N -electron wavefunction [spin is
unaffected by the scaling]:

Ψ(r1, r2, . . . , rN ) → Ψγ(r1, r2, . . . , rN ) = γ
3N
2 Ψ(γr1, γr2, . . . , γrN )
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Uniform coordinate scaling in wavefunctions and densities

EXERCISE

(1) Show that, if n integrates to N , then nγ also integrates to N .

(2) Show that, if Ψ is normalized, then Ψγ is also normalized.

(3) Show that the density of Ψ equals n if and only if the density of Ψγ equals nγ .
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Exact scaling relations for Ts [n] and Ex[n]

We want to see how (some) universal density functionals are affected by the
uniform coordinate scaling.

We start with the simplest one, namely the Hartree functional EH[n].

EXERCISE that we will solve together

Show that the following scaling relation is fulfilled,

EH[nγ ] = γEH[n].

It can also be shown that the non-interacting kinetic energy and exact exchange
energy functionals fulfill the following scaling relations:

Ts [nγ ] = γ2Ts [n] ,

Ex[nγ ] = γEx[n].
EXERCISE (if you really want to understand where the above scaling relations come from)

For that purpose, write the variational principle for the KS Hamiltonian

T̂ +
∑N
i=1 v

KS[n](ri)×, consider trial wavefunctions Ψ with density n [we denote

Ψ→ n] and conclude that Ts [n] = min
Ψ→n

〈Ψ|T̂ |Ψ〉. Deduce that ΦKS
γ [n] = ΦKS[nγ ].
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EXERCISE

For that purpose, write the variational principle for the KS Hamiltonian
T̂ +

∑N
i=1 v

KS[n](ri)×, consider trial wavefunctions Ψ with density n [we denote

Ψ→ n] and conclude that Ts [n] = min
Ψ→n

〈Ψ|T̂ |Ψ〉. Deduce that ΦKS
γ [n] = ΦKS[nγ ].

Solution:

1) According to the Rayleigh–Ritz variational principle, we have for any wave function Ψ〈
Ψ

∣∣∣∣∣T̂ +

N∑
i=1

vKS[n](ri)×

∣∣∣∣∣Ψ
〉

=
〈

Ψ
∣∣∣T̂ ∣∣∣Ψ〉+

(
vKS[n]

∣∣∣nΨ

)
≥

〈
ΦKS[n]

∣∣∣∣∣T̂ +
N∑
i=1

vKS[n](ri)×

∣∣∣∣∣ΦKS[n]

〉
= Ts[n] +

(
vKS[n]

∣∣∣n) ,
where we used the notation (v|n) =

∫
dr v(r)n(r). If we now impose the density

constraint Ψ→ n, i.e. nΨ = n, it comes
〈

Ψ
∣∣∣T̂ ∣∣∣Ψ〉≥Ts[n], thus leading to Levy’s

expression Ts [n] = min
Ψ→n

〈Ψ|T̂ |Ψ〉.
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2) For any wave function Ψ with density nγ ,

〈Ψ|T̂ |Ψ〉 = −
1

2

N∑
i=1

∫
dr1 . . .

∫
drN Ψ∗(r1, . . . , rN )∇2

ri
Ψ(r1, . . . , rN ).

If we proceed with the change of variables ri = r̃i/γ for all electron indices i and denote

Ψ(r1, . . . , rN ) = Ψ̃(γr1, . . . , γrN ), then ∇2
ri

Ψ(r1, . . . , rN ) = γ2 ∇2
r̃i

Ψ̃(r̃1, . . . , r̃N )
∣∣∣
r̃j

∀j
=γrj

,

thus leading to

〈Ψ|T̂ |Ψ〉 = −
γ2

2× γ3N

N∑
i=1

∫
dr̃1 . . .

∫
dr̃N Ψ̃∗(r̃1, . . . , r̃N )∇2

r̃i
Ψ̃(r̃1, . . . , r̃N ).

Once we realize that
1

γ
3N
2

Ψ̃ ≡ Ψ 1
γ

whose density is [nΨ] 1
γ

= [nγ ] 1
γ

= n, it comes

〈Ψ|T̂ |Ψ〉 = γ2

〈
Ψ 1
γ

∣∣∣∣T̂ ∣∣∣∣Ψ 1
γ

〉
≥ γ2Ts[n].

We conclude that Ts[nγ ] = min
Ψ→nγ

〈Ψ|T̂ |Ψ〉 = γ2Ts[n] . The minimum is reached when

Ψ 1
γ

= ΦKS[n] or, equivalently, Ψ =

[
Ψ 1
γ

]
γ

= ΦKS
γ [n] ≡ ΦKS[nγ ].
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3) We can now prove the exact coordinate scaling constraint for the exchange functional. Since

Ex[nγ ] =
〈

ΦKS[nγ ]
∣∣∣Ŵee

∣∣∣ΦKS[nγ ]
〉
− EH[nγ ]

=
〈

ΦKS
γ [n]

∣∣∣Ŵee

∣∣∣ΦKS
γ [n]

〉
− γEH[n],

where

〈
ΦKS
γ [n]

∣∣∣Ŵee

∣∣∣ΦKS
γ [n]

〉
=

N∑
i<j

∫
dr1 . . .

∫
drN

∣∣ΦKS
γ [n](r1, . . . , rN )

∣∣2
|ri − rj |

= γ × γ3N
N∑
i<j

∫
dr1 . . .

∫
drN

∣∣ΦKS[n](γr1, . . . , γrN )
∣∣2

|γri − γrj |

rj→r̃j=γrj
= γ

〈
ΦKS[n]

∣∣∣Ŵee

∣∣∣ΦKS[n]
〉
,

it comes

Ex[nγ ] = γ
[〈

ΦKS[n]
∣∣∣Ŵee

∣∣∣ΦKS[n]
〉
− EH[n]

]
= γEx[n] = Ex[nγ ] .
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Local density-functional approximations

In the local density approximation (LDA), any functional S[n] is approached with a
function s

(
n(r)

)
of n(r) as follows:

S[n] ≈
∫

dr s
(
n(r)

)
n(r)

Simple LDAs to the non-interacting kinetic and exchange energies:

Ts[n] ≈ TLDA
s [n] = A

∫
dr nα(r), Ex[n] ≈ ELDA

x [n] = B

∫
dr nβ(r)

EXERCISE that we will solve together

Show that, if we want these LDAs to fulfill the exact scaling relations, then we should

have α = 5
3

and β = 4
3

. With A = 3
10

(3π2)2/3 and B = − 3
4

(
3
π

)1/3
we recover the

non-interacting kinetic (so-called Thomas–Fermi) and exchange energies of a uniform
electron gas with density n, respectively.
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A uniform electron gas (UEG) is a particular type of extended (usually infinite)
electronic system where the local potential, which describes a “positive background”,

reads v[n](r) = −1

2

∫
dr′

n(r′)

|r− r′| , n(r) being the electronic density. Note that the full

system is neutral in charge and the electronic density is uniform, i.e.
n(r) = n = N

V

∣∣
N→+∞,V→+∞ .

EXERCISE that we will solve together

Explain why the ground-state energy of the UEG can be written as
E0

[
v[n]

]
= F [n]− EH[n], where F [n] and EH[n] are the universal Hohenberg–Kohn

and Hartree functionals, respectively, both evaluated for the uniform density n. E0

[
v[n]

]
is usually expressed as E0

[
v[n]

]
=
∫

dr ε
(
n(r)

)
n(r), where the energy per electron ε(n)

can be parameterized from accurate (Quantum Monte Carlo, for example) calculations
performed for different n values. Show that an LDA correlation functional can be
constructed as ELDA

c [n] =
∫

dr εc

(
n(r)

)
n(r), where

εc(n) = ε(n) +
3

4

(
3

π

)1/3

n1/3 − 3

10
(3π2)2/3n2/3.
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