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Exact exchange and correlation functionals

@ Decomposition into exchange and correlation contributions:
Exc[n] = Ex[n] + Ec[n].
@ Exact density-functional exchange energy:

Ey[n] = <<1>K5[n]‘ Wee ‘@KS [n}> — Euln).

@ Exact correlation functional:

E.[n] F[n] — Ty[n] — Eu[n] — Ex[n]

= (U T+ Wee [¥0]) — (@*[]| T+ Wee

PKS [n]> .
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Uniform coordinate scaling in wavefunctions and densities

Let v > 0 be a scaling factor.

Applying a uniform coordinate scaling consists in multiplying each space
coordinate by ~:

r=(z,y,2) — r=(72,7Y,72)
dr =dzdydz — ~*dr

@ Uniform coordinate scaling applied to the density:

n(r) = |ny(r) =~"n(yr)

@ Uniform coordinate scaling applied to an N-electron wavefunction [spin is
unaffected by the scaling]:

U(ri,re,...,rn) — Y(ri,ro,...,rx)=7v 2 ¥(yri,yre,...,7rn)
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Uniform coordinate scaling in wavefunctions and densities

(1) Show that, if n integrates to N, then n. also integrates to N.

(2) Show that, if ¥ is normalized, then ¥, is also normalized.

(3) Show that the density of ¥ equals n if and only if the density of U, equals n,.
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Exact scaling relations for

@ We want to see how (some) universal density functionals are affected by the
uniform coordinate scaling.

@ We start with the simplest one, namely the Hartree functional Ew[n].

EXERCISE | that we will solve together

Show that the following scaling relation is fulfilled,

Euln,| = yEul[n].

@ It can also be shown that the non-interacting kinetic energy and exact exchange
energy functionals fulfill the following scaling relations:

TS [n"/] = 72TS [TL} )
Ex[ny] = ~Ex[n].

EXERCISE (if you really want to understand where the above scaling relations come from)

For that purpose, write the variational principle for the KS Hamiltonian

T+ SN, v®5[n](r;) %, consider trial wavefunctions ¥ with density n [we denote

¥ — n] and conclude that T3 [n] = ‘gnin (U|T'|¥). Deduce that OX5[n] = ®*5[n,].
—n
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For that purpose, write the variational principle for the KS Hamiltonian

T+ vazl v®5[n](r;) %, consider trial wavefunctions ¥ with density n [we denote

¥ — n] and conclude that T3 [n] = \{lnin (U|T'|¥). Deduce that XS [n] = %5[n, ).
—n

Solution:

1) According to the Rayleigh—Ritz variational principle, we have for any wave function ¥
(o] + 3ot o) = (o) + (o)
> <<I>Ks[n] T+ Z v™5[n)(r:) x @Ks[n]> = Ti[n] + (vKS[n} (n) :

i=1

where we used the notation (v|n) = [ druv(r)n(r). If we now impose the density

‘1/> >Ti[n], thus leading to Levy's

constraint ¥ — n, i.e. ny = n, it comes <

expression T [n] = gﬁn (U|T| ).
—n
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2) For any wave function ¥ with density n,

N
- 1
(O|T|0) = —EZ/drl.../drN T*(ry,...,rn)VE, U(re, ..., rN).
i=1

If we proceed with the change of variables r; = T; /v for all electron indices 7 and denote
(r1,...,rn) = U(yr1,...,9rN), then V2 U(ry, ... ,ry) =72 Vi@(h,---iw)‘_ vi
rj=qr;

thus leading to

2 N B 5
(U |T|T) = —QXVWE /df-l.../df'N\IJ*(f-l,...,fN)Vgi\If(f-l,...,f'N).
i=1

. 1 - oo .
Once we realize that — V¥ = \11% whose density is [n\p]% = [nm,]%{ =n, it comes

v 2

T‘\I/l> > 2 Ti[n).
Y

([T ) = 2 <w

1
5

(U|T| W) = ~2Ty[n] | The minimum is reached when

We conclude that | Ts[ny] = min
lI/—VruY

1 = ®KS[n] or, equivalently, ¥ = |:\Ifl:| = ‘I>,IY(S [n] = ®X5[n,].
5 Bt
-
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3) We can now prove the exact coordinate scaling constraint for the exchange functional. Since

Ex[n,] = ®5S[n,]) — Enln,)
OXS[n]) — vEuln],
where
« |<I>Ks[n](r17..,,rN)}2
<<1>VS[ /dr |
I" — I‘]'
‘I)KS o 2
=7 x w”Z/drl /dr [nlOry, - yew)|
i<j [yr; —r ]
r; —T,;=~r ~
i J,y <<I>Ks[n]‘Wee’¢’Ks[n]>,
it comes

Exlna] = [(@%5 0] Wee| %S [n] ) — Euln]| = [ vEx[n] = Exln] |
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Local density-functional approximations

@ In the local density approximation (LDA), any functional S[n] is approached with a
function s(n(r)) of n(r) as follows:

S[n] ~ /dr s(n(r))n(r)

@ Simple LDAs to the non-interacting kinetic and exchange energies:
Ti[n] &~ TEPA ]:A/dr n®(r), Ey[n] ~ EXPA ]:B/dr n”(r)

EXERCISE | that we will solve together

Show that, if we want these LDAs to fulfill the exact scaling relations, then we should

have « = 2 and # = 5. With A= 2 (3w 2y2/3 and B= -3 (2) '/% we recover the
non-interacting klnet|c (so called Thomas—Ferm|) and exchange energies of a uniform
electron gas with density n, respectively.

Emmanuel Fromager (UdS) Modelling 2: Extended systems in DFT



A uniform electron gas (UEG) is a particular type of extended (usually infinite)
electronic system Where the local potential, which describes a “positive background”,

reads v[n](r) = — = f , n(r) being the electronic density. Note that the full

system is neutral in charge and the electronic density is uniform, i.e.

— ., _ N
n(r) =n= 7‘N—>+00,V—>+oo ’

EXERCISE | that we will solve together

Explain why the ground-state energy of the UEG can be written as

Eo[v[n]] = F[n] — Exu[n], where F[n] and Eu[n] are the universal Hohenberg—Kohn
and Hartree functionals, respectively, both evaluated for the uniform density n. Eo [v[n]]
is usually expressed as Eo [v[n]] = [dr e(n(r))n(r), where the energy per electron (n)
can be parameterized from accurate (Quantum Monte Carlo, for example) calculations
performed for different n values. Show that an LDA correlation functional can be
constructed as E°%[n] = [ dr ec(n(r))n(r), where

£ ('I’L) = g(n) + § é e n1/3 _ 3(371_2)2/3712/3
¢ 4\ 7 10 :
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