An introduction to post-Hartree-Fock quantum chemistry (I)

Hartree-Fock approximation and short-range electron correlation
in quantum chemistry

Emmanuel Fromager

~

UNIVERSITE DE STRASBOURG

o’

Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique -
Université de Strasbourg /CNRS

Second school in computational physics, Les Houches, France, 27.06.12

27.06.2012 Second school in computational physics, Les Houches, France Page 1



An introduction to post-Hartree-Fock quantum chemistry (I)

Trygve Helgaker | Poul Jargensen | Jeppe Olsen

27.06.2012 Second school in computational physics, Les Houches, France Page 2



An introduction to post-Hartree-Fock quantum chemistry (I)

Notations

N-electron Hamiltonian within the Born-Oppenheimer approximation:

I:I:T‘I‘Wee‘l‘vne

—  kinetic energy

1
with wee(r12) = — —  electron-electron repulsion

r12

nuclei

with vpe(r) = — ZA

Trera] —  electron-nuclei attraction

A
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An introduction to post-Hartree-Fock quantum chemistry (I)

Notations

Molecular orbitals: dp(r) = Z Cup Xu(r) (Op|dqg) = dpg
7!

Non-orthogonal set of atomic orbitals (Gaussian functions): (Xulxv) = Suv

one-electron states based on spin-orbitals: |P) = |pp,0) = &;70_ |vac),

Second-quantized expression for the (non-relativistic) Hamiltonian:

T+ Vae = 3 _(PIR|Q) abag
P,Q

Z <¢p»0‘h’¢q, > Up.o0q,0 —Z<¢p‘m¢q> <Zd£,adq,a> :thquq

p,q,0,0' p,q p,q

7

8500 (dp|hldg)
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An introduction to post-Hartree-Fock quantum chemistry (I)

Notations

A 1
Similarly Wee = - > (PRIQS)ahakasag
P’Q7R’S

Z Z pr,O'qbr,O' |¢Q7T¢87 > a ,UCAL;[,G,CALS,T/CALQ,T
\ .
~~

7

7

paCIa"“S O‘TO' 7'

t ot s P SR
507'50’7" <¢P¢T|¢Q¢S> _a’p,Uar,«,g/a“q,Ta’s,T’ — _5617“50’7'@1? oQs 1/ + Qp,o0q, TQ,. 1 Qs 7/

Y

where (ppdr|dqps) = /drldr2 ¢p(r1)¢r(r2)7“1_21 Pq(r1)ds(r2) = (prigs)

A 1
Wee — 5 Z <pT'|C]S>

p’q’lr-,s

In summary:
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An introduction to post-Hartree-Fock quantum chemistry (I)

Variational and non-variational approximations

e The exact electronic ground state ¥ and its energy Eq can be obtained in two ways:

Ey = min ZHIT)_ (Yol H[To) H|Vo) = Eo[¥o)
v () (Wo|¥o)

Approximate parametrized ground-state wave function: W (Xg)

where Ag denotes the complete set of optimized parameters.

Variational calculation Non-variational calculation

0 (T(N)|H|T(N))

Ox (T(N)[¥(N)) A[W(A) — EQ)[W(A) =0 for A = Ag

A=Xo
d d

Hartree-Fock (HF) Many-Body Perturbation Theory (MBPT)
Configuration Interaction (CI) Coupled Cluster (CC)
Multi-Configurational Self-Consistent Field (MCSCF)
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An introduction to post-Hartree-Fock quantum chemistry (I)

Spin-orbital rotations

e Let {|P)} denote an orthonormal basis of spin-orbitals and {|P)} another orthonormal basis
obtained by unitary transformation:

[P)=> UqrlQ)
Q

.l.
e Ucanbewrittenas| U =e¢ * with k' = -k — Ut = (e‘”) —e€

e ~pg can be used instead of Upg to parametrize the spin-orbital rotations

Using EX2, show that in second quantization the unitary transformation can be simply written as

where k= Z KPQ deQ
PQ
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An introduction to post-Hartree-Fock quantum chemistry (I)

Spin-orbital rotations

e Note that the rotation operator < is anti-Hermitian:
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An introduction to post-Hartree-Fock quantum chemistry (I)

Spin-restricted orbital rotations

e In a restricted formalism the same set of orbitals is used for a and § spin:

R = E :KPQ aPaQ_ E :E :"‘ p,0q,0’ p,a Gg,50 = E :ququ

rq oo’ pq

Kpgloo

e Since Ky, = —Kqp (real algebra)
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An introduction to post-Hartree-Fock quantum chemistry (I)

Hartree-Fock approximation

e For simplicity we consider here the particular case of a non-degenerate singlet closed-shell ground
state

e The HF method consists then in approximating the exact wave function g by a single Slater
determinant ®¢. The orbital space is thus divided in two:

doubly occupied molecular orbitals ¢;, ¢;, . .. unoccupied molecular orbitals ¢, ¢y, . ..

OcCcC.

|Pg) = H H &I’U|vac)

1 o=au,B

e The initial set of molecular orbitals is usually not optimized — the optimized HF molecular orbitals
will be obtained by means of unitary transformations (orbital rotations)
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An introduction to post-Hartree-Fock quantum chemistry (I)

Hartree-Fock approximation

e_R\¢0> with

denotes the column vector containing all the parameters to be optimized

p>q
occupied-occupied and unoccupied-unoccupied rotations:

R = Z Kij (Eij — Eji) + Z Kai (Eai - Eia) + Z Kab (Eab - Eba)
1,Q

1>7 a>b

7

2.unocc.
K K

RO | Do) = RO |Pg) = 0 — only occupied-unoccupied rotations have to be optimized — « =
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An introduction to post-Hartree-Fock quantum chemistry (I)

Hartree-Fock approximation

Hartree-Fock energy expression:

oy _ (@RI H|®(R)) _ (Pole™ H e F|®o) [~
E(k) = @R)[B(R))  (Bgle' e 7 |Po) =| (Pole"He "|®g) = E(k)

=0
e

OF
Variational optimization of «: E,EJ]F = 8(&)
K

Iterative procedure (Newton method):

1
E(k) ~ E(0) +rTEM + §mTE([)2]K, - EY =B+ EPlki =0 —» EP re = ~E}"

Update the HF determinant:  ®¢ + ®(x4) Newton step

HF calculation converged when E(gl] =0
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An introduction to post-Hartree-Fock quantum chemistry (I)

Hartree-Fock approximation

Note: The exponential parametrization can also be used in Kohn-Sham DFT

(@(r)|H[®(k))  —  (@(r)|T + Vie|®(x)) + Brixe[n(x)]

n(k,r) = (B(r)[7(r)|®(x)),

Z ¢p(r)dg(r) Epg <— density operator
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An introduction to post-Hartree-Fock quantum chemistry (I)

Hartree-Fock approximation

~

EX2: | Using the Taylor expansion of f(x) = e %4 B e about z = 0, prove the
Baker-Campbell-Hausdorff (BCH) expansion:

— 1B, A, [B, Alnt1 = [[B, Aln, A,

e Analytical formulas for the gradient and the hessian:

B(0) + (@ol [, H|®o) + (@[5, 15, A)]|@0) + ..

0,az

> kai{®ol[Eai — Eia, H)|®0)  — By, = (®0|[Eai — Eiq, A]|0)
at

= —2(®g|HE4;|Po) = 0 (Brillouin theorem)
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An introduction to post-Hartree-Fock quantum chemistry (I)

Fock matrix and canonical orbitals

A

EX3: | Using the simplified commutator expression [qu, Ers] = dqrEps — dps EArq, show that

A

BV = 2(®0|[Eai, H|®0) =| —4fiq = B

0,a1 0,a1

1
where the Fock matrix elements are defined as  fpq = hpq + Z ((pr|qs) -3 (pr|3q>) Dys,

D,s = (CI)O\ET s|®o) < one-electron density matrix

e Canonical HF orbitals:

Docc. 0 O 0
D = f == D/ = D, f/ —_—
O O 0 funocc. O f/unocc.

. . . jocc. __ /unocc.
Dg’jcc = 25ij injCC — fij7 f(;lélOCC — fab £ o _ 5@'3'87;, £ un _ (5ab5a
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An introduction to post-Hartree-Fock quantum chemistry (I)

Fock operator in second-quantized form using canonical orbitals:

F — prquq — Zsi Ezz + Zga Eaa
b,q 1 a

Moller-Plesset partitioning of the Hamiltonian: H = F + (H — F)) with F|®g) = 2 E gi |Po)
N —— y
N —

A

Hy 1% E©)
Using perturbation theory, the HF energy is recovered through first order:
E(0) + EQ) = E(0) + <CI>0HA/|(I>0> = <<I)Q|PAI|(I>0> = Fygr

The correlation energy is defined as the difference between the exact and HF energies: it is a second-
and higher-order energy correction

E.=FEyg— Eyr = E® + EG) |

Indeed, the HF determinant is an approximation to the exact ground-state wave function:

H|®o) = EO)|®g) + V|®o) # Eo|®o)
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An introduction to post-Hartree-Fock quantum chemistry (I)

Megller-Plesset perturbation theory

(D¢ |H|®p)=0 — no projection on the singly-excited configurations D) = %Eai |Po) ...

... but doubly-excited determinants appear when applying V' to |®o):

. 1 .
> ID)(D|V|®g) = 5 > (ablij)Ea;i Eyj|®o) =
D a”b77:7j

Y TY (( (ablij) — ab\ﬂ>) o Qi oa;; 4j,0|®0) + (ablij)al, o

b>a j3>1 O

— (ab\jz’)A o Q; _ga;; ,aj 0|Po) ) -+ YYY (aalij)a

a 3>t O

+ ;: y: ;:(a’b“i)&l,o'di,O'&Z L0i,—o|Po) + Z aalii)a

CL’L

0@} aj.o|00|V|®o) = (ablif) — (ab|ji) # 0
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An introduction to post-Hartree-Fock quantum chemistry (I)

e Wave function through first order: |Wo) =

e Energy through second order (MP2):

ablii}? + (ab|ji)? —
EO:EHF+4ZZ< |]> ( |J>

€ +€j —€a

b>a j>1

49 Z Z (ab|ii)? n Z

Eo = Exr

5y + 3 I2ADIVI20)

(ablig) (ablii)

8 _ga b a.i
)

(aalii)?

Eo=Eur + »_
a’7b77:’j

(ablij) (2(ablij) — (ablji))

€ +E€j —€a — Ep

+ ...

e Note that a correlated wave function cannot be packed into a single determinant. This is due to the

double excitations.

e When single excitations contribute at first order to the wave function, they are not associated to

correlation but to orbital relaxation instead:

[®(k)) = e " |®o) =

|$o) — Z Fai Bail®o) + ...
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An introduction to post-Hartree-Fock quantum chemistry (I)

Gorling-Levy perturbation theory

Correlation is defined differently in DFT

Gorling-Levy partitioning of the Hamiltonian:

]:[ — FKS + (I:I— FKS) — FKS + (I:I— F[¢KS])+(FA1[(I)KS] . FA»KS)

Moller-Plesset  orbital relaxation

where FXS =T 4+ Vie + Vigxe is the KS operator and F[CDKS] is the Fock operator built from
the KS orbitals,

F[CI)KS] — FKS = ZAququ and Afpg = — Z(pz|zq) — (Pp|xc|Pq)

p,q 7

The Brillouin theorem is (of course) not fulfilled anymore:  (E,;®XS|H|®KS) = 2Af,; # 0

27.06.2012 Second school in computational physics, Les Houches, France Page 19



An introduction to post-Hartree-Fock quantum chemistry (I)

e The exact exchange energy is recovered through first order:

E(0) 4+ Q1) — <<I>KS‘T—I— Vne|(bKS> 4+ (@KS\WGGMDKS)

Correlation energy is a second- and higher-order energy contribution:

(ablij) (2(ablij) — (ablji))

relaxation of the KS orbitals (single excitations)

Note also that, for open-shell atoms, the HF calculation is based on the atomic terms (25+1 L) which
consist in linear combinations of Slater determinants which all correspond to the same configuration
(for example 1s22s%2p3 for nitrogen). The HF wave function is then multideterminantal but
describes one single configuration (no correlation effects).
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An introduction to post-Hartree-Fock quantum chemistry (I)

1S ground state of the helium atom:

Wo(r1,o1,r2,02) = ¥o(ry, ra, 7“12)% (a(01)5(02) — 04(02)5(01))

Hamiltonian expressed in terms of ri, r2 and ri2 = |r1 —ra|:

2
1 02 2 0 27 02 2 0 1
H=--%" = ) - =
2 (8ri2 * r; OT; * 7 ) (67“%2 * r12 Or19 r12>

=1

_(I‘l ri=2 0 +I‘2 ro1 0) 0
r

r1 Ti2 0r1 T2 T21 OT2 12

B HUo(r1,72,712)

Ey = = constant, especially when 7; =0 or ri2 =0
Wo(ri,re,r12)

o ow
Nuclear cusp conditions: 0 (0,72,712) = —ZV¥(0,72,712), 0

707 = —ZV 707
o ry (112 0:712) 0(r1,0,712)

1
Coulomb cusp condition: (ri,r2,0) = 5\110 (ri,72,0)
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An introduction to post-Hartree-Fock quantum chemistry (I)

e Expansion of the wave function around r2 = r1 = 0.5 a.u. and r12 = 0 for a collinear arrangement
of the nucleus and the two electrons :

Uo(ry,re,ri2) = Yo(ry,re, |r1 — ra|)

ow ow
:\PQ(Tl,Tl,O)—F(Tg—Tl) O(?“1,?“1,0)—|—|?“1—7“2| O(’I“1,?“1,O)—|—...
Ors ori2

ov 1
0 (r1,71,0) + §|7“1 —ro|Wo(ry,r1,0) + ...

= VYo(r1,r1,0) + (r2 —r1)
T2
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An introduction to post-Hartree-Fock quantum chemistry (I)

Short-range dynamical correlation

The HF determinant does not fulfill the Coulomb cusp condition:

0Pg

Do (r1,72,712) = O15(11)P15(12) = e C(M1H72) = By (r1,72) 5
12

=0 — nocusp!

Describing short-range dynamical correlation is about recovering the Coulomb cusp

First approach: expand the wave function in the basis of Slater determinants built from atomic
orbitals ¢, (r) expressed as 1™ ~1e~¢"Y,™ (6, ¢). This is known as Configuration Interaction (CI)

\Ijgl(rla r2, T12) = COCI)O(’I"l, 7“2)

+ Z C, (¢a (r1)¢1s(r2) + ¢a(r2)¢1s(r1)) +— single excitations

+3" Cus (¢a(r1)¢b(r2) n ¢a(r2)¢b(r1)) «— double excitations
a<b
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An introduction to post-Hartree-Fock quantum chemistry (I)

Short-range dynamical correlation
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An introduction to post-Hartree-Fock quantum chemistry (I)

Short-range dynamical correlation

Slow convergence with respect to the number of Slater determinants ...

l
( Z H™y™ 91,901)Yl_m(92,902)> = Py(cosf12) = a; (cosbi2)" + a;_1 (costi2)' ™ + ...

2l—|—1

where T%Q = 'r’% + r% — 2r11r9costo

C
ov!

no cusp strictly speaking !
ori2
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An introduction to post-Hartree-Fock quantum chemistry (I)

Short-range dynamical correlation

e Second approach: introduce 712 explicitly in the wave function.
This is known as explicitly correlated method. For example:

1

- - 1
Oo(r1,r2,712) = (1 + 57“12)(1)0(?“1,7“2) or ®g(r1,re,r12) =e2"12dg(r1,72)

oD,
oris

1 1~
(r1,72,0) = §¢0(T1,T2) = §<I>o(r1,7“2,0) —+  cusp!

e Third approach: combine the two first approaches

U§(r1,re,m12) = U§(r1, 72, 712) + c12 712 Po(r1, 72)
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An introduction to post-Hartree-Fock quantum chemistry (I)

The error in the electronic energy of the ground-state helium atom (E;). The error is plotted on a
logarithmic scale as a function of the number of terms in the expansions.
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An introduction to post-Hartree-Fock quantum chemistry (I)

Configuration Interaction method (CI)

Expansion of the wave function in the basis of determinants based on the canonical doubly-occupied
and unoccupied (virtual) HF orbitals.

Those determinants are obtained when applying single, double, triple, quadruple, ... excitations to
the HF determinant ®¢.

[W(C)) = Col|®o) + > Csl|S)+ > CplDy+ > Cr|T)+ ) CqlQ)+...=> Cili)
S D T Q i

If no truncation in the CI expansion (all excitations included) — Full CI (FCI) — exact for a given
one-electron basis set

Truncated CI models: CIS, CISD, CISDT, CISDTQ), ...
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An introduction to post-Hartree-Fock quantum chemistry (I)

Configuration Interaction method (CI)

e Iterative optimization of the CI coefficients C;:

T (COY) = w0y = C’.(O) 7 — normalized starting CI wave function
i g

1

(T (@) +Q|5)

U (9)) = — convenient parametrization = § =

1+ (81018)

i

Q=1—|TO)wO)], |®=§:&M, (TOIQI8) =0,  (T(5)[¥(d)) =

e Cl energy expression: E(8) = (U(8)|H|¥(5))

_ B(0) +25TQHC®) + §TQHQS
- 14+6TQ6

where H;; = (i|H|j) and Q=1-COCOT
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An introduction to post-Hartree-Fock quantum chemistry (I)

Configuration Interaction method (CI)

E(6
Variational condition: E([sl] = _6 (9)
T 0o

Newton method:

E(6) ~ E0) +sTEM + %5TE([)2]6 — E([sli ~EN+EPs, =0 - EP s =-E!
—

EX4: | Show that the CI grandient and hessian can be expressed as Newton step

Ec[)ll _ Q(H _ E(O))C(O) and E(gQ] =2Q (H - E(0)>Q

Note that E([)2] cannot be inverted since E([)2] c0 =9

We can choose § such that COT§, =0 — (E([)Q] + 2aC(0)C(O)T> o4 =

\ 7
-~

where a # 0 G([)Q]
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An introduction to post-Hartree-Fock quantum chemistry (I)

Configuration Interaction method (CI)

(H _ E(O)) oo

. ~gll (0)
After some algebra* ... = ) Ey' =-CY" + —
COT(H-E(©) C©

which does not depend on a since COTEL = ¢

Update of the CI vector:

1
(H _ E(O)) c()
cO® _——c® Q5. =|CO 45, =

C(O)T (H _ E(O)) el

and then normalize.
The CI calculation has converged when E([)l] =0 — HCO = Eg0)c®

This procedure is also known as Rayleigh method.

“T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic- Structure Theory (Wiley, Chichester, 2004), pp. 544-545.
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An introduction to post-Hartree-Fock quantum chemistry (I)

Size-consistency problem in truncated CI calculations

Size-consistency property of a method: multiplicatively separable wave function and additively
separable energy that is E(14+2)=E(1)+ E(2)

where 1 and 2 denote two non-interacting monomers (H = H, + H>).

Example: Ho dimer in a minimal basis set
For the monomer I (I = 1, 2), the 104 and 10, orbitals only are considered.

Ground-state HF determinant for the monomer:

size-consistent !
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An introduction to post-Hartree-Fock quantum chemistry (I)

Size-consistency problem in truncated CI calculations
e CID corresponds to FCI for the monomer:
WO (1)) = (14 eDy )| @0 (1))

A . . . . L
where D = g, a0, p010,7,8010,7,0 — double excitation on monomer 1

K 2A

HCP () — Byp(I) = [O K] — EC™D () = Eugp(I) + A — VA2 + K2

e CIDis not FCI for the dimer:  |WCTP(1 4 2)) = (1 teDy + cﬁz) 1Bo(1 4 2))

DFCL(1 4 2)) = (1 +eDy +chy + clgﬁlfb) Do (1 + 2))
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An introduction to post-Hartree-Fock quantum chemistry (I)

Size-consistency problem in truncated CI calculations

EX5: | Show that, for the dimer,

(i) the CID Hamiltonian matrix equals HC™P(142) — Egrp(1+2) =

(ii) the FCI Hamiltonian matrix equals HFCY(1 4+ 2) — Egp(1 +2) =

(iii) CID is not size-consistent since

ECID(1 4 2) = Eup(14+2) + A — VA2 4 2K2 + ECID(1) 4 ECID(9)

(iv) FCI is size-consistent and c1> = c?
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An introduction to post-Hartree-Fock quantum chemistry (I)

Size-consistency problem in truncated CI calculations

o EFCI(1+2)_ECID(1+2):A<1—|—\/14—2(%)2_2\/14-(%)2)
~s(-5(3)

e FCI wave function written as a Coupled-Cluster wave function (exponential ansatz):

WFCL(1 4 2)) = (1 +eDy +chy + 02151152) Do (1 + 2))

_ (1 + cf)1) (1 + cf)g) B0 (14 2)) = e“P1eP2|D4 (1 + 2))

[WFCH(1 + 2)) = eeP1HeD2 P (1 + 2))

CCD generates quadruple excitations, by means of the exponential, as products of double excitations
and thus ensures size-consistency !
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An introduction to post-Hartree-Fock quantum chemistry (I)

Coupled-Cluster model (CC)

e Note that the exponential used in CC enables to describe not only orbital rotations (single

excitations) but also electron correlation.

e Exponential ansatz in the general case: | |¥(t)) = 67A-|(I)0> where

%:Ztsg—FZtDD—FZtTT—FZtQQA‘F :Ztﬁﬂzﬂ
S D T Q i

7| Po) = |u) +— excited determinant

tu +— CC amplitudes to be optimized

e Truncated and approximate CC models: CCSD, CCSDT, CCSDTQ, CCSD(T), CC2, ...
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An introduction to post-Hartree-Fock quantum chemistry (I)

Coupled-Cluster model (CC)

Variational optimization of the CC amplitudes not convenient

(T HT(E))  (DoleT HeT |®o)

— Y - -, 4
(T(t)|T(t)) (@ ‘ej-]u eﬂcb()) the BCH expansion cannot be used (7" # —7)

Non-variational optimization: ~ H|¥(t)) = E(t)|¥(t)) — I—Ale;r|<I>0> = E(t)e;r|<I>0>
"Linked" formulation: e_%ﬁe%@@ = E(t)|®o)

CC energy: E(t) = (Bole~T HeT |@g) = (@o|He |D0)

E(t) = <<I>o|H<1 + ZtDD + = (ZtsS) ) |®o)

CC amplitudes: (u|e_7A—I§I e;r|<1>0) = 0 <— the BCH expansion can be used (no terms beyond
fourth order!)
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An introduction to post-Hartree-Fock quantum chemistry (I)

The error (with respect to FCI) in the total energy (E;) of coupled-cluster wave functions (full line)
and CI wave functions (dotted line) at different excitation levels for the water molecule at the equilibrium

geometry in the cc-pVDZ basis.
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An introduction to post-Hartree-Fock quantum chemistry (I)

~~
L
=
~—
>
O
—
)
c
)
-
S
i
O
©
—
Q
')
E

Ar, (aug—cc—pVQZ)

Reference (Tang etal.) ——
HF ——
MP2
] ] ] CCSID(T) ]

9 10 11 12 13 14
Interatomic distance (a.u.)

27.06.2012

Second school in computational physics, Les Houches, France

Page 40



