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Introduction to second quantization

Electronic Hamiltonian in first quantization

N -electron Hamiltonian within the Born-Oppenheimer approximation:

Ĥ = T̂ + V̂ne + Ŵee

T̂ =

N∑
i=1

t̂(i) where t̂(i) ≡ −
1

2
∇2

ri
→ kinetic energy

V̂ne =
N∑
i=1

v̂ne(i) where v̂ne(i) ≡ −
nuclei∑
A

ZA

|ri −RA|
× → electron-nuclei attraction

Ŵee =
1

2

N∑
i 6=j

ŵee(i, j) where ŵee(i, j) ≡
1

|ri − rj |
× → electron-electron repulsion
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Introduction to second quantization

One-electron wavefunction

• Let us start with Schrödinger theory: the quantum state of a single electron is written as

|Ψ〉 =

∫
drΨ(r)|r〉

where Ψ(r) is the one-electron wavefunction (orbital) and |r〉 denotes the quantum state

"the electron is at position r". In other words, r̂|r〉 = r|r〉.

• This choice of basis is known as "r representation".

• Orthonormalization condition: 〈r′|r〉 = δ(r′ − r) ←− Dirac distribution

Useful formulas: (1) "∀f",
∫

dr f(r)δ(r′ − r) = f(r′)

(2) δ(r′ − r) =
1

(2π)3

∫
dk eik.(r

′−r)
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Introduction to second quantization

• In this representation, the momentum vector operator is defined as follows,

p̂|Ψ〉 = −i

∫
dr∇rΨ(r)|r〉

• "k representation": |k〉 =
1

(2π)3/2

∫
dr eik.r|r〉

Note that p̂|k〉 = k|k〉 and 〈k′|k〉 = δ(k′ − k) ←− use formula (2) !

• Pauli theory: the spin of the electron is now considered as an additional degree of freedom. The
quantum state of a single electron is then written as

|Ψ〉 =

∫
dr

∑
σ=α,β

Ψ(r, σ)|r, σ〉

where |r, α〉 denotes the quantum state "electron at position r with spin up" and |r, β〉 corresponds
to the state "electron at position r with spin down"
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Introduction to second quantization

Two-electron wavefunction

• In the non-relativistic case, a single electron will have a spin σ0 which is either up or down. The
corresponding wavefunction Ψσ0 can then be written as a spin-orbital Ψσ0 (r, σ) = Ψ(r)δσσ0 .

• With the notations X = (r, σ) and
∫

dX =

∫
dr

∑
σ=α,β

,

a one-electron quantum state in Pauli theory is simply written as

|Ψ〉 =

∫
dX Ψ(X)|X〉

• Two-electron case:

|Ψ〉 =

∫ ∫
dX1dX2 Ψ(X1, X2)|1: X1, 2: X2〉

where the two-electron quantum state |1: X1, 2: X2〉 corresponds to "electron 1 in state |X1〉 and
electron 2 in state |X2〉"
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Introduction to second quantization

• Anti-symmetrization principle: a physical two-electron wavefunction should fulfill the condition

Ψ(X1, X2) = −Ψ(X2, X1)

thus leading to

|Ψ〉 = −
∫ ∫

dX1dX2 Ψ(X2, X1)|1: X1 , 2: X2〉 = −
∫ ∫

dX1dX2 Ψ(X1, X2)|1: X2, 2: X1 〉︸ ︷︷ ︸
|Ψ1↔2〉

and

|Ψ〉 =
1

2

∫ ∫
dX1dX2

[
Ψ(X1, X2)−Ψ(X2, X1)

]
︸ ︷︷ ︸ |1: X1, 2: X2〉

0 if X1 = X2

Conclusion: the anti-symmetrization of the wavefunction ensures that electrons are
indistinguishable and that they cannot be in the same quantum state (Pauli principle).
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Introduction to second quantization

Slater determinants
• Let

{
ϕK(X)

}
K

denote an orthonormal basis of (molecular) spin-orbitals. Two electrons that

occupy the spin-orbitals ϕI(X) and ϕJ (X) will be described by the (normalized) Slater
determinant

ΦIJ (X1, X2) =
1
√

2

∣∣∣∣∣∣ ϕI(X1) ϕI(X2)

ϕJ (X1) ϕJ (X2)

∣∣∣∣∣∣ =
1
√

2

(
ϕI(X1)ϕJ (X2)− ϕI(X2)ϕJ (X1)

)

• Note that Slater determinants and, consequently, linear combinations of Slater determinants are
anti-symmetric.

• Therefore, Slater determinants are convenient "building blocks" for computing the electronic
wavefunction.

• Still, we may wonder if we really need this complicated expression obtained from the determinant
(obviously things get worse for a larger number of electrons).

• Another drawback of the current formulation: both Slater determinant and Hamiltonian expressions
depend on the number of electrons
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Introduction to second quantization

"What is occupied ?" rather than "Who occupies what ?"

• Since electrons are indistinguishable, there is no need to know that electron 1 occupies ϕI and
electron 2 occupies ϕJ or the other way around ...

• The important information is that spin-orbitals ϕI and ϕJ are occupied and the remaining ones are
empty.

• Second quantization is a formalism that relies on this idea.

• At the beginning, there was "nothing" ... |vac〉 ←− normalized "vacuum state"

• ... then was introduced the concept of annihilation of an electron occupying ϕI , that would

obviously give zero when applied to the vacuum state: ∀ I, âI |vac〉 = 0 (rule 1)

• ... and then came the concept of creation of an electron occupying ϕI : â†I |vac〉 ≡ |ϕI〉
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Introduction to second quantization

"What is occupied ?" rather than "Who occupies what ?"

• ... and then came the idea to create another electron occupying ϕJ : â†J â
†
I |vac〉 ≡ |ΦIJ 〉

• Note that the creation operator â†I is the adjoint of the annihilation operator âI . This ensures, in
particular, that one-electron and vacuum states are orthogonal:

〈ϕI |vac〉 = 〈â†Ivac|vac〉 = 〈vac|âI |vac〉 = 0

• In order to have a representation that is equivalent to the one used in first quantization, we only
need two more rules:

∀ I, J, [âI , âJ ]+ = âI âJ + âJ âI = 0 (rule 2) −→
[
â†I , â

†
J

]
+

= [âJ , âI ]†+ = 0

∀ I, J,
[
âI , â

†
J

]
+

= âI â
†
J + â†J âI = δIJ (rule 3)
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Introduction to second quantization

"What is occupied ?" rather than "Who occupies what ?"

• Rule 2 contains the indistinguishability of the electrons, â†J â
†
I |vac〉 = −â†I â

†
J |vac〉,

and the Pauli principle, â†I â
†
I |vac〉 = 0.

• Rule 3 ensures that you can only annihilate what has already been created (!),

âI â
†
J |vac〉 = δIJ |vac〉 − â†J âI |vac〉 = δIJ |vac〉

• It is now very easy to generate representations of Slater determinants for an arbitrary number N of
electrons: multiply more creation operators !

|I1I2 . . . IN−1IN 〉 = â†I1 â
†
I2
. . . â†IN−1

â†IN
|vac〉 ≡

1
√
N !

det
[
ϕIi (Xj)

]
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Introduction to second quantization

EXERCISE: (1) Show that |I1I2 . . . IN−1IN 〉 is normalized.

(2) Let us consider another state |J1J2 . . . JN−1JN 〉 and assume that at least one of the occupied
spin-orbitals (let us denote it ϕJk ) is not occupied in |I1I2 . . . IN−1IN 〉. Show that the two states are
orthogonal.

(3) The "counting" operator N̂ is defined as N̂ =
∑
I

n̂I where n̂I = â†I âI . Show that

n̂I |I1I2 . . . IN−1IN 〉 = |I1I2 . . . IN−1IN 〉 if I = Ik 1 ≤ k ≤ N

= 0 otherwise

and conclude that N̂ |I1I2 . . . IN−1IN 〉 = N |I1I2 . . . IN−1IN 〉 .

(4) Explain why states corresponding to different numbers of electrons are automatically orthogonal.

(5) Explain why any state |Ψ〉 fulfills the condition 0 ≤ 〈Ψ|n̂I |Ψ〉 ≤ 1 .
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Introduction to second quantization

One-electron operators in second quantization

• Let ĥ denote a one-electron operator (t̂+ v̂ne for example): it acts on the one-electron states |ϕI〉.

• Resolution of the identity:
∑
I

|ϕI〉〈ϕI | = 1̂,

which leads to the conventional representation ĥ = 1̂ ĥ 1̂ =
∑
I,J

〈ϕI |ĥ|ϕJ 〉|ϕI〉〈ϕJ | .

• Second-quantized representation: ĥ ≡
∑
I,J

〈ϕI |ĥ|ϕJ 〉â†I âJ

Indeed,∑
I,J

〈ϕI |ĥ|ϕJ 〉â†I âJ

 |ϕK〉 =

∑
I,J

〈ϕI |ĥ|ϕJ 〉â†I âJ

 â†K |vac〉 =

∑
I,J

〈ϕI |ĥ|ϕJ 〉â†I δJK

 |vac〉

=
∑
I

〈ϕI |ĥ|ϕK〉|ϕI〉 = ĥ|ϕK〉

June 2015 ISTPC 2015 summer school, Aussois, France Page 12



Introduction to second quantization

• What is convenient is that this second-quantized representation is valid for any number N of
electrons:

N∑
i=1

ĥ(i) ≡
∑
I,J

〈ϕI |ĥ|ϕJ 〉â†I âJ ≡ ĥ

The information about N has been completely transferred to the states. It does not appear in the
operator anymore.

EXERCISE: Let us consider another orthonormal basis
{
ϕ̃K(X)

}
K

of spin-orbitals that we

decompose in the current basis as follows, |ϕ̃P 〉 =
∑
Q

UQP |ϕQ〉.

(1) Show that the matrix U is unitary (U† = U−1).

(2) Explain why â†
P̃

=
∑
Q

UQP â†Q and show that ĥ ≡
∑
I,J

〈ϕ̃I |ĥ|ϕ̃J 〉â†Ĩ âJ̃ .

(3) Show how the diagonalization of ĥ in the one-electron space leads automatically to the
diagonalization in the N -electron space (use exercise page 11).
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Introduction to second quantization

Two-electron operators in second quantization

• Let ŵ denote a two-electron operator: it acts on two-electron states |ϕIϕJ 〉 = |1: ϕI , 2: ϕJ 〉.

• A complete anti-symmetrized basis should be used for describing the two electrons:

|IJ〉 =
1
√

2

(
|ϕIϕJ 〉 − |ϕJϕI〉

)
≡ â†I â

†
J |vac〉 with I < J .

Consequently, any two-electron anti-symmetrized state |Ψ〉 shoud fulfill the condition

P̂A|Ψ〉 = |Ψ〉 where P̂A =
∑
I<J

|IJ〉〈IJ | ←− projection operator !

• Projection of the two-electron operator onto the space of anti-symmetrized states:

ŵA = P̂AŵP̂A =
∑

I<J,K<L

〈IJ |ŵ|KL〉 |IJ〉〈KL|
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Introduction to second quantization

Two-electron operators in second quantization

EXERCISE: Prove that ŵA ≡
1

2

∑
IJKL

〈ϕIϕJ |ŵ|ϕKϕL〉 â†I â
†
J âLâK

hint: apply ŵA and the proposed second-quantized representation to |PQ〉 ≡ â†P â
†
Q|vac〉 (P < Q).

Conclude.

• What is convenient is that this second-quantized representation is valid for any number N of
electrons and includes the projection onto anti-symmetrized states:

1

2

N∑
i6=j

ŵ(i, j) ≡
1

2

∑
IJKL

〈ϕIϕJ |ŵ|ϕKϕL〉 â†I â
†
J âLâK ≡ ŵ
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Introduction to second quantization

Summary

• In summary, the electronic Hamiltonian can be written in second quantization as follows,

Ĥ =
∑
IJ

〈ϕI |ĥ|ϕJ 〉â†I âJ +
1

2

∑
IJKL

〈ϕIϕJ |ŵee|ϕKϕL〉 â†I â
†
J âLâK

where 〈ϕI |ĥ|ϕJ 〉 =

∫
dX ϕ∗I (X)

(
ĥϕJ

)
(X) ← one-electron integrals

〈ϕIϕJ |ŵee|ϕKϕL〉 =

∫ ∫
dX1dX2 ϕ

∗
I (X1)ϕ∗J (X2)

(
ŵeeϕKϕL

)
(X1, X2) ←two-electron integrals

• Note that this expression is also valid for a relativistic Hamiltonian. Two or four-component spinors
should be used rather than spin-orbitals in conjunction with the Dirac (Breit) Coulomb Hamiltonian.

• The standard (non-relativistic) Hamiltonian will be used in the following.
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Introduction to second quantization

EXERCISE:

(1) At the non-relativistic level, real algebra can be used, ϕI(X) = ϕiσ(r, τ) = φi(r)δστ ,

ĥ ≡ −
1

2
∇2

r + vne(r)× and ŵee ≡
1

|r1 − r2|
× .

Show that the Hamiltonian, that is here a spin-free operator, can be rewritten in the basis of the molecular

orbitals
{
φp(r)

}
p

as follows

Ĥ =
∑
p,q

hpqÊpq +
1

2

∑
p,q,r,s

〈pr|qs〉
(
ÊpqÊrs − δqrÊps

)

where Êpq =
∑
σ

â†p,σ âq,σ , hpq = 〈φp|ĥ|φq〉 and

〈pr|qs〉 =

∫ ∫
dr1dr2 φp(r1)φr(r2)

1

|r1 − r2|
φq(r1)φs(r2) = (pq|rs)
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Introduction to second quantization

EXERCISE:

For any normalized N -electron wavefunction Ψ, we define the one-electron (1) and two-electron (2)
reduced density matrices (RDM) as follows,

Dpq =
〈

Ψ
∣∣∣Êpq∣∣∣Ψ〉 and Dpqrs =

〈
Ψ
∣∣∣ÊpqÊrs − δqrÊps∣∣∣Ψ〉.

(1) Show that the 1RDM is symmetric and that ∀p, the occupation np = Dpp of the orbital p fulfills the
inequality 0 ≤ np ≤ 2 . Show that the trace of the 1RDM equals N .

(2) Explain why the expectation value for the energy 〈Ψ|Ĥ|Ψ〉 can be determined from the 2RDM.

Hint: show that Dpq =
1

N − 1

∑
r

Dpqrr .

(3) Let us consider the particular case |Ψ〉 → |Φ〉 =

N/2∏
i=1

∏
σ

â†i,σ |vac〉. Explain why both density matrices

are non-zero only in the occupied-orbital space.

Show that Dij = 2δij and Dijkl = 4δijδkl − 2δjkδil and ...
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Introduction to second quantization

... deduce the corresponding energy expression:

〈Φ|Ĥ|Φ〉 = 2

N/2∑
i=1

hii +

N/2∑
i,j=1

(
2〈ij|ij〉 − 〈ij|ji〉

)
.

(4) Let i, j and a, b denote occupied and unoccupied (virtuals) orbitals in Φ , respectively. Explain
why Êai and ÊaiÊbj are referred to as single excitation and double excitation operators, respectively.

Hint: derive simplified expressions for |Φai 〉 =
1
√

2
Êai|Φ〉 and |Φabij 〉 =

1

2
ÊaiÊbj |Φ〉 with

i < j, a < b.
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Introduction to second quantization

Why "second" quantization ?

• Let us consider a single electron occupying the spin-orbital Ψ(X) = Ψ(r, σ). The corresponding
expectation value for the nuclear potential energy equals

〈Ψ|v̂ne|Ψ〉 =

∫
dX Ψ∗(X)vne(r)Ψ(X) =

∫
dr vne(r)

∑
σ

Ψ∗(r, σ)Ψ(r, σ)︸ ︷︷ ︸
n(r): density

• For an arbitrary number of electrons: V̂ne =
N∑
i=1

v̂ne(i) ≡
∑
p,q

〈φp|v̂ne|φq〉Êpq

• Change of basis: {|φp〉}p −→ {|r〉}r∈R3 ,

〈φp|v̂ne|φq〉 −→ 〈r′|v̂ne|r〉 = vne(r)δ(r′ − r)

â†p,σ −→ â†r,σ = Ψ̂†(r, σ)
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Introduction to second quantization

thus leading to V̂ne =

∫
dr vne(r) n̂(r) ←− local potential operator !

where the density operator equals n̂(r) =
∑
σ

Ψ̂†(r, σ)Ψ̂(r, σ).

• Note that the electron density associated with the normalized N -electron wavefunction Ψ equals
nΨ(r) = 〈Ψ|n̂(r)|Ψ〉.

• Note also that
∫

dr n̂(r) = N̂ −→
∫

drnΨ(r) = 〈Ψ|N̂ |Ψ〉 = N

• In practice, the density is usually obtained from the molecular orbitals and the 1RDM:

|r, σ〉 =
∑
p

|φp, σ〉〈φp|r〉 =
∑
p

φp(r)|φp, σ〉 −→ n̂(r) =
∑
pq

φp(r)φq(r)Êpq

−→ nΨ(r) =
∑
pq

φp(r)φq(r)Dpq
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Introduction to second quantization

EXERCISE:

(1) Show that the kinetic energy operator is written as follows in the k representation:

T̂ =
N∑
i=1

1

2
p̂2(i) ≡

∫
dk

k2

2

∑
σ

Ψ̂†(k, σ)Ψ̂(k, σ) where Ψ̂†(k, σ) = â†k,σ .

(2) Explain why Ψ̂†(k, σ) =
1

(2π)3/2

∫
dr eik.r Ψ̂†(r, σ) and

Ψ̂†(r, σ) =
1

(2π)3/2

∫
dk e−ik.r Ψ̂†(k, σ)

(3) Conclude that T̂ ≡ −
1

2

∫
dr
∑
σ

Ψ̂†(r, σ)∇2
rΨ̂(r, σ)
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Introduction to second quantization

(4) Let n̂1(r′, r) =
∑
σ

Ψ̂†(r′, σ)Ψ̂(r, σ) denote the one-electron density matrix operator. Deduce from

question (3) the standard expression

T̂ ≡ −
1

2

∫ ∫
drdr′ δ(r′ − r)∇2

rn̂1(r′, r)

(5) Show that the one-electron density matrix operator is connected with the Êpq operators as follows,

n̂1(r′, r) =
∑
pq

φp(r′)φq(r)Êpq

(6) The one-electron density matrix associated with the wavefunction Ψ is defined as
n1(r′, r) = 〈Ψ|n̂1(r′, r)|Ψ〉.

We already know that the 1RDM enables to compute the electron density. Is it possible to restore the
1RDM from the electron density alone ?

Hint: show that the full one-electron density matrix is required for constructing each elements of the
1RDM.

June 2015 ISTPC 2015 summer school, Aussois, France Page 23



Introduction to second quantization

Pair density operator

• Two-electron repulsion operator in the r representation:

Êpq −→
∑
σ

Ψ̂†(r1, σ)Ψ̂(r2, σ)

〈pr|qs〉 −→ 〈r1r2|ŵee|r3r4〉 =
1

|r1 − r2|
δ(r1 − r3)δ(r2 − r4)

Ŵee =
1

2

∑
p,q,r,s

〈pr|qs〉
(
ÊpqÊrs − δqrÊps

)
−→ Ŵee =

1

2

∫ ∫
dr1dr2

n̂2(r1, r2)

|r1 − r2|

where n̂2(r1, r2) = n̂(r1)n̂(r2)− δ(r1 − r2)n̂(r1) ←− pair density operator !
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Pair density operator

• Expectation value for the two-electron repulsion:

〈Ψ|Ŵee|Ψ〉 =
1

2

∫ ∫
dr1dr2

1

|r1 − r2|

(
〈Ψ|n̂(r1)n̂(r2)|Ψ〉 − δ(r1 − r2)nΨ(r1)

)

• If Ψ is the ground-state wavefunction of an interacting electronic system (ŵ 6= 0), it is usual in
density-functional theory (DFT) to consider the Kohn–Sham (KS) Slater determinant ΦKS that is
the ground-state wavefunction of the non-interacting system (ŵ = 0) that has exactly the same
electron density:

nΦKS (r1) = nΨ(r1),

thus leading to

〈Ψ|Ŵee|Ψ〉 − 〈ΦKS|Ŵee|ΦKS〉 =
1

2

∫ ∫
dr1dr2

1

|r1 − r2|

[
〈Ψ|n̂(r1)n̂(r2)|Ψ〉 − 〈ΦKS|n̂(r1)n̂(r2)|ΦKS〉

]

• This expression can be used in the calculation of the correlation energy (adiabatic connection
fluctuation-dissipation theorem)
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Hubbard Hamiltonian

hij −→ −t
(
δi,j−1 + δi,j+1

)
+ viδij

〈ij|kl〉 −→ Uδijδikδlj

ÊikÊjl − δkjÊil −→ n̂in̂i − n̂i

where n̂i = Êii = n̂i↑ + n̂i↓ so that n̂in̂i = 2n̂i↑n̂i↓ + n̂i

Ĥ −→ −t
∑
〈i,j〉

∑
σ=↑,↓

â†i,σ âj,σ︸ ︷︷ ︸
+ U

∑
i

n̂i↑n̂i↓︸ ︷︷ ︸ +
∑
i

vin̂i︸ ︷︷ ︸
T̂ (hopping) on-site repulsion local potential
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Introduction to second quantization

Spin operators
• Spin vector operator in second quantization:

Ŝ =

N∑
i=1

ŝ(i) ≡
∑
pq,σσ′

〈
φp, σ

∣∣ŝ∣∣φq , σ′〉︸ ︷︷ ︸ â†p,σ âq,σ′
〈φp, σ|φq , ŝσ′〉 = δpq 〈σ|ŝ|σ′〉 = δpqsσσ′

with ŝx ≡
1

2

 0 1

1 0

, ŝy ≡
1

2

 0 −i

i 0

, ŝz ≡
1

2

 1 0

0 −1

,

thus leading to Ŝ ≡
∑
p

Ŝp where

Ŝx
p =

1

2

(
â†p,↑âp,↓ + â†p,↓âp,↑

)
, Ŝy

p =
1

2i

(
â†p,↑âp,↓ − â

†
p,↓âp,↑

)
, Ŝz

p =
1

2

(
â†p,↑âp,↑ − â

†
p,↓âp,↓

)
.
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Introduction to second quantization

EXERCISE:

(1) Show that
[
Â, B̂Ĉ

]
=
[
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
=
[
Â, B̂

]
+
Ĉ − B̂

[
Â, Ĉ

]
+

.

(2) Deduce from (1) that
[
â†p,σ âq,σ′ , â

†
r,τ âs,τ ′

]
= δrqδτσ′ â

†
p,σ âs,τ ′ − δspδτ ′σ â

†
r,τ âq,σ′ .

We suggest to use in the following the notation Ŝp =
∑
σσ′

sσσ′ â
†
p,σ âp,σ′ .

(3) Explain why
[
Ŝx, Ŝy

]
=
∑
p

[
Ŝx
p , Ŝ

y
p

]
.

(4) Prove that
[
Ŝx
p , Ŝ

y
p

]
= i Ŝz

p. Hint: use (2) and the equality [ŝx, ŝy] = i ŝz.

(5) Conclude that Ŝ is an angular momentum operator:
[
Ŝx, Ŝy

]
= i Ŝz .
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Introduction to second quantization

Spin operators

• Another important model Hamiltonian is the Heisenberg Hamiltonian:

Ĥ −→ −J
∑
p

Ŝp . Ŝp+1
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