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Electronic Hamiltonian in first quantization

N-electron Hamiltonian within the Born-Oppenheimer approximation:

A

H:T‘i‘vne‘f‘wee
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- 1
where (i) = —Evri kinetic energy

nuclei

where  Upe(i) = — Z electron-nuclei attraction

where Wee(,j) = —— electron-electron repulsion




One-electron wavefunction

e Let us start with Schrodinger theory: the quantum state of a single electron is written as
w) = [ dr v

where W(r) isthe one-electron wavefunction (orbital) and |r) denotes the quantum state

"the electron is at position r". In other words, | r|r) =r|r).

e This choice of basis is known as "r representation”.

e Orthonormalization condition:  (r'|r) = 6(r’ — r) <— Dirac distribution

Useful formulas: (1) "Vf", /dr f(r)o(r' —r) = f(r")

1 : /
@ 5 —r)= OE / dk etk (v —1)




e In this representation, the momentum vector operator is defined as follows,

p|¥) = —i/drVr\I!(r)|r>

1 .
"k representation: k) = W /dr eI |r)
T

Note that | plk) =k|k)| and (k'|k) =46k’ — k) +— use formula (2) !

Pauli theory: the spin of the electron is now considered as an additional degree of freedom. The
quantum state of a single electron is then written as

|\I!>:/dr > U(r,o)lr,0)

oc=«o,3

where |r, o) denotes the quantum state "electron at position r with spin up" and |r, 3) corresponds
to the state "electron at position r with spin down"




Two-electron wavefunction

e In the non-relativistic case, a single electron will have a spin g which is either up or down. The
corresponding wavefunction W70 can then be written as a spin-orbital W70 (r, o) = ¥U(r)dso-

e With the notations X = (r, o) and/dX = /dr Z ,

o=a,f

a one-electron quantum state in Pauli theory is simply written as

w) = [ ax wx)x)

e Two-electron case:

\\If)z//Xmng (X1, X2)|1: X1,2: Xo)

where the two-electron quantum state |1: X1, 2: X2) corresponds to "electron 1 in state | X1) and
electron 2 in state | X2)"




e Anti-symmetrization principle: a physical two-electron wavefunction should fulfill the condition

U(X1,X2) = —U(X2, X1)

thus leading to

) = —//XmdX2 W(Xa, X1)|1: [ 20 Xo) = —//Xmng (X1, X2)|1: Xo, 2:

-~

LEPET))

and

1
|U) = 5//dX1dX2 \IJ(Xl,XQ)—\IJ(XQ,Xl)] 11: X1,2: Xo9)

\ . 7
~

0 if X1 =Xo

Conclusion: the anti-symmetrization of the wavefunction ensures that electrons are

indistinguishable and that they cannot be in the same quantum state (Pauli principle).




Slater determinants

Let {gp x (X) } K denote an orthonormal basis of (molecular) spin-orbitals. Two electrons that

occupy the spin-orbitals ¢;(X) and ¢ ;(X) will be described by the (normalized) Slater
determinant

B1s(X1Xe) = - z;g&; ZE‘;Z)) - <¢I<X1>¢J<X2> - w(Xg)w(Xl))

Note that Slater determinants and, consequently, linear combinations of Slater determinants are
anti-symmetric.

Therefore, Slater determinants are convenient "building blocks" for computing the electronic
wavefunction.

Still, we may wonder if we really need this complicated expression obtained from the determinant
(obviously things get worse for a larger number of electrons).

Another drawback of the current formulation: both Slater determinant and Hamiltonian expressions
depend on the number of electrons




"What is occupied ?" rather than "Who occupies what ?"

Since electrons are indistinguishable, there is no need to know that electron 1 occupies ¢; and
electron 2 occupies ¢ or the other way around ...

The important information is that spin-orbitals ¢ and ¢ y are occupied and the remaining ones are
empty.

Second quantization is a formalism that relies on this idea.

At the beginning, there was "nothing" ... |vac) +— normalized "vacuum state"

... then was introduced the concept of annihilation of an electron occupying ¢y , that would

obviously give zero when applied to the vacuum state: |V, ay|vac) =0 (rule 1)

... and then came the concept of creation of an electron occupying r: &; |vac) = |¢r1)




"What is occupied ?" rather than "Who occupies what ?"

e ... and then came the idea to create another electron occupying ¢ ;: d;&; lvac) = |Pry)

e Note that the creation operator &} is the adjoint of the annihilation operator a;. This ensures, in
particular, that one-electron and vacuum states are orthogonal:

(prlvac) = (djvac|vac> = (vac|ar|vac) = 0

e In order to have a representation that is equivalent to the one used in first quantization, we only
need two more rules:

(rule 2)

(rule 3)




"What is occupied ?" rather than "Who occupies what ?"

e Rule 2 contains the indistinguishability of the electrons, djr]&i[ |vac) = —&}&T] |vac),

and the Pauli principle, &}d“vac) = 0.

e Rule 3 ensures that you can only annihilate what has already been created (!),

AI&TJ|vac> = d7|vac) — &B&ﬂvac) = d7.|vac)

e [tis now very easy to generate representations of Slater determinants for an arbitrary number /N of
electrons: multiply more creation operators !

Nla...Iny_1ly)=ah a) ...a) &l |vac) det [% (Xj)}

1
vV N!




EXERCISE: | (1) Show that |I11>...Ix_1Ix) is normalized.

(2) Let us consider another state |J1J2 ... Jy_1Jn) and assume that at least one of the occupied
spin-orbitals (let us denote it ¢ 5, ) is not occupied in |I1 15 ... Iy _1In). Show that the two states are
orthogonal.

(3) The "counting” operator N isdefinedas N = Z ny where ny = &}& 7. Show that
I

arlhils.. . IN_1IN)=|Lis.. . In_1In) if I=1, 1<k<N

=0 otherwise

and conclude that | N|I1 Iz ... In_1In) = N|I1 Iz ... In_1In) |

(4) Explain why states corresponding to different numbers of electrons are automatically orthogonal.

(5) Explain why any state |¥) fulfills the condition | 0 < (U|n;|¥) <1 |




One-electron operators in second quantization

e Let i denote a one-electron operator (£ + ne for example): it acts on the one-electron states |¢;).

e Resolution of the identity: Z lor) (7| =1,

which leads to the conventional representation (orlhles)er) o] .

e Second-quantized representation:

Indeed,

(Z(thﬁﬂd a ) oK) = ( (prlhlps)ata )d}d‘fa@ = (Z(WMSOJ)&} 5JK> [vac)
I,

I,J J I,J

= (erlhler)ler) = hlek)
I




e What is convenient is that this second-quantized representation is valid for any number N of
electrons:

N
> h(i) > lerlhlegyata, = h

i=1 I,J

The information about /V has been completely transferred to the states. It does not appear in the
operator anymore.

EXERCISE: | Let us consider another orthonormal basis {gb x(X) } « of spin-orbitals that we
decompose in the current basis as follows, |pp) = Z Ugprleg)-
Q

(1) Show that the matrix U is unitary (UT = U~1).

(2) Explain why d}; = Z Ugp dg and show that h = Z<¢I|fz|¢J>& as.
Q I,J

(3) Show how the diagonalization of & in the one-electron space leads automatically to the
diagonalization in the N-electron space (use exercise page 11).




Two-electron operators in second quantization

e Let w denote a two-electron operator: it acts on two-electron states |prps) = |1: ¢1,2: @ ).

e A complete anti-symmetrized basis should be used for describing the two electrons:

1 At .
10) = —=(leres) = lpser)) = ajalvac)  with 1<

\/_

Consequently, any two-electron anti-symmetrized state |¥) shoud fulfill the condition

P4|U) = |¥) where Py = Z | 1J)Y(1J| +— projection operator !
I1<J

e Projection of the two-electron operator onto the space of anti-symmetrized states:

> (IJ|B|KL) [IJ)(KL|
I<J K<L




Two-electron operators in second quantization

1
EXERCISE: | Prove that .4 = _ > Aereglblerxer) atalapar

I1JKL

hint: apply w4 and the proposed second-quantized representation to | PQ) = d;dg lvac) (P < Q).
Conclude.

e What is convenient is that this second-quantized representation is valid for any number N of
electrons and includes the projection onto anti-symmetrized states:

N
1 NN | A statara ;
52 (i, j) = 3 > " (ereslblexer) dalarax = o
ij IJKL




Summary

e In summary, the electronic Hamiltonian can be written in second quantization as follows,

~ ~ 4 1 R TR
H =3 {prlhles)azas+ 5 > (ereslielprer) ajalaras
IJ IJKL

where  (p7|hlps) = /dX ©7T (X)(ngj)(X) < one-electron integrals

(preg|Wee|lprer) ://Xmng go?(Xl)gof}(Xg)(weegngoL)(Xl,Xg) +two-electron integrals

e Note that this expression is also valid for a relativistic Hamiltonian. Two or four-component spinors
should be used rather than spin-orbitals in conjunction with the Dirac (Breit) Coulomb Hamiltonian.

e The standard (non-relativistic) Hamiltonian will be used in the following.




EXERCISE:

(1) At the non-relativistic level, real algebra can be used, ¢;(X) = wio(r,7) = ¢;(r)do~r,

A 1 1
h N V% _|_ Une (I‘) X and wee = ——X .
2 Ir; — ra|

Show that the Hamiltonian, that is here a spin-free operator, can be rewritten in the basis of the molecular
orbitals {gbp(r)} as follows
p

A A 1 A A
H = thquq + 2 Z (prlgs) (quET’S - 5q7°EpS)

p7q paQ7r7S

where £, = Zd;,a&q,m hpg = ($p|hlde) and
g

(prigs) = / / dridrz ¢p(r1)ér(ra) —— dg(r1)ds(ra) = (palrs)

r1 — ra|




EXERCISE:

For any normalized N-electron wavefunction ¥, we define the one-electron (1) and two-electron (2)
reduced density matrices (RDM) as follows,

(1) Show that the 1IRDM is symmetric and that Vp, the occupation n, = Dy, of the orbital p fulfills the
inequality 0 < n, < 2. Show that the trace of the IRDM equals N.

(2) Explain why the expectation value for the energy (¥U|H|¥) can be determined from the 2RDM.

1
Hint: show that D,, = N1 Z Dypgrr.

N/2
(3) Let us consider the particular case |V) — |®) = H H j . Explain why both density matrices

are non-zero only in the occupied-orbital space.

Show that D;; = 26;; and Dk = 40;;011 — 25jk57;l and ...




.. deduce the corresponding energy expression:

N/2 N/2
(P|H|P) —2Zhu+ > (2<w|zy <z‘j|jz'>>-

1,7=1

(4) Let ¢,5 and a,b denote occupied and unoccupied (virtuals) orbitals in & , respectively. Explain
why FE,; and EaiEAb ; are referred to as single excitation and double excitation operators, respectively.

1 1 .

Hint: derive simplified expressions for |[®¢) = — Fq;|®) and |<I>§jb) = iEmEbjkD) with

V2

1< 7, a<b.




Why "second" quantization ?

e Let us consider a single electron occupying the spin-orbital ¥ (X) = ¥(r, o). The corresponding
expectation value for the nuclear potential energy equals

(0| Ome| ) = /dX U* (X )vne (1)U (X) = /drvne(r)z\ll*(r, o) (r, o)

\ 7
Ve

n(r): density

N
e For an arbitrary number of electrons: Vne = Z Une (1) = Z<¢p|@ne|¢q>]§7pq

e Changeofbasis:  {|¢p)}, — {Ir)},.crs,
(@pline|dg) —  (r'|tne|r) = vne(r)d(r’ —r)

— a4l , = Ui(r,0)




thus leading to Vie = / dr vne(r) n(r) <— local potential operator !

where the density operator equals n(r) = Z Ul (r,o)¥(r,o).

e Note that the electron density associated with the normalized N-electron wavefunction ¥ equals
ny (r) = (Y[a(r)[P).

e Note also that /drﬁ(r) =N — /drnq,(r) = (V|N|P) =N

e In practice, the density is usually obtained from the molecular orbitals and the 1IRDM:

r,o) = Z |Pp, o) (b Z% )|ép, o) — n(r) = Z¢p(r)¢q(r)qu

ny(r) = ) ép(r)de(r)Dpq




EXERCISE:

(1) Show that the kinetic energy operator is written as follows in the k representation:

N
1 ol A~
=3 5pz /dk = Z\I}T (k,0)¥(k,0) where ¥f(k,0)=a]

=1

1

(2) Explainwhy ¥f(k,0) = PREE
T

/dr !XT Ul (r, o) and

1

Ut(r, o) = (2m)3/2

/dke—ik-r UT(k, o)

(3) Conclude that —— /dr Z Ul (r,o)V2U(r,0)




4) Let ny(r',r) = Z UT(r',0)¥(r,0) denote the one-electron density matrix operator. Deduce from

(o)
question (3) the standard expression

//drdr r' —r)VZaq(r/,r)

(5) Show that the one-electron density matrix operator is connected with the F,,, operators as follows,

Z bp(r')dq (r

(6) The one-electron density matrix associated with the wavefunction ¥ is defined as
ni(r’,r) = (V|ng (v, r)| V).

We already know that the 1IRDM enables to compute the electron density. Is it possible to restore the
1RDM from the electron density alone ?

Hint: show that the full one-electron density matrix is required for constructing each elements of the
1RDM.




Pair density operator

e Two-electron repulsion operator in the r representation:

> i(r1,0)¥(r2,0)

1

r1 — ra|

Wee = //drldr2n2 (r1, r2)
r1 — 2

5(1‘1 — I‘3)5(I‘2 — I'4)

(rira|wWee|rsry) =

n(ri)n(rz) — d(r1 —ro2)n(ry) <— pair density operator !




Pair density operator

e Expectation value for the two-electron repulsion:

<\IJ|Wee|\If //drldrg |I‘1 _ r2| (( ‘ (rl)ﬁ(r2)|\11) — 5(1‘1 — rg)nq,(rl))

e If W isthe ground-state wavefunction of an interacting electronic system (w # 0), it is usual in
density-functional theory (DFT) to consider the Kohn-Sham (KS) Slater determinant ®X3 that is
the ground-state wavefunction of the non-interacting system (& = 0) that has exactly the same
electron density:

ngks(ri) = nyg(r),

thus leading to

(U Wee ) — @XSWeel @159 = 2 [ [ drades | (0 )aea)[0) — (@5 i(e)i(ra) [ 05)

e This expression can be used in the calculation of the correlation energy (adiabatic connection
fluctuation-dissipation theorem)




Hubbard Hamiltonian

hij — —t(éi,j_1+5i,j+1)+v7;5ij

<Zj|kl> — U5ij5ik5lj

A A A
A

EinEj — 0k By —  Dify — Ny

where n; = E“ = ’IA%'T + ﬁ”ii so that n;n; = Q’fLiT’ﬁZ¢ + n;

¢ Z Z d];p&j)a + UZﬂﬁﬁu + Zviﬁi
N (ind) o =T Y ~ ; - ZH/—/

-~

T (hopping) on-site repulsion local potential




Spin operators

e Spin vector operator in second quantization:

N
S=) 8(i) = > (¢p,0l8|q0")a) iy .

pq,o0’ ~

<¢'pa ‘7|¢qa §0/> = dpq <U‘§|0/> = dpqSoor




EXERCISE:

C—B[A,C]+.

At .

’,’_/ - 53p57-/0.aﬂr-’7-a:q’o./.

p,c%p,o’-

We suggest to use in the following the notation S, = Z Soor O]
oo’

(3) Explain why [gx’ S’y] = Z [5’;‘, S‘g]
p

(4) Prove that [S;, Sy ] = iS”ZZ). Hint: use (2) and the equality [5*, Y] =1i5”.

(5) Conclude that S is an angular momentum operator: [SX, Sy] =i5% |




Spin operators

e Another important model Hamiltonian is the Heisenberg Hamiltonian:

I:I — —JZép.ép_|_1
p




