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Notations

Molecular orbitals: ¢p(r) = Z Cup Xu(r) (Op|dg) = dpg
W

Non-orthogonal set of atomic orbitals (Gaussian functions): (Xulxv) = Suv

Hamiltonian in second quantization:

where  hpg = [ dr ép(0)[ = JVE + vue(s)]64(®)

and (prigs) = //drldrz Pp(r1)Pr(r2) ———— Pq(r1)gs(rz2) = (pq|rs)

|1—2|




Variational and non-variational approximations

e The exact electronic ground state ¥ and its energy Eg can be obtained two ways:

Eo = min e 1Y) (YolH Do) H|Vo) = Eo| o)
v (P|W) (Wo|Wo)

Approximate parametrized ground-state wave function: W(\o)

where Ao denotes the complete set of optimized parameters.

Variational calculation Non-variational calculation

0 (T(N)|H|T(N))

X (T[T HIT(A) — EQ)[W(A)) =0 for A= Xg

A=Xg
\ \

Hartree-Fock (HF) Many-Body Perturbation Theory (MBPT)
Configuration Interaction (CI) Coupled Cluster (CC)
Multi-Configurational Self-Consistent Field (MCSCF)




Spin-orbital rotation

e Let {|P)} denote an orthonormal basis of spin-orbitals and {|P)} another orthonormal basis
obtained by unitary transformation:

Py =Y UorlQ)
Q

— K

e U can be writtenas| U =e€ with kT = -k

e xp@ can be used rather than Upg for parametrizing the spin-orbital rotation

Using EX2, show that in second quantization the unitary transformation can be simply written as

where R




Spin-orbital rotation

e Note that the rotation operator ~ is anti-Hermitian:

e Unitary transformation for a N-electron Slater determinant:

.I.

~ — R A fo—hat
..a_~ |vaC) = € a e’'e a
P | ) Py Py




Spin-restricted orbital rotation

e In a restricted formalism the same set of orbitals is used for o and 3 spins:

Rk = ZKLPQ aPaQ = ZZKP,UCI o a;g,adq’(,/ = g Kpql
PQ 1N Pq

Prq oo’

KpgOoo

e Since Kpq = —Kqp (real algebra)




Hartree-Fock approximation

e For simplicity we consider here the particular case of a non-degenerate singlet closed-shell ground
state

e The HF method consists then in approximating the exact wave function W by a single Slater
determinant ®¢. The orbital space is thus divided in two:

doubly occupied molecular orbitals ¢;, ¢;, . .. unoccupied molecular orbitals ¢, ¢p, . ..

OcCC.

|Pg) = H H dg’a vac)

oc=uo,3

e The initial set of molecular orbitals is usually not optimized — the optimized HF molecular orbitals
will be obtained by means of unitary transformations (orbital rotation)




Hartree-Fock approximation

e " |®g)  with

denotes the column vector containing all the parameters to be optimized

P>q
occupied-occupied and unoccupied-unoccupied rotations:

k= Z Rij (Em — Ejz) + Z Kai (Eai - Eia) + Z Rab (Eab — Eba)
1,a

1>7 a>b

7

K

RO°C|Pg) = RUMO°C | @) = 0 — only occupied-unoccupied rotations will be optimized — ~ =




Hartree-Fock approximation

Hartree-Fock energy expression:

Bl - (2 R)H|®(r)) _ (Pole "' H e *|®o) _
(®(r)|(x)) (Pole"" e F|Do)

Variational optimization of «: E,EJ]r =

Iterative procedure (Newton method):

<<I>0|6'%]:IG_'%|CI>0> = E(K,)

E(r) ~ E(0)+r"EMN + %F.-,TE(?]F.; - Bl ~EM+EMk. =0 - EJ K= — g\

Update the HF determinant:  ®¢ < ®(x4)

HF calculation converged when

Newton step




Hartree-Fock approximation

Note: The exponential parametrization can also be used in Kohn-Sham DFT

(@(r)|H[®(K))  —  (@(r)|T + Vie|®(x)) + Exe[n(x)]

e P|ORB),  n(k,r) = (B(K)|A(r)|D(k)),

A(r) = Epr = Z Ul (r,0)¥(r, o) = Z b (r)Pg () Fpg +— density operator
g p,q




Hartree-Fock approximation

—zA B emA

EX2: | Using the Taylor expansion of f(x) = e
Baker-Campbell-Hausdorff (BCH) expansion:

about z = 0, prove the

[[BaA]]n—i-l :[[[B,A]]n,A], [[BaA]]l :[B,A]

e Analytical formulas for the gradient and the hessian:

B(0) + (@ol [, HBo) + (@[5, [5, AJ||@0) + ..

0,a1

Z%m(@o\mai — Eyq, H||®0) — B = (®0|[Eqi — Eia, H]|®0o)
al

— —2(<I>0|I§TEM|<I>0> = 0 (Brillouin theorem)




Fock matrix and canonical orbitals

EX3: | Using the simplified commutator expression [Epq, Ers] = 8qrFEps — 0ps Erq, show that

BV = 2(®0|[Eai, H]|®0) =| —4f;q = B

0,az 0,az

1
where the Fock matrix elements are defined as fpq = hpq + Z ((pr|qs> — 5 (pr\sq)) Drs,

T8

Dys = (®g|Ers|®g) <« one-electron density matrix

e Canonical HF orbitals:

B DOCC. 0 B O , , O
D= f = D' =D, f =
O O O funocc. O f/unocc.

T= = - = rocc. __ /junocc. __
D%CC = 25@'3’ f?%CC — fz'j, fclblglocc — fab f o _ 5@']'51', £ ur _ 5ab€a
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Static correlation

e Hos in the equilibrium geometry:

W) = Co|1a§‘105> +...| where |Cy|? = 98% no static correlation

e In the dissociation limit: H4...Hp and NOT

1
¢1ag (r) = ﬁ

1
10510]) = - (|1sj:§1sﬁB> + 13185 ) 4155 17) + 153152

(¢13A (r) + P15 (r)) and P10, (r) =

1
~lof10f) = 2 (|1si13‘;> + |1 1s5) — 1159 157) — 155157

(| loy 105 ) — 169107 >) strong static correlation




H, in a minimal basis

EXERCISE:

(1) Show that the Hamiltonian matrix for Ho can be written in the basis of the two single-determinant

states |1a‘g)‘105 )and |10 105) as follows,

B, K
[H]| = ,  where
K Ey

for i=g,u, F;=2hy+ (loslo;|losloy), hi = (loglhlloy), K = (loylou|logloy).

(2) In the following, we use the minimal basis consisting of the two 1s atomic orbitals. Explain why, in the

1
dissociation limit, E, = FE, and K = 5(1513\1513> > 0.

(3) Conclude that, in the dissociation limit, the ground state is multiconfigurational and does correspond
to two neutral hydrogen atoms with energy F/;, — K.
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Multi-Configurational Self-Consistent Field model (MCSCEF)

The MCSCF model consists in performing a CI calculation with a reoptimization of the orbitals

W(k,C)) = e " (Zm )

The MCSCF model is a multiconfigurational extension of HF which aims at describing static
correlation: a limited number of determinants should be sufficient.

Short-range dynamical correlation is treated afterwards (post-MCSCF models)

Choice of the determinants: active space

H.. H 2 electrons in 2 orbitals (1log, 1oy,) — 2/2

2 electrons in 4 orbitals (2s, 2p., 2py, 2p2) — 2/4




Multi-Configurational Self-Consistent Field model (MCSCF)

o Complete Active Space (CAS) for Be: [1s°2s?), [1s%2p2), |1s%2p7), |1s%2p7),
if all the determinants are included in the MCSCEF calculation — CASSCF

if a Restricted Active Space (RAS) is used RASSCF

The orbital space is now divided in three:

doubly occupied molecular orbitals (inactive) DiyDjy .. 1s
active molecular orbitals buy Pvsy - - 2s,2py, 2py, 2p2

unoccupied molecular orbitals ba, Db, - - - 3s,3p, 3d, . ..
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Multi-Configurational Self-Consistent Field model (MCSCF)

EX6: | In order to illustrate with Ha the fact that active orbitals can be partially occupied, show that the

active part of the density matrix 4D, defined as
ADyw = (U|Evw|T),

1

g

2

0
1+ c2

2¢2
1+ c?

Note: In the particular case of a single determinantal wave function (c = 0) the active density matrix

2 0
reduces to )
0O 0




e Iterative optimization of the orbital rotation vector « and the CI coefficients C;:

(@ (0)y) = Z CZ.(O) |7) +—  normalized starting wave function

(T(A)) =e ® +—  convenient parametrization A\ =

1+ (81018)

Q=1-[¢O)y@®|, |5 =3"5l), (POQ5) =0, (TA)|T()) =1

e MCSCEF energy expression:  E(\) = (F(A\)|H|¥(N))

e Variational optimization: = = where

and EC[”




e Newton method:

1
E(0)+ ATEMN + §>\TE([)2])\ — BV ~Bll+ BN =0 - Ef' A, =-E[
~—

Newton step

e Convergence reached when E([)l] =0

Show that Egll = (WO)|[Eyy — Eqp, H[W©) and  Ef = z(HCAS - E(O))c<0>

where H%Asz(iufﬂj) and C0O) = C’i(o)

Note: Ej =0 isknown as generalized Brillouin theorem.




Multi-Conftigurational Self-Consistent Field model (MCSCEF)

We consider in this exercise a different parametrization of the MCSCF wave function:

T(k,8)) = e " e 5 w0

where S:ZSKOK)(\D(O)\—|\IJ(O)>(K\), (TOKY =0, (K|K') =0k and
K

ZI i| = [ (O)(w®) +Z|K

Derive the corresponding MCSCF gradient and show that the optimized MCSCF wave functions
obtained with this parametrization and the previous one are the same.

Note: This double exponential form is convenient for computing response properties at the MCSCF level
and performing state-averaged MCSCF calculations.
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Recovering dynamical correlation effects

e Standard approach: post-MCSCF treatment based either on perturbation theory (MRPT) or Coupled
Cluster theory (MRCC).

e Combining MCSCF with DFT is not easy ...

Eo = m}in {<\IJ()\)|T + Vne + I/T/ee|\lj()\)> + ESAS[n\I/(A)]}

~”

not universal !
thus leading to the so-called "double counting problem"

e Range-separated MCSCF-DFT?!: two-electron repulsion at long range assigned to MCSCF and, at
short range, assigned to DFT — correlations are separated in real space !

e CASDFT method based on orbitals occupation? rather than the electron density — correlations are
separated in the orbital space !

E. Fromager, J. Toulouse, and H. J. Aa. Jensen, ]J. Chem. Phys. 126, 074111 (2007).
2E. Fromager, Mol. Phys. 113, 419 (2015).




Multi-state MCSCF approach

State-averaged MCSCF model: simultaneous optimization of the ground and the lowest A/ — 1
excited states at the MCSCEF level.

[terative procedure: N initial orthonormal states are built from the same set of orbitals.

o =S" 0l iy,

Double-exponential parametrization:

Uy (k,8)) = e " e 51wl

and Z i) (il = > o (W)

K




Multi-state MCSCF approach

e Gross—Oliveira—-Kohn (GOK) variational principle for an ensemble of ground and excited states:

For any set {U};_, »r of N orthonormal states, the following inequality holds,

N X N
> wp(UH|Y) > wikr
=1 =1

where F; < Ey <...< Ej arethe N lowest exact eigenvalues of H, and the weights are
ordered as follows,

EXERCISE: | Prove the theorem in the particular case of two states by using Theophilou’s
variational principle: (¥ |H| W) + (Uy|H|¥s) > Ey + Ey.  Hint: Show that

wi (1 [ W1) + wo (Vo | H|W2) = wo | (W1 A W1) + (Wa| H|W2)| + (w1 — wo) (1 |H]91)




EXERCISE: | Proof of Theophilou’s variational principle for two states

(1) Let A = (U1 |H|W¥1) + (Uo|H| W) — E1 — Eo. We consider the complete basis of the exact

eigenvectors {\~If I} of H with eigenvalues { F1} I=12..

I1=1,2,...
Both trial wavefunctions can be expanded in that basis as follows,

Vi) =) Ckil¥r), K=1,2.
I

2
Show that A = Z(pI —DE; + ZPIEI where p; = C%I + CSI.
I=1 I>2

2
(2) Show that A = Z(l —pr)(E2 — Er) + ZPI(EI — F2).  Hint: prove first that ij = 2.
I=1 I1>2 1

(3) Let us now decompose the two first eigenvectors (I = 1, 2) in the basis of the trial wavefunctions and

the orthogonal complement:  |U;) = C17|¥1) + Cor|¥2) + Q12|¥;)  where

2
Qra=1-— Z W) (U] Explainwhy pr<1 when [=1,2 and conclude.
K=1




Multi-state MCSCF approach

N
State-averaged energy: E(k,S) = Z wr (U7 (k, S)|H|¥(k,S))
=1

where wy are arbitrary weights. In the so-called "equal weight" state-averaged MCSCF calculation
1

wr — ﬁ
OE(k,S) O0FE(k,S) 0
ox  8S

Variational optimization:

Note that, in contrast to the exact theory, converged individual energies (and therefore excitation
energies) may vary with the weights. This is due to the orbital optimization.

Short-range dynamical correlation is usually recovered within multi-reference perturbation theory
(multi-state CASPT2 or NEVPT2 for example)




