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Time-dependent linear response theory: exact and approximate formulations

Response properties in the time-independent regime

• In the following we shall refer to Ĥ = T̂ + Ŵee + V̂ne as the unperturbed Hamiltonian with
ground state Ψ0.

• Let us introduce a perturbation operator V̂ with strength ε. The Hamiltonian becomes
ε-dependent: Ĥ(ε) = Ĥ + εV̂ .

• Example: if the perturbation is a uniform electric field E along the z axis, then

E = ε ez and V̂ = ε ẑ where ẑ =

∫
dr z n̂(r) ← second-quantized notation !

• Response theory is nothing but perturbation theory formulated for both exact and approximate
wavefunctions.

• Let Ψ(ε) denote the exact normalized ground state of Ĥ(ε) with energy E(ε).

• Linear and higher-order response functions:

〈V̂ 〉(ε) = 〈Ψ(ε)|V̂ |Ψ(ε)〉 = 〈Ψ0|V̂ |Ψ0〉+ ε〈〈V̂ ; V̂ 〉〉+
1

2
ε2〈〈V̂ ; V̂ , V̂ 〉〉+ . . .
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Time-dependent linear response theory: exact and approximate formulations

Response properties in the time-independent regime

• In our example,

〈Ψ0|ẑ|Ψ0〉 is the permanent dipole moment along the z axis

〈〈ẑ; ẑ〉〉 = αzz is the static polarizability

〈〈ẑ; ẑ, ẑ〉〉 = βzzz is the static hyperpolarizability

• Hellmann–Feynman theorem:
dE(ε)

dε
=

〈
Ψ(ε)

∣∣∣∣∣∂Ĥ(ε)

∂ε

∣∣∣∣∣Ψ(ε)

〉
= 〈V̂ 〉(ε)

• Exact response functions can be expressed as energy derivatives:

〈〈V̂ ; V̂ 〉〉 =
d2E(ε)

dε2

∣∣∣∣
0

, 〈〈V̂ ; V̂ , V̂ 〉〉 =
d3E(ε)

dε3

∣∣∣∣
0
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Time-dependent linear response theory: exact and approximate formulations

Response theory for variational methods
• In variational methods, the energy is expressed as an expectation value. It depends on both the trial

variational parameters λ and the perturbation strength ε:

E(λ, ε) = 〈Ψ(λ)|Ĥ(ε)|Ψ(λ)〉

• At the HF level of approximation, λ parameterizes orbital rotations.

• At the CI level (in the basis of perturbation-independent orbitals), λ contains all the CI coefficients.

• At the MCSCF level, it contains both orbital rotation and CI coefficients.

• Stationarity condition: ∀ε,
∂E(λ, ε)

∂λ

∣∣∣∣
λ=λ(ε)

= 0 −→ λ(ε)

• In the following, we will use parameterizations such that λ(0) = 0.

• Consequently λ(ε) quantifies the response of the electronic wavefunction to the perturbation.
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Time-dependent linear response theory: exact and approximate formulations

Response theory for variational methods
• The converged ground-state energy only depends on the perturbation strength:

E(ε) = E(λ(ε), ε)

• The Hellmann–Feynman theorem remains valid for approximate variational methods:

dE(ε)

dε
=

[
∂λ(ε)

∂ε

]T ∂E(λ, ε)

∂λ

∣∣∣∣
λ=λ(ε)︸ ︷︷ ︸+

∂E(λ, ε)

∂ε

∣∣∣∣
λ=λ(ε)

0

thus leading to
dE(ε)

dε
=
〈

Ψ
(
λ(ε)

)∣∣∣V̂ ∣∣∣Ψ(λ(ε)
)〉

Conclusion: response functions obtained from variational wavefunctions can be expressed as energy
derivatives.
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Time-dependent linear response theory: exact and approximate formulations

Example: exact response theory

• We denote {Ψi}i=0,1,... the exact orthonormal eigenvectors of the unperturbed Hamiltonian Ĥ with
energies {Ei}i=0,1,...

• Exact wavefunction parameterization: |Ψ(S)〉 = eŜ |Ψ0〉

where Ŝ =
∑
i>0

Si

(
R̂†i − R̂i

)
is anti-hermitian, R̂†i = |Ψi〉〈Ψ0| and S ≡ {Si}i=1,2,...

• Linear response function: 〈〈V̂ ; V̂ 〉〉 =
d2E(ε)

dε2

∣∣∣∣
0

where E(ε) = E(S(ε), ε).

• BCH expansion:

dE(ε)

dε
= 〈Ψ0|e−Ŝ(ε)V̂ eŜ(ε)|Ψ0〉

= 〈Ψ0|V̂ |Ψ0〉+ 〈Ψ0|[V̂ , Ŝ(ε)]|Ψ0〉+
1

2
〈Ψ0|[[V̂ , Ŝ(ε)], Ŝ(ε)]|Ψ0〉+ . . .
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Time-dependent linear response theory: exact and approximate formulations

Example: exact response theory

• Using the condition S(0) = 0 leads to 〈〈V̂ ; V̂ 〉〉 =

〈
Ψ0

∣∣∣∣∣
[
V̂ ,

∂Ŝ(ε)

∂ε

∣∣∣∣∣
0

]∣∣∣∣∣Ψ0

〉

• Definition: V [1]
i =

〈
Ψ0

∣∣∣[V̂ , R̂†i − R̂i]∣∣∣Ψ0

〉
←− component i of the gradient property vector

• Usual expression for the linear response function:

〈〈V̂ ; V̂ 〉〉 =

[
∂S(ε)

∂ε

∣∣∣∣
0

]T

V [1]

• The linear response of the wavefunction is obtained by differentiation of the stationarity condition
with respect to the perturbation strength:

d

dε

[
∂E(S, ε)

∂S

∣∣∣∣
S=S(ε)

]∣∣∣∣∣
0

= 0
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Time-dependent linear response theory: exact and approximate formulations

Example: exact response theory

• BCH expansion for the energy:

E(S, ε) = 〈Ψ0|e−ŜĤ(ε)eŜ |Ψ0〉

= 〈Ψ0|Ĥ(ε)|Ψ0〉+ 〈Ψ0|[Ĥ(ε), Ŝ]|Ψ0〉+
1

2
〈Ψ0|[[Ĥ(ε), Ŝ], Ŝ]|Ψ0〉+ . . .

which leads to

d

dε

[
∂E(S, ε)

∂S

∣∣∣∣
S=S(ε)

]∣∣∣∣∣
0

= V [1] + E[2]

[
∂S(ε)

∂ε

∣∣∣∣
0

]
= 0

where the hessian matrix elements equal

E
[2]
ij =

1

2

〈
Ψ0

∣∣∣[[Ĥ, R̂†i − R̂i] , R̂†j − R̂j]∣∣∣Ψ0

〉
+

1

2

〈
Ψ0

∣∣∣[[Ĥ, R̂†j − R̂j] , R̂†i − R̂i]∣∣∣Ψ0

〉
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Time-dependent linear response theory: exact and approximate formulations

Example: exact response theory

• In summary:

E[2]

[
∂S(ε)

∂ε

∣∣∣∣
0

]
= −V [1] ←→

[
∂S(ε)

∂ε

∣∣∣∣
0

]
= −

(
E[2]

)−1
V [1]

〈〈V̂ ; V̂ 〉〉 =

[
∂S(ε)

∂ε

∣∣∣∣
0

]T

V [1] ←→ 〈〈V̂ ; V̂ 〉〉 = −
(
V [1]

)T(
E[2]

)−1
V [1]

Conclusion: in order to compute linear response functions, the gradient property vector and the hessian
matrix are needed.

EXERCISE: Show that V
[1]
i = 2〈Ψi|V̂ |Ψ0〉, E

[2]
ij = 2(Ei − E0)δij ,

∂Si(ε)

∂ε

∣∣∣∣
0

=
〈Ψi|V̂ |Ψ0〉
E0 − Ei

, and 〈〈V̂ ; V̂ 〉〉 = 2
∑
i>0

〈Ψi|V̂ |Ψ0〉2

E0 − Ei
← second-order perturbation theory !

June 2015 ISTPC 2015 summer school, Aussois, France Page 9



Time-dependent linear response theory: exact and approximate formulations

Some comments before turning to the time-dependent regime

• Let us return to (approximate) variational methods.

• X =
∂λ(ε)

∂ε

∣∣∣∣
0

is usually referred to as the linear response vector. Like in the exact theory, the linear

response equation writes

E[2]X = −V [1]

• In the time-dependent regime, a linear response vector will be obtained for each frequency ω. We
will show in the following that the linear response equation writes

(
E[2] − ωS[2]

)
X(ω) = −V [1]

• What about non-variational methods such as MP2, CC, CI with ε-dependent HF orbitals ?

We, in principle, do not have a stationarity condition anymore. How to proceed with the derivation
of the response equations then ? What about the Hellmann–Feynman theorem ?
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Time-dependent linear response theory: exact and approximate formulations

• Let us denote t the non-variational parameters (CC amplitudes for example).

• For each perturbation strength, a set of equations has to be solved:

f(t(ε), ε) = 0

• The non-variational energy is then determined for each perturbation strength: E(ε) = E(t(ε), ε)

• We introduce the Lagrangian function: L(t, ε, t) = E(t, ε) + t
T

f(t, ε)

and impose the following stationarity conditions:

∀ε ,
∂L(t, ε, t)

∂t
= 0 = f(t, ε) and

∂L(t, ε, t)

∂t
= 0 =

∂E(t, ε)

∂t
+ t

T ∂f(t, ε)

∂t
↓ ↓

t(ε) t(ε)

• Note that E(ε) = L(t(ε), ε, t)

• Hellmann–Feynman theorem:
dE(ε)

dε
=

∂L(t, ε, t)

∂ε

∣∣∣∣
t(ε),t(ε)

=
∂E(t, ε)

∂ε

∣∣∣∣
t(ε)

+ t
T

(ε)
∂f(t, ε)

∂ε

∣∣∣∣
t(ε)
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Time-dependent linear response theory: exact and approximate formulations

Time-dependent variational principle

• Time-dependent Schrödinger equation: Ĥ(t)|Ψ(t)〉 = i
d

dt
|Ψ(t)〉

• Alternative formulation based on a change of phase: |Ψ(t)〉 = e
−i

∫ t
t0
Q(t)dt |Ψ̃(t)〉

−→ Ĥ(t)|Ψ̃(t)〉 − i
d

dt
|Ψ̃(t)〉 = Q(t)|Ψ̃(t)〉

• Connection with the Runge–Gross theorem: two local potentials that differ by a real time-dependent
function lead to the same time-dependent density for a given initial wavefunction Ψ(t0):

Ψ(t0) = Ψ̃(t0) and nΨ(t)(r) = 〈Ψ(t)|n̂(r)|Ψ(t)〉 = 〈Ψ̃(t)|n̂(r)|Ψ̃(t)〉 = nΨ̃(t)(r)

• In the particular case of a time-independent Hamiltonian Ĥ , searching for time-independent
solutions Ψ̃(t) = Ψ̃ and Q(t) = E leads to the time-independent Schrödinger equation:

Ĥ|Ψ̃〉 = E|Ψ̃〉
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Time-dependent linear response theory: exact and approximate formulations

• Returning to the time-dependent regime, Q(t) is referred to as time-dependent quasienergy.

• Since
d

dt
〈Ψ(t)|Ψ(t)〉 = i〈Ĥ(t)Ψ(t)|Ψ(t)〉 − i〈Ψ(t)|Ĥ(t)|Ψ(t)〉 = 0,

if Q(t) is real then

〈Ψ̃(t)|Ψ̃(t)〉 = 〈Ψ(t)|Ψ(t)〉 = 〈Ψ̃(t0)|Ψ̃(t0)〉 = 1 and Q(t) =

〈
Ψ̃(t)

∣∣∣∣Ĥ(t)− i
d

dt

∣∣∣∣ Ψ̃(t)

〉

• The real character of the time-dependent quasienergy can be explicitly connected with the
conservation of the norm:

Q(t)∗ =
〈

Ψ̃(t)
∣∣∣Ĥ(t)

∣∣∣ Ψ̃(t)
〉

+ i

〈
dΨ̃(t)

dt

∣∣∣∣∣Ψ̃(t)

〉
=
〈

Ψ̃(t)
∣∣∣Ĥ(t)

∣∣∣ Ψ̃(t)
〉
− i

〈
Ψ̃(t)

∣∣∣∣∣dΨ̃(t)

dt

〉
= Q(t)

since

〈
dΨ̃(t)

dt

∣∣∣∣∣Ψ̃(t)

〉
=

d

dt

〈
Ψ̃(t)

∣∣∣Ψ̃(t)
〉

︸ ︷︷ ︸−
〈

Ψ̃(t)

∣∣∣∣∣dΨ̃(t)

dt

〉

0
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Time-dependent linear response theory: exact and approximate formulations

Time-dependent variational principle

• For a given trial wavefunction Ψ(t), we define the action integral as follows

A[Ψ] =

∫ t1

t0

Q[Ψ](t) dt where Q[Ψ](t) =
1

〈Ψ(t)|Ψ(t)〉
×
〈

Ψ(t)

∣∣∣∣Ĥ(t)− i
d

dt

∣∣∣∣Ψ(t)

〉

• Note that Q[Ψ̃](t) = Q(t).

• Stationarity condition:

δA[Ψ̃] = 0 ↔ Ĥ(t)|Ψ̃(t)〉 − i
d

dt
|Ψ̃(t)〉 = Q(t)|Ψ̃(t)〉

variational formulation non-variational formulation

Proof: let us consider variations Ψ̃(t)→ Ψ̃(t) + δΨ(t) around the exact solution Ψ̃(t) with the
boundary conditions δΨ(t0) = δΨ(t1) = 0.
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Time-dependent linear response theory: exact and approximate formulations

Consequently, the action integral varies as follows:

δA[Ψ̃] = A[Ψ̃ + δΨ]−A[Ψ̃] =

∫ t1

t0

(
Q[Ψ̃ + δΨ](t)−Q[Ψ̃](t)

)
dt

=

∫ t1

t0

〈
δΨ(t)

∣∣∣∣Ĥ(t)− i
d

dt

∣∣∣∣ Ψ̃(t)

〉
dt+

∫ t1

t0

〈
Ψ̃(t)

∣∣∣∣Ĥ(t)−i
d

dt

∣∣∣∣ δΨ(t)

〉
dt

−
∫ t1

t0

Q(t)
(
〈δΨ(t)|Ψ̃(t)〉+ 〈Ψ̃(t)|δΨ(t)〉

)
dt

where
∫ t1

t0

〈
Ψ̃(t)

∣∣∣∣dδΨ(t)

dt

〉
dt =

∫ t1

t0

d

dt

〈
Ψ̃(t)

∣∣∣δΨ(t)
〉

dt︸ ︷︷ ︸−
∫ t1

t0

〈
dΨ̃(t)

dt

∣∣∣∣∣δΨ(t)

〉
dt

[〈
Ψ̃(t)

∣∣∣δΨ(t)
〉]t1
t0

= 0

thus leading to

δA[Ψ̃] =

∫ t1

t0

(〈
δΨ(t)

∣∣∣∣Ĥ(t)− i
d

dt
−Q(t)

∣∣∣∣ Ψ̃(t)

〉
+

〈
δΨ(t)

∣∣∣∣Ĥ(t)− i
d

dt
−Q(t)

∣∣∣∣ Ψ̃(t)

〉∗)
dt
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Time-dependent linear response theory: exact and approximate formulations

Variational principle in adiabatic TD-DFT

• In time-dependent density-functional theory (TD-DFT), the physical time-dependent Hamiltonian is

written as Ĥ(t) = T̂ + Ŵee +

∫
dr v(r, t)n̂(r)︸ ︷︷ ︸.

V̂ (t) ←− time-dependent local potential operator

• In standard TD-DFT, the exact time-dependent exchange-correlation (xc) potential is approximated
with the ground-state xc density-functional potential calculated at the time-dependent density
(adiabatic approximation):

T̂ + V̂ (t) +

∫
dr

δEHxc

[
nΦ̃KS(t)

]
δn(r)

n̂(r)− i
d

dt

 |Φ̃KS(t)〉 = QKS(t) |Φ̃KS(t)〉

where nΦ̃KS(t)(r) =
〈

Φ̃KS(t)
∣∣∣n̂(r)

∣∣∣Φ̃KS(t)
〉

is an approximation to the exact physical
time-dependent density nΨ̃(t)(r).
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Time-dependent linear response theory: exact and approximate formulations

EXERCISE: (1) Show that, within the adiabatic approximation, the Kohn–Sham TD-DFT equation is
equivalent to the stationarity condition δAadia[Φ̃KS] = 0 where, for a trial wavefunction Ψ(t),

Aadia[Ψ] =

∫ t1

t0

1

〈Ψ(t)|Ψ(t)〉
×
〈

Ψ(t)

∣∣∣∣T̂ + V̂ (t)− i
d

dt

∣∣∣∣Ψ(t)

〉
dt+

∫ t1

t0

EHxc[nΨ(t)] dt

and nΨ(t)(r) =
〈Ψ(t)|n̂(r)|Ψ(t)〉
〈Ψ(t)|Ψ(t)〉

.

(2) Within the adiabatic approximation, the equation to be solved in TD range-separated DFT is

T̂ + Ŵ lr,µ
ee + V̂ (t) +

∫
dr

δEsr,µ
Hxc

[
nΨ̃µ(t)

]
δn(r)

n̂(r)− i
d

dt

 |Ψ̃µ(t)〉 = Qµ(t) |Ψ̃µ(t)〉.

Show that it is equivalent to δAµadia[Ψ̃µ] = 0 where

Aµadia[Ψ] =

∫ t1

t0

1

〈Ψ(t)|Ψ(t)〉
×
〈

Ψ(t)

∣∣∣∣T̂ + Ŵ lr,µ
ee + V̂ (t)− i

d

dt

∣∣∣∣Ψ(t)

〉
dt+

∫ t1

t0

Esr,µ
Hxc [nΨ(t)] dt
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Time-dependent linear response theory: exact and approximate formulations

Floquet theory

• In the following we consider a periodic Hamiltonian with period T : Ĥ(t+ T ) = Ĥ(t).

• Ĥ(t) can be written as a Fourier series:

Ĥ(t) = T̂ + Ŵee + V̂ne +
∑
x

N∑
k=−N

e−iωktεx(ωk)V̂x︸ ︷︷ ︸
,

V̂(t) ←− time-dependent perturbation

where ωk =
2πk

T
and εx(ωk) is the strength of the perturbation V̂x at frequency ωk .

• V̂x is any kind of (hermitian) operator, not necessarily a one-electron operator even though in
practice it usually is.

• In order to apply TD-DFT, V̂x should in principle be a (one-electron) local potential operator:

V̂x →
∫

dr vx(r)n̂(r)
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Time-dependent linear response theory: exact and approximate formulations

Floquet theory

• Example 1: in the presence of a dynamic uniform electric field,

E(t) = Ex(t) ex + Ey(t) ey + Ez(t) ez =

N∑
k=−N

e−iωkt

(
εx(ωk)ex + εy(ωk)ey + εz(ωk)ez

)
,

the perturbation is V̂(t) = r̂ . E(t) = x̂ Ex(t) + ŷ Ey(t) + ẑ Ez(t) thus leading to

V̂(t) =

N∑
k=−N

e−iωkt

(
εx(ωk) x̂ + εy(ωk) ŷ + εz(ωk) ẑ

)
.

Comment: note that r̂ is written in second quantization as r̂ =

∫
r n̂(r)dr so that

V̂(t) =

∫
r .E(t) n̂(r) dr ←− local potential operator !
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Time-dependent linear response theory: exact and approximate formulations

Floquet theory

• Example 2: in the presence of a dynamic uniform magnetic field,

B(t) = Bx(t) ex +By(t) ey +Bz(t) ez =

N∑
k=−N

e−iωkt

(
bx(ωk)ex + by(ωk)ey + bz(ωk)ez

)
,

the perturbation equals V̂(t) =
1

2
L̂ . B(t) thus leading to

V̂(t) =
N∑

k=−N
e−iωkt

(
bx(ωk)

L̂x

2
+ by(ωk)

L̂y

2
+ bz(ωk)

L̂z

2

)
.

Comment: note that L̂ can be written as L̂ = −i
∑
σ

∫
Ψ̂†σ(r) r×∇rΨ̂σ(r) dr so that

V̂(t) = −
i

2

∫
B(t) .

(
r× ∇r n̂1(r′, r)

∣∣
r′=r

)
dr ←− non-local potential operator !
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Time-dependent linear response theory: exact and approximate formulations

EXERCISE:

(1) By using the hermiticity of L̂ show that L̂ =

∫
r× ĵ(r) dr where the current density operator

equals

ĵ(r) =
1

2i

∑
σ

(
Ψ̂†σ(r)∇rΨ̂σ(r)−

(
∇rΨ̂†σ(r)

)
Ψ̂σ(r)

)

(2) Show that the perturbation can be expressed as V̂(t) = −µ̂mag . B(t) where the magnetic dipole
moment operator equals

µ̂mag = −
1

2

∫
r× ĵ(r) dr

(3) Explain why TD-DFT is in principle not adequate for modeling such a perturbation. Show that the
paramagnetic current density

jp(r, t) = 〈Ψ̃(t)|̂j(r)|Ψ̃(t)〉

would be a better variable to consider (rather than the density).
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Time-dependent linear response theory: exact and approximate formulations

Floquet theory

• Let us collect all perturbation strengths into the vector ε =


...

εx(ωk)

...


• V̂†(t) = V̂(t) → εx(−ωk)∗ = εx(ωk)

• The time-dependent wavefunction varies with the perturbation strengths: Ψ̃(t) ≡ Ψ̃(ε, t)

• Choice of the phase: we want the time-dependent wavefunction to reduce to the (time-independent)
ground-sate wavefunction Ψ0 in the absence of perturbation,

Ψ̃(ε = 0, t) = Ψ0.

• In the following, the action integral will be calculated over a period: t0 = 0 and t1 = T .
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Time-dependent linear response theory: exact and approximate formulations

Response functions

• Taylor expansion of the time-dependent expectation value for the perturbation V̂x:

〈V̂x〉(ε, t) = 〈Ψ̃(ε, t)|V̂x|Ψ̃(ε, t)〉 =

〈Ψ0|V̂x|Ψ0〉 ←− zeroth order

+
∑
y

∑
k

e−iωktεy(ωk)〈〈V̂x; V̂y〉〉ωk ←− linear response

+
1

2

∑
y,z

∑
k,l

e−i(ωk+ωl)tεy(ωk)εz(ωl)〈〈V̂x; V̂y , V̂z〉〉ωk,ωl ←− quadratic response

+ . . .

• We will focuse in the following on the exact and approximate description of the linear response
functions 〈〈V̂x; V̂y〉〉ωk .
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Time-dependent linear response theory: exact and approximate formulations

Hellmann–Feynman theorem in the time-dependent regime

• The exact action integral depends both implicitly (through the time-dependent wavefunction) and
explicitly (through the perturbation) on the perturbation strengths ε:

A(ε) = A
[
Ψ̃(ε), ε

]
where

A [Ψ, ε] =

∫ T

0

1

〈Ψ(t)|Ψ(t)〉
×
〈

Ψ(t)

∣∣∣∣Ĥ + V̂(t)− i
d

dt

∣∣∣∣Ψ(t)

〉
dt

and Ĥ = T̂ + Ŵee + V̂ne ←− unperturbed Hamiltonian

• Ψ̃(ε, t) is determined from the variational principle: ∀ε, δA
[
Ψ̃(ε), ε

]
= 0
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Time-dependent linear response theory: exact and approximate formulations

Hellmann–Feynman theorem in the time-dependent regime

• Let us consider the variation εx(ωk)→ εx(ωk) + dεx(ωk):

dA(ε) = A
(
εx(ωk) + dεx(ωk)

)
−A

(
εx(ωk)

)

=
∂A[Ψ, ε]

∂εx(ωk)

∣∣∣∣
Ψ=Ψ(ε)

dεx(ωk) + A
[

Ψ̃(ε) +
∂Ψ̃(ε)

∂εx(ωk)
dεx(ωk), ε

]
−A

[
Ψ̃(ε), ε

]
︸ ︷︷ ︸

δA
[
Ψ̃(ε), ε

]
= 0

thus leading to the Hellmann–Feynman theorem

dA(ε)

dεx(ωk)
=

∂A[Ψ, ε]

∂εx(ωk)

∣∣∣∣
Ψ=Ψ(ε)
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Time-dependent linear response theory: exact and approximate formulations

•
∂V̂(t)

∂εx(ωk)
= e−iωkt V̂x −→

dA(ε)

dεx(ωk)
=

∫ T

0
e−iωkt 〈V̂x〉(ε, t) dt

• Important consequence: response functions can be expressed as action integral derivatives !

• zeroth order:
dA(ε)

dεx(ωk)

∣∣∣∣
0

=

∫ T

0
e−iωkt 〈Ψ0|V̂x|Ψ0〉 dt = T 〈Ψ0|V̂x|Ψ0〉δ(ωk) thus leading to

〈Ψ0|V̂x|Ψ0〉 =
1

T

dA(ε)

dεx(0)

∣∣∣∣
0

• Linear response:

d2A(ε)

dεy(ωl)dεx(ωk)

∣∣∣∣
0

=

∫ T

0
e−i(ωk+ωl)t 〈〈V̂x; V̂y〉〉ωl dt = T 〈〈V̂x; V̂y〉〉ωlδ(ωk + ωl)

thus leading to 〈〈V̂x; V̂y〉〉ωl =
1

T

d2A(ε)

dεy(ωl)dεx(−ωl)

∣∣∣∣
0
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Time-dependent linear response theory: exact and approximate formulations

Some general statements before deriving more equations ...

• (Linear) response functions can be expressed as derivatives of the action integral with respect to the
perturbation strengths.

• Such a formulation is convenient for deriving exact and approximate expressions for the response
functions. In the latter case, non-variational methods such as Coupled-Cluster (CC) theory can also
be considered (Lagrangian formalism).

• Various (approximate) parameterizations of the time-dependent wavefunction Ψ̃(ε, t) will lead to
various response theories.

• Variational methods such as HF and MCSCF will be considered in the following.

• Adiabatic TD-DFT equations (Casida equations) can be obtained similarly.

• TD linear response CC theory can be derived by means of a Lagrangian formalism (in analogy with
time-independent CC response theory).
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Time-dependent linear response theory: exact and approximate formulations

• In the exact theory,

〈〈V̂x; V̂y〉〉ωl =
1

T

∫ T

0
eiωlt


〈
∂Ψ̃(ε, t)

∂εy(ωl)

∣∣∣∣∣
0︸ ︷︷ ︸
∣∣∣∣∣∣∣∣V̂x
∣∣∣∣∣∣∣∣Ψ0

〉
+

〈
∂Ψ̃(ε, t)

∂εy(ωl)

∣∣∣∣∣
0

∣∣∣∣∣V̂x
∣∣∣∣∣Ψ0

〉∗ dt

↓
linear response of the wavefunction

(first order in perturbation theory)

• Note that, in the static case, the action integral over T becomes the energy. Consequently, the
standard second-order energy correction 〈Ψ0|V̂x|Ψ(1)〉 is recovered.

• Linear and higher-order responses of the wavefunction are obtained through differentiations of the
stationarity condition with respect to the perturbation strengths:

d

dεy(ωl)

(
δA
[
Ψ̃(ε), ε

])∣∣∣∣∣
0

= 0 −→
∂Ψ̃(ε, t)

∂εy(ωl)

∣∣∣∣∣
0
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Time-dependent linear response theory: exact and approximate formulations

Wavefunction parameterization

• Double-exponential parameterization of a trial wavefunction: |Ψ(t)〉 = eiκ̂(t)eiŜ(t)|Ψ0〉

• The hermitian operators κ̂(t) and Ŝ(t) ensure rotations in the orbital and configuration spaces,
respectively.

• Fourier series:

κ̂(t) =
∑
l,i

e−iωltκi(ωl)q̂
†
i + e−iωltκ∗i (−ωl)q̂i where q̂†i = Êpq and p > q,

Ŝ(t) =
∑
l,i

e−iωltSi(ωl)R̂
†
i + e−iωltS∗i (−ωl)R̂i where R̂†i = |i〉〈Ψ0|.

• The time-dependent wavefunction is fully determined from the Fourier component vectors

Λ(ωl) =


κi(ωl)

Si(ωl)

κ∗i (−ωl)
S∗i (−ωl)

 ←− to be used as variational parameters !
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Time-dependent linear response theory: exact and approximate formulations

Such a parameterization will enable us to derive

• an exact response theory when

κ̂(t) = 0 and R̂†i = |Ψi〉〈Ψ0| with i > 0 and ∀k ≥ 0, Ĥ|Ψk〉 = Ek|Ψk〉.

• HF response theory (RPA) when

Ŝ(t) = 0, Ψ0 → Φ0 (HF determinant),

and q̂†i → Êaj (single excitation from the occupied j orbital to the unoccupied a orbital)

• MCSCF response theory when

Ψ0 → Ψ(0) (MCSCF wavefunction), R̂†i → |deti〉〈Ψ(0)| (rotation within the active space),

and q̂†i → Êuj , Êaj , Êau.
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Time-dependent linear response theory: exact and approximate formulations

Response properties from adiabatic TD-DFT

The HF parameterization enables also to derive standard TD-DFT response equations:

• for pure exchange functionals, the action integral expression to be used is

Aadia [Ψ, ε] =

∫ T

0

〈
Ψ(t)

∣∣∣∣T̂ + V̂ne + V̂(t)− i
d

dt

∣∣∣∣Ψ(t)

〉
dt+

∫ T

0
EHxc[nΨ(t)] dt

• for hybrid exchange functionals, the action integral expression to be used is

Aαadia [Ψ, ε] =

∫ T

0

〈
Ψ(t)

∣∣∣∣T̂ + V̂ne + αŴee + V̂(t)− i
d

dt

∣∣∣∣Ψ(t)

〉
dt+

∫ T

0
(1− α)EHx[nΨ(t)] dt

+

∫ T

0
Ec[nΨ(t)] dt
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Time-dependent linear response theory: exact and approximate formulations

Response properties from adiabatic TD-DFT

• The MCSCF parameterization enables also to derive multiconfiguration range-separated TD-DFT
equations: the action integral expression to be used is, in this case,

Aµadia[Ψ, ε] =

∫ T

0

〈
Ψ(t)

∣∣∣∣T̂ + Ŵ lr,µ
ee + V̂ne + V̂(t)− i

d

dt

∣∣∣∣Ψ(t)

〉
dt+

∫ T

0
Esr,µ

Hxc [nΨ(t)] dt

• For sake of generality, we will derive, in the following, response equations for a mixed
wavefunction/density-functional variational action integral:

A [Ψ, ε]→ Avar [Ψ, ε] =

∫ T

0

〈
Ψ(t)

∣∣∣∣Ĥ+ V̂(t)− i
d

dt

∣∣∣∣Ψ(t)

〉
dt+

∫ T

0
EHxc[nΨ(t)] dt
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Time-dependent linear response theory: exact and approximate formulations

Hellmann–Feynman theorem for time-dependent variational methods

Avar [Ψ, ε] =

∫ T

0

〈
Ψ(t)

∣∣∣∣Ĥ+ V̂(t)− i
d

dt

∣∣∣∣Ψ(t)

〉
dt+

∫ T

0
EHxc[nΨ(t)] dt

• Let us keep in mind that the wavefunction Ψ is determined from the vector Λ ≡ {Λ(ωl)}l

• The action integral will therefore be denotedAvar(Λ, ε) in the following.

• For any perturbation strength ε, Λ(ε) is obtained from the stationarity condition:

∀ε,
∂Avar(Λ, ε)

∂Λ

∣∣∣∣
Λ=Λ(ε)

= 0

• Consequently, the Hellmann-Feynman theorem is fulfilled for the variational action integral
Avar(ε) = Avar(Λ(ε), ε), exactly like in the exact theory:

dAvar(ε)

dε
=

∂Avar(Λ, ε)

∂ε

∣∣∣∣
Λ=Λ(ε)
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Time-dependent linear response theory: exact and approximate formulations

Linear response functions

• Therefore, in analogy with the exact theory, 〈〈V̂x; V̂y〉〉ωl =
1

T

d2Avar(ε)

dεy(ωl)dεx(−ωl)

∣∣∣∣
0

where

dAvar(ε)

dεx(−ωl)
=

∫ T

0
eiωlt

〈
Ψ(t)

∣∣∣V̂x∣∣∣Ψ(t)
〉

dt

=

∫ T

0
eiωlt

〈
Ψ0

∣∣∣e−iŜ(t)e−iκ̂(t)V̂xe
iκ̂(t)eiŜ(t)

∣∣∣Ψ0

〉
dt

thus leading to

dAvar(ε)

dεx(−ωl)
=

∫ T

0
eiωlt

[〈
Ψ0

∣∣∣V̂x∣∣∣Ψ0

〉
+ i
〈

Ψ0

∣∣∣[V̂x, κ̂(t)
]∣∣∣Ψ0

〉
+ i
〈

Ψ0

∣∣∣[V̂x, Ŝ(t)
]∣∣∣Ψ0

〉
+ . . .

]
dt

= Tδ(ωl)
〈

Ψ0

∣∣∣V̂x∣∣∣Ψ0

〉
+ iT V

[1]†
x Λ(ωl) + . . .
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Time-dependent linear response theory: exact and approximate formulations

Linear response functions

where the gradient property vector is defined as

V
[1]
x =


〈Ψ0|[q̂i, V̂x]|Ψ0〉
〈Ψ0|[R̂i, V̂x]|Ψ0〉
〈Ψ0|[q̂†i , V̂x]|Ψ0〉
〈Ψ0|[R̂†i , V̂x]|Ψ0〉



Conclusion: 〈〈V̂x; V̂y〉〉ωl = i V
[1]†
x

∂Λ(ωl)

∂εy(ωl)

∣∣∣∣
0

We now need to derive the linear response equation that is fulfilled by the linear response vector

Xy(ωl) =
∂Λ(ωl)

∂εy(ωl)

∣∣∣∣
0

.
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Time-dependent linear response theory: exact and approximate formulations

Linear response equation

d

dεy(ωm)

[
∂Avar(Λ, ε)

∂Λ†(−ωl)

∣∣∣∣
Λ=Λ(ε)

]
0

= 0

where

Avar [Λ, ε]

=

∫ T

0

〈
Ψ(t)

∣∣∣Ĥ∣∣∣Ψ(t)
〉

dt︸ ︷︷ ︸+

∫ T

0
EHxc[nΨ(t)] dt︸ ︷︷ ︸+

∫ T

0

〈
Ψ(t)

∣∣∣V̂(t)
∣∣∣Ψ(t)

〉
dt︸ ︷︷ ︸+

∫ T

0

〈
Ψ(t)

∣∣∣∣−i
d

dt

∣∣∣∣Ψ(t)

〉
dt︸ ︷︷ ︸

AĤ [Λ] AHxc [Λ] AV̂ [Λ, ε] Ad/dt [Λ]
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Time-dependent linear response theory: exact and approximate formulations

Linear response equation

• AV̂ [Λ, ε] =
∑
x

N∑
k=−N

∑
p

εx(ωk)

[
Tδ(ωk)

〈
Ψ0

∣∣∣V̂x∣∣∣Ψ0

〉
+ iTδ(ωk + ωp) V

[1]†
x Λ(ωp)︸ ︷︷ ︸+ . . .

]
1

2
V

[1]†
x Λ(ωp)−

1

2
Λ†(−ωp)V

[1]
x

−→
d

dεy(ωm)

[
∂AV̂ (Λ, ε)

∂Λ†(−ωl)

∣∣∣∣
Λ=Λ(ε)

]
0

= −
iT

2
δ(ωm + ωl) V

[1]
y

EXERCISE: Let f̂(x, t) = e−xÂ(t) d

dt
exÂ(t).

Show that f̂(1, t) =

∫ 1

0

∂f̂(x, t)

∂x
dx =

dÂ(t)

dt
+

1

2

[
dÂ(t)

dt
, Â(t)

]
+ . . .
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Time-dependent linear response theory: exact and approximate formulations

Linear response equation

• Using

e−iŜ(t)e−iκ̂(t) d

dt

(
eiκ̂(t)eiŜ(t)

)
= e−iŜ(t)

(
e−iκ̂(t) d

dt
eiκ̂(t)

)
eiŜ(t) + e−iŜ(t) d

dt
eiŜ(t)

leads to

Ad/dt [Λ] =

∫ T

0

〈
Ψ0

∣∣∣∣∣dκ̂(t)

dt
+

dŜ(t)

dt

∣∣∣∣∣Ψ0

〉
dt

+i

∫ T

0

〈
Ψ0

∣∣∣∣∣12
[

dκ̂(t)

dt
, κ̂(t)

]
+

1

2

[
dŜ(t)

dt
, Ŝ(t)

]
+

[
dκ̂(t)

dt
, Ŝ(t)

]∣∣∣∣∣Ψ0

〉
dt+ . . .

−→
d

dεy(ωm)

[
∂Ad/dt [Λ]

∂Λ†(−ωl)

∣∣∣∣
Λ=Λ(ε)

]
0

=
T

2
ωl S

[2] ∂Λ(−ωl)
∂εy(ωm)

∣∣∣∣
0
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Time-dependent linear response theory: exact and approximate formulations

Linear response equation

where

S[2] =

 Σ ∆

−∆∗ −Σ∗

 ,

Σ =

 〈Ψ0|[q̂i, q̂†j ]|Ψ0〉 〈Ψ0|[q̂i, R̂†j ]|Ψ0〉
〈Ψ0|[R̂i, q̂†j ]|Ψ0〉 〈Ψ0|[R̂i, R̂†j ]|Ψ0〉

 ,

∆ =

 〈Ψ0|[q̂i, q̂j ]|Ψ0〉 〈Ψ0|[q̂i, R̂j ]|Ψ0〉
〈Ψ0|[R̂i, q̂j ]|Ψ0〉 〈Ψ0|[R̂i, R̂j ]|Ψ0〉

 .
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Time-dependent linear response theory: exact and approximate formulations

Linear response equation

• Using the BCH expansion leads to

AĤ [Λ] =

∫ T

0

〈
Ψ0

∣∣∣Ĥ+ i
[
Ĥ, κ̂(t)

]
+ i
[
Ĥ, Ŝ(t)

]∣∣∣Ψ0

〉
dt

−
∫ T

0

〈
Ψ0

∣∣∣∣12 [[Ĥ, κ̂(t)
]
, κ̂(t)

]
+

1

2

[[
Ĥ, Ŝ(t)

]
, Ŝ(t)

]
+
[[
Ĥ, κ̂(t)

]
, Ŝ(t)

]∣∣∣∣Ψ0

〉
dt+ . . .

−→
d

dεy(ωm)

[
∂AĤ [Λ]

∂Λ†(−ωl)

∣∣∣∣
Λ=Λ(ε)

]
0

=
T

2
E[2] ∂Λ(−ωl)

∂εy(ωm)

∣∣∣∣
0
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Time-dependent linear response theory: exact and approximate formulations

Linear response equation

where

E[2] =

 A B

B∗ A∗

 ,

A =

 〈Ψ0|[q̂i, [Ĥ, q̂†j ]]|Ψ0〉 〈Ψ0|[[q̂i, Ĥ], R̂†j ]|Ψ0〉
〈Ψ0|[R̂i, [Ĥ, q̂†j ]]|Ψ0〉 〈Ψ0|[R̂i, [Ĥ, R̂†j ]]|Ψ0〉

 ,

B =

 〈Ψ0|[q̂i, [Ĥ, q̂j ]]|Ψ0〉 〈Ψ0|[[q̂i, Ĥ], R̂j ]|Ψ0〉
〈Ψ0|[R̂i, [Ĥ, q̂j ]]|Ψ0〉 〈Ψ0|[R̂i, [Ĥ, R̂j ]]|Ψ0〉

 .
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Time-dependent linear response theory: exact and approximate formulations

Linear response equation

• DFT-type contribution:

d

dεy(ωm)

 ∂AHxc [Λ]

∂Λ†(−ωl)

∣∣∣∣∣
Λ=Λ(ε)


0

=
d

dεy(ωm)

[∫ T

0
dt

∫
dr
δEHxc[nΨ(t)]

δn(r)

∂nΨ(t)(r)

∂Λ†(−ωl)

∣∣∣∣
Λ=Λ(ε)

]
0

=

∫ T

0
dt

∫
dr
δEHxc[nΨ0

]

δn(r)

d

dεy(ωm)

[
∂nΨ(t)(r)

∂Λ†(−ωl)

∣∣∣∣
Λ=Λ(ε)

]
0

←− potential !

+

∫ T

0
dt

∫
dr′
∫

dr
δ2EHxc[nΨ0

]

δn(r′)δn(r)

∂nΨ(t)(r)

∂Λ†(−ωl)

∣∣∣∣
0

∂nΨ(t)(r
′)

∂εy(ωm)

∣∣∣∣∣
0

←− kernel !

• The "potential" term is simply taken into account with the substitution,

Ĥ → Ĥ+

∫
dr
δEHxc[nΨ0 ]

δn(r)
n̂(r)
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Time-dependent linear response theory: exact and approximate formulations

Linear response equation

• Using the expressions
∂nΨ(t)(r

′)

∂εy(ωm)

∣∣∣∣∣
0

= i
∑
p

e−iωptn[1]†(r′)
∂Λ(ωp)

∂εy(ωm)

∣∣∣∣
0

and
∂nΨ(t)(r)

∂Λ†(−ωl)

∣∣∣∣
0

= −
i

2
e−iωltn[1](r),

the "kernel" contribution can be rewritten as follows,

T

2

∫
dr′
∫

dr
δ2EHxc[nΨ0

]

δn(r′)δn(r)
n[1](r)n[1]†(r′)︸ ︷︷ ︸

∂Λ(−ωl)
∂εy(ωm)

∣∣∣∣
0

KHxc ←− kernel matrix
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Time-dependent linear response theory: exact and approximate formulations

Linear response equation

Conclusion: in the particular case of wavefunction linear response theory (no DFT contributions), the
linear response equations to be solved are

(
E[2] + ωlS

[2]

)
∂Λ(−ωl)
∂εy(ωm)

∣∣∣∣
0

= iδ(ωm + ωl) V
[1]
y

thus leading to (
E[2] − ωlS[2]

)
∂Λ(ωl)

∂εy(ωl)

∣∣∣∣
0

= i V
[1]
y

and

〈〈V̂x; V̂y〉〉ωl = i V
[1]†
x

∂Λ(ωl)

∂εy(ωl)

∣∣∣∣
0

= −V [1]†
x

(
E[2] − ωlS[2]

)−1

V
[1]
y
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Time-dependent linear response theory: exact and approximate formulations

EXERCISE: (1) Show that, in exact response theory, Σij = δij , ∆ij = 0, Aij = δij(Ei − E0),
and Bij = 0.

(2) Show that V [1]
x =

 〈Ψi|V̂x|Ψ0〉
−〈Ψ0|V̂x|Ψi〉


(3) Conclude that

〈〈V̂x; V̂y〉〉ω = −
∑
i>0

(
〈Ψ0|V̂x|Ψi〉〈Ψi|V̂y |Ψ0〉

Ei − E0 − ω
+
〈Ψi|V̂x|Ψ0〉〈Ψ0|V̂y |Ψi〉

Ei − E0 + ω

)

(4) Using real algebra and the formula
∫ +∞

0

a

a2 + ω2
dω =

π

2
, prove the fluctuation dissipation theorem

〈Ψ0|V̂xV̂y |Ψ0〉 − 〈Ψ0|V̂x|Ψ0〉〈Ψ0|V̂y |Ψ0〉 = −
1

π

∫ +∞

0
〈〈V̂x; V̂y〉〉iω

(5) The so-called "response function" is defined in Physics as χ(r, r′, ω) = 〈〈n̂(r); n̂(r′)〉〉ω . Conclude
that

〈Ψ0|n̂(r)n̂(r′)|Ψ0〉 − n0(r)n0(r′) = −
1

π

∫ +∞

0
χ(r, r′, iω)
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