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Response properties in the time-independent regime

In the following we shall refer to H=T%+ Wee + Vne as the unperturbed Hamiltonian with
ground state Wy.

Let us introduce a perturbation operator V with strength e. The Hamiltonian becomes
e-dependent: H(e) = H + V.

Example: if the perturbation is a uniform electric field £ along the z axis, then

A

E=cey and V=¢z where 7 = / dr z n(r) < second-quantized notation !

Response theory is nothing but perturbation theory formulated for both exact and approximate
wavefunctions.

Let U () denote the exact normalized ground state of H (&) with energy E(¢).

Linear and higher-order response functions:

(V) (&) = (¥ (e)[V[¥(e)) = (Wo|V[o) + (V5 V)) + %€2<<‘7;‘7,‘7>> +..




Response properties in the time-independent regime

In our example,
(Wo|z|Wo) is the permanent dipole moment along the z axis
is the static polarizability

is the static hyperpolarizability

e Hellmann-Feynman theorem:

dE(s) _ < ) OH (¢)

‘11(6)> = (V)(e)

de Oe

e Exact response functions can be expressed as energy derivatives:

d?E(e)

(V) = =5




Response theory for variational methods

In variational methods, the energy is expressed as an expectation value. It depends on both the trial
variational parameters A and the perturbation strength e:

E(X ) = (¥(N)|H(e)[ (X))
At the HF level of approximation, A parameterizes orbital rotations.

At the CI level (in the basis of perturbation-independent orbitals), A contains all the CI coefficients.

At the MCSCF level, it contains both orbital rotation and CI coefficients.

OFE (), ¢€)

=0 A(e)
OX  |a=x(e)

Stationarity condition: Ve,

In the following, we will use parameterizations such that A(0) = 0.

Consequently A(e) quantifies the response of the electronic wavefunction to the perturbation.




Response theory for variational methods

e The converged ground-state energy only depends on the perturbation strength:

e The Hellmann-Feynman theorem remains valid for approximate variational methods:

T
d&(e) [a,\@)} OE(), ¢) L 9E(e)

de Oe

OA A=A(g) Oe A=A(g)

~

\ .

0

thus leading to di(j) = <\If (A(E)) ‘V ‘ v (A(E)) >

Conclusion: response functions obtained from variational wavefunctions can be expressed as energy

derivatives.




Example: exact response theory

We denote {¥; },_ ; . the exact orthonormal eigenvectors of the unperturbed Hamiltonian H with
energies {Ei}¢:0,1,...

Exact wavefunction parameterization: P (S)) = &S |Wo)

d2&(e)

Linear response function:  ((V;V)) = 922
€ o

BCH expansion:

d€(e)

- (Wole Ve @) )




Example: exact response theory

A A ~ ag
Using the condition  S(0) =0 leadsto ((V;V)) = <\IJO V, 8(6) \Ifo>
£
0

Definition: V,L.[l] = <\IJO’ [\7, RL — Ez] \IJO> <— component 7 of the gradient property vector

Usual expression for the linear response function:

The linear response of the wavefunction is obtained by differentiation of the stationarity condition
with respect to the perturbation strength:




Example: exact response theory

e BCH expansion for the energy:
E(S,¢) (Wole™5 H(e)e™| W)

(Wol A () Wo) + (Wol [A(2), §]1Wo) + 3 (Wol[[A (<), 5], 8]Wo) + .

which leads to

d | OE(S,¢)
de 0S S=S(e)

where the hessian matrix elements equal

0

1 A~ A A ~
. :§<\IJOH[H,RI—RZ- ,R}—Rj”\lfo>+




Example: exact response theory

e In summary:

~hyn

Conclusion: in order to compute linear response functions, the gradient property vector and the hessian

matrix are needed.

EXERCISE:

0Si(e)| (W, |V|¥o)

7




Some comments before turning to the time-dependent regime

Let us return to (approximate) variational methods.

O(e)

Oe 0
response equation writes

X = is usually referred to as the linear response vector. Like in the exact theory, the linear
ERIx = vyl

In the time-dependent regime, a linear response vector will be obtained for each frequency w. We
will show in the following that the linear response equation writes

(E[Q] — wS[Q])X(w) = vl

What about non-variational methods such as MP2, CC, CI with e-dependent HF orbitals ?

We, in principle, do not have a stationarity condition anymore. How to proceed with the derivation
of the response equations then ? What about the Hellmann-Feynman theorem ?




Let us denote t the non-variational parameters (CC amplitudes for example).

For each perturbation strength, a set of equations has to be solved:

f(t(e),e) =0

The non-variational energy is then determined for each perturbation strength:

We introduce the Lagrangian function: | L(t,e,t) = E(t,e) + thE(t,e)

and impose the following stationarity conditions:

L(t,e,t
Ve, L ’_S’t) =0="f(t,e) and

OL(t,e,t) OE(t,e) _1of(t,e)
Y’
ot
!

ot ot ot

=0 =
!

t(e)

e Note that| £(e) = L(t(g),¢,t)

e Hellmann-Feynman theorem:




Time-dependent variational principle

A — d —
Time-dependent Schrodinger equation:  H (t)|V(t)) = i& |W(t))

_ —i t -
Alternative formulation based on a change of phase: W (t)) =e Jip Q) (W (t))

A1) — 1 [#(0) = Q) ¥ (1)

Connection with the Runge-Gross theorem: two local potentials that differ by a real time-dependent
function lead to the same time-dependent density for a given initial wavefunction ¥ (to):

T(to) = U(to) and ng,)(r) = (L)) (2)) = (P(B)|A(r)|(t)) = ng ) (r)

In the particular case of a time-independent Hamiltonian H, searching for time-independent
solutions W(t) =¥ and Q(t) = E leads to the time-independent Schrodinger equation:

H|T) = E|U)




e Returning to the time-dependent regime, ()(¢) is referred to as time-dependent quasienergy.
: d — = T NT N T N DTN (T
o Since - (T(H)[T () = iABT(O)T(®) — (T HOT(®) =0,

if Q(t) is real then

[FOIF0) = FOO) = (@0 F(t0)) =1 and | () = (00 |fr) 15| #0)

e The real character of the time-dependent quasienergy can be explicitly connected with the
conservation of the norm:

Q) = (b |B®]F0) + i<d‘i§“ ®<t>> = () || ) - <@<t) d‘i;f)> = Q)

since <d‘i§t) \i!(t)> - % <xi/(t))\if(t)> . <xif(t) diit)>

\ 7
Ve

0




Time-dependent variational principle

e For a given trial wavefunction W (t¢), we define the action integral as follows

Al = [ omiwar|  where Q) = ——

to (W()|(2))

X <\Il(t) H(t) —i%'\lf(t)>

e Note that Q[U](t) = Q(t).

e Stationarity condition:

OA[W] =0 H(t)|¥(t)) - i%l‘i(tﬁ = Q(1)[¥ (1))

variational formulation non-variational formulation

Proof: let us consider variations W(t) — U(t) + 6¥(¢t) around the exact solution ¥(t) with the
boundary conditions dW(tg) = d¥(t1) = 0.




Consequently, the action integral varies as follows:

AP = A[D + 69) — A[F] = /t (QIF +59)() — QIE)(1)) at

— é j \if(t)> dt + /tol <\f!(t) |I§I(t)—i% 5\Il(t)> dt
- / Q) (GRWIF(®) + (F@0w (1)) di

where /: <@(t)‘d5§;(t)> dt = /: % (B(0)]sw(t)) dt—/: <d‘iit) 5\If(t)> dt

\ . 7

~~~

(salova)]? =0

thus leading to

/: <<5‘1’(t) 'Ff(t) - i% — Q(t)' \if(t)> + <5x11(t) ‘ﬁ(t) - i% - Q(t)‘ @(t)>*) dt




Variational principle in adiabatic TD-DFT

e In time-dependent density-functional theory (TD-DFT), the physical time-dependent Hamiltonian is
writtenas H(t) = T 4+ Wee + / dr v(r, t)A(r).

\ 7
-~

V(t) +— time-dependent local potential operator

In standard TD-DFT, the exact time-dependent exchange-correlation (xc) potential is approximated
with the ground-state xc density-functional potential calculated at the time-dependent density
(adiabatic approximation):

oF xc |MFKS t - ~
(T—I—V(t)-l—/dr ° 5£(3 ()]ﬁ(r)—i(i> BKS (1)) = QKS(£) [HKS (1))

where ngis ;) (r) = <<f>KS (t) ‘ﬁ(r) PKS (t)> is an approximation to the exact physical
time-dependent density 7., (r).




EXERCISE: | (1) Show that, within the adiabatic approximation, the Kohn-Sham TD-DFT equation is
equivalent to the stationarity condition ¢.A,qia [@KS] = 0 where, for a trial wavefunction W(t),

t1

t 1 .. d
Al = [ gy < (VO [P V0 -ig w0 )t [ Brachra)a

((#)|n(r)|[¥(1))
(T@)wE)

(2) Within the adiabatic approximation, the equation to be solved in TD range-separated DFT is

and n\l,(t) (I’) =

SES M Ing ., _ )
(f FWLEE V(@) + [ dr ngn[(j 0 o - (i) T (1) = QU(E) [ (1)).

Show that it is equivalent to A", [V#] =0 where

adia

t1 1 t1

Ayalt)= [

. (OO0 X <\If(t) ‘T+ngu + V(%) —i%‘ q;(t)> dt +




Floquet theory
e In the following we consider a periodic Hamiltonian with period 7: H(t + T') = H(t).

A

e H(t) can be written as a Fourier series:

N
Ht) =T+ Wee + Vae + Y > e “kley(wy)Va,
x k=—N

\ . 7
~"

V(t) +— time-dependent perturbation

21k

where wy = i and e, (wy,) is the strength of the perturbation V. at frequency wy,.

e V is any kind of (hermitian) operator, not necessarily a one-electron operator even though in
practice it usually is.

e In order to apply TD-DFT, V. should in principle be a (one-electron) local potential operator:

Ve — / dr vz (r)A(r)




Floquet theory

e Example 1: in the presence of a dynamic uniform electric field,

N

E(t) = Ex(t) ex + Ey(t) ey + Ez(t) e, = Y e vt <€x(wk)ex +ey(wr)ey + ez (wk)ez> ,
k=—N

the perturbation is : =X BEx(t)+ 9 Ey(t) +z E,(t) thusleading to

N

Z e Iwkt <£X(wk) X+ey(wg) ¥+ ez(w) 2)

k=—

Comment: note that r is written in second quantizationas r = / r n(r)dr so that

A

V(t) = / r.E(t) n(r) dr <— local potential operator !




Floquet theory

e Example 2: in the presence of a dynamic uniform magnetic field,

N

B(t) = Bx(t) ex + By(t) ey + By(t) e, = Z e Wkt <bX(Wk)ex + by (wg ey + bZ(Wk)GZ> ;
k=—N

the perturbation equals : thus leading to

Comment: note that L canbe writtenas L = —i Z/ Ul(r)r x VoW, (r) dr so that

V(t) = —% / B(t) . (r X Vi (r, r)|r,:r) dr +— non-local potential operator !




EXERCISE:

(1) By using the hermiticity of L show that L = / r x j(r) dr where the current density operator

equals

A

i) = 5 3 (W90 - (9L 0) o

o)

(2) Show that the perturbation can be expressed as V(t) = —fimag - B(t) where the magnetic dipole
moment operator equals

A 1 :
Hmag — _5/1' XJ(I‘) dr

(3) Explain why TD-DFT is in principle not adequate for modeling such a perturbation. Show that the
paramagnetic current density

ip(r,t) = (T(O)H(r) [T (1)

would be a better variable to consider (rather than the density).




Floquet theory

Let us collect all perturbation strengths into the vector & =

~

The time-dependent wavefunction varies with the perturbation strengths: U (t) = ¥(e, t)

Choice of the phase: we want the time-dependent wavefunction to reduce to the (time-independent)
ground-sate wavefunction ¥ in the absence of perturbation,

In the following, the action integral will be calculated over a period: t9p =0 and ¢ =1T.




Response functions

e Taylor expansion of the time-dependent expectation value for the perturbation V.
<‘A/$> (87 t) - <\ij(€> t) |‘A/513 |\ij(€’ t)> —

(Wo Ww |Wo) <— zeroth order

4+ Z Z lwktgy (wi) <<f/m; f/y>>wk linear response

<— quadratic response
Y,z k,l

+ ...

e We will focuse in the following on the exact and approximate description of the linear response
functions {((Vi; Vy e,




Hellmann-Feynman theorem in the time-dependent regime

e The exact action integral depends both implicitly (through the time-dependent wavefunction) and
explicitly (through the perturbation) on the perturbation strengths e:

Ale)=A [\Tf(s), e] where

1

AT, e] = /OT OO} X <\If(t) ‘ﬁ—l—f/(t) —i%' \I!(t)> dt

and H=T+ Wee + Vne +— unperturbed Hamiltonian

o U(e, t) isdetermined from the variational principle: | Ve, A4 [\i(s), e] =0




Hellmann-Feynman theorem in the time-dependent regime

e Let us consider the variation e, (wg) — ez (wi) + deg (Wi ):

dA(e) A(sx (wi) + des (wk)) _ A(sw(wk))

0A[V, g] e 5 (e oW (g)
el \p:q](s)d z(wg) + A|U(e)+ Ben (o)

\

dsx(wk),s] —A[

-~

0A [@(s),s} =0

thus leading to the Hellmann-Feynman theorem

dA(e) DA, €]
dg:v(wk:) a agw(wk) U="U(g)




A T
8V—(t) — e lwpt Vx — L(E:) :/ e iwgt <Vx>(€,t) dt
Oz (wi) dez(wi)  Jo

Important consequence: response functions can be expressed as action integral derivatives !

dA(e)

zeroth order:

T . A A
_ / ekt (Do V|Wo) dt = T(Wo|Va|To)6(wy) thus leading to
0 0

o=} 2
€L 0

Linear response:

d2 A(e)
dey (wp)des (wi)

T . A A
:/0 e @k tent (7)), di
0

| o 1 d?A(e
thus leading to (Vs VD)o = T de (wl)de( z—wl)
Y z 0




Some general statements before deriving more equations ...

(Linear) response functions can be expressed as derivatives of the action integral with respect to the
perturbation strengths.

Such a formulation is convenient for deriving exact and approximate expressions for the response
functions. In the latter case, non-variational methods such as Coupled-Cluster (CC) theory can also
be considered (Lagrangian formalism).

Various (approximate) parameterizations of the time-dependent wavefunction ¥ (e, t) will lead to
various response theories.

Variational methods such as HF and MCSCF will be considered in the following.
Adiabatic TD-DFT equations (Casida equations) can be obtained similarly.

TD linear response CC theory can be derived by means of a Lagrangian formalism (in analogy with
time-independent CC response theory).




e In the exact theory,

< oY (e, t)
c%y(wl) 0

\ 7
-~

1

linear response of the wavefunction

(first order in perturbation theory)

e Note that, in the static case, the action integral over 1" becomes the energy. Consequently, the
standard second-order energy correction (¥q |V, | ¥ (1) is recovered.

e Linear and higher-order responses of the wavefunction are obtained through differentiations of the
stationarity condition with respect to the perturbation strengths:

oW (e, t)

% <5A {@(s),s] ) =0 —




Wavefunction parameterization

Double-exponential parameterization of a trial wavefunction: W (1)) = eF(D)elS0)gg)

The hermitian operators /(%) and S(t) ensure rotations in the orbital and configuration spaces,
respectively.

Fourier series:

() = ek (w)d] + e T (—w))ds

l,i

S(t) = e S (w) R} + et ST (—wy) Ry where  RI = [i)(Tg].

l,i

The time-dependent wavefunction is fully determined from the Fourier component vectors

ki(wp)

Si(w
Alwy) = (@) +— to be used as variational parameters !

Ky (—wy)

| ST (—wi) |




Such a parameterization will enable us to derive

e an exact response theory when

A(t)=0 and R =|W;) (o] with >0 and Vk>0, H|U) = E|¥;).

HF response theory (RPA) when

S(t) =0, ¥y — ®g (HF determinant),

and (j;f — E,; (single excitation from the occupied j orbital to the unoccupied a orbital)

MCSCEF response theory when

Ty — W) (MCSCF wavefunction), 1':2;r — |det; ) (0| (rotation within the active space),

A




Response properties from adiabatic TD-DFT

The HF parameterization enables also to derive standard TD-DFT response equations:

e for pure exchange functionals, the action integral expression to be used is

T . . N d T
Awcial,6] = [ (WO |74 Ve £ 90~ i3, | 9@ Yt + [ Brnelngo] a
0 0

e for hybrid exchange functionals, the action integral expression to be used is

e = [ (v |T Vo + oo £ V(0 =15 00 ) e+ [ (1= ) Bl

/ E nq,(t)




Response properties from adiabatic TD-DFT

o The MCSCF parameterization enables also to derive multiconfiguration range-separated TD-DFT
equations: the action integral expression to be used is, in this case,

T ~ R . R d T .
Aol = [ (O [+l 4 G 490 - 15 [ v Y et [ B ] a

e For sake of generality, we will derive, in the following, response equations for a mixed
wavefunction/density-functional variational action integral:

AV, e] = Avar [V, €] = /OT <\If(t) H+V(t) — i%' \I!(t)> dt + /OT Etxc[ng 1) dt




Hellmann-Feynman theorem for time-dependent variational methods

A el = [ (vl v0 i o) i+ [ Bucolnago] a

Let us keep in mind that the wavefunction ¥ is determined from the vector A = {A(w;) },
The action integral will therefore be denoted Avar (A, €) in the following.

For any perturbation strength e,  A(e) is obtained from the stationarity condition:
0Avar (A, € )

Ve,
oA A=A(e)

=0

Consequently, the Hellmann-Feynman theorem is fulfilled for the variational action integral
Avar(€) = Avar(A(e), €), exactly like in the exact theory:

dAvar(e) . aAvar(A, E)
de Oe A=A(¢g)




Linear response functions

| | - 1 d*Avar(e)
o Therefore, in analogy with the exact theory,  ((Vz; Vy))w, = T de (w;)deg (—w
y\Wi)dez{—

where

T
/ W \I;(t) v, \I!(t)>
0
T ) )
/ 1wlt _iS(t)e—i/%(t)‘”/xeir%(t)eiS(t)‘\Ij0> dt
0

thus leading to

/OTeiwzt (W0 V2| w0 +3 (%o [72. 0] [ w0) +1 (o | [V, 5(0)] | w0) +

T6(w;) <xpo A 1110> i VIV A (W) +




Linear response functions

where the gradient property vector is defined as

Conclusion:

(Vas Vi)

=iy

t OA(wr)

Oey (wi) |g

We now need to derive the linear response equation that is fulfilled by the linear response vector

Xy(wr) =

OA (wy)

Ozy(wi) |y




/OT <\If(t)‘7:[|\lf(t)> dt+/OT Brixe[ny (o)) dt+/OT <\If(t)|1>(t)‘\1!(t)> dt+/0T <\If(t) = \If(t)> dt

Linear response equation

0Avar (A7 5)

OAT(—wy)

A=A(€)] 0

=0

Avar [A7 5]

\

P
dt

7

-~

Ay [A]

-~

jch [A]

-~

A (A, €]

-~

Adsae [A]




Linear response equation

N
o Ay el=S" 5" S eu(wp) Té(wk)<\110 v, \IJO>—|—iT5(wk—|—wp) VAT A (wp) + ...
t k=—N p ~

5V Ap) = S AT (!

T
_ —135(wm +uwy) VY

d OA (A, €)
dey(wm) | OAT(—wy)

A—A(e)] 0

. ~od .
EXERCISE: | Let f(xz,t) = e~ *4() EefM@).

L of(x,t) 4 dA(t)

) 1
Show that 1,t) = —
owthat J0,0) = [FEUE A= S5




Linear response equation

e Using

o—i8(t) —irc(t) [ i) iS(1) | _ =18 [ o—ir(®) d ia() | Li5@) _I_e—iS‘(t)geiS‘(t)
dt dt dt

leads to

Adgyar [A]




Linear response equation

Sl2] — > A
_A*

s _ <‘Ifo|[@i,<§;]|‘1’0>
(Wol[R;, Ci;]|‘1’0>

A — (Tolldi, 4511 Po)
(Wo|[Ri, 4;]1W0)




Linear response equation

e Using the BCH expansion leads to

A 8= [ (ol [An(0)] +1 7 50)] o) a

_/OT <x1;0 % 7,70 7(0)] +% [75w)] 50+ [[Aa0],80)] \Ifo>dt+---

d

OA L [A] T
2

—
dey (wm) laAT(—wl) A=A(e)

0




Linear response equation

(Tol[gs, [H, a1 111T0)  (Tolllgs, H], RI]|Wo)

(Wollds, [H,4;]11W0)  (Pol[lds, H], R;]|¥o)

(Tol[Ri, [H, alN[To)  (ol[Ri, [H, RI)I[Wo) |

(Wol[Ri, [H, 451 Wo0)  (Wol[Ri, [H, R;]]|Wo) |




Linear response equation

e DFT-type contribution:

d O Agixc [A] _ d /T dt/dr(SEch[n\I/(t)] Ong (1) (r)
dgy(wm) 8AT(_WZ) A=A(e)] dgy(wm) 0 5n(r) aAT(_wl) A=A(e)]

o
/ dt/ 5EHXC n\IIO] : "m0 () +— potential !
dey(wm) | OAT(—wi) (A= (e)

s, 0 !
/ dt/dr /dl‘5 Erixe[nw,] 9w (r) ny(p) () +— kernel !
on(r)on(r) OAT(—w;)|, Ocy(wm)

e The "potential” term is simply taken into account with the substitution,

§ Epixe[nw,]
on(r)

7:L—>7:[+/dr A(r)




Linear response equation

0 ! : oA
e Using the expressions P () — iz e~ “rtnlf () OAlwp)

Ocy (wm) 0 - Oey(wm) |

and

871\1;(75) (r) _ _le—iwltn[l](r),
OAT(—w) |y 2

the "kernel" contribution can be rewritten as follows,

T[4 6 EHXC w0l )y, 0t pry PAw1)
/d / ")on( I‘) (x) ) Oey(wm) |g

7

Kixe +— kernel matrix




Linear response equation

Conclusion: in the particular case of wavefunction linear response theory (no DFT contributions), the
linear response equations to be solved are

BRI 4,802 OA(—wi) — i6(wm 4 wp) Vy[l]
Oey(wm) |

thus leading to




EXERCISE: | (1) Show that, in exact response theory, X;; = &;;, A;; =0, A;; = 6i;(E; — Eo),
and Bij = 0.

—(Wo|Va|¥;)

(2) Show that V1Y = [

(04 V | Wo) ]

(3) Conclude that

<<Vw7 Vy>>w = = Z

1>0

(Wo |V | W) (U4 Vy [ Wo) n (W3 |V | Wo) (To| Vy | W3)
E;, — FEy —w E;, — FEy+w

a

+oo
(4) Using real algebra and the formula /
0 a? + w2

77
dw = o prove the fluctuation dissipation theorem

(Wo|Va Vy|To) — (o | Ve |To) (W |Vy|To) =

(5) The so-called "response function" is defined in Physics as  x(r,r’,w) = {{(n(r); n(r’)))w. Conclude
that

1

+oo
(WolA(r)n(r)|To) — no(r)no(r’) = —;/O x(r, ', iw)




N
=
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=
O
x

LL

() Hy [n'z,", n=2-5]

FCI (2'54")
TD-MCSCF (2'%,")
TD-LDA (25"




(b) Hy 54", n=2-5]

FCl (') ——
TD-HF-srLDA (2'5,")
TD-MC-srLDA (2'3,")

N
=
)

N
>
(@)
S
)
c
)
c

9
)
©

=
O
x

LL

Interatomic distance (a.u.)
E. Fromager, S. Knecht and H. J. Aa. Jensen, J. Chem. Phys. 138, 084101 (2013)
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