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Second quantization

Electronic Hamiltonian in first quantization

N -electron Hamiltonian within the Born–Oppenheimer approximation:

Ĥ = T̂ + V̂ne + Ŵee

T̂ =

N∑
i=1

t̂(i) where t̂(i) ≡ −
1

2
∇2

ri
→ kinetic energy

V̂ne =
N∑
i=1

v̂ne(i) where v̂ne(i) ≡ −
nuclei∑
A

ZA

|ri −RA|
× → electron-nuclei attraction

Ŵee =
1

2

N∑
i 6=j

ŵee(i, j) where ŵee(i, j) ≡
1

|ri − rj |
× → electron-electron repulsion
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Second quantization

One-electron wavefunction
• Let us start with Schrödinger theory: the quantum state of a single electron is written as

|Ψ〉 =

∫
drΨ(r)|r〉

where Ψ(r) is the one-electron wavefunction (orbital) and |r〉 denotes the quantum state
"the electron is at position r". This choice of basis is known as "r representation".

• Orthonormalization condition: 〈r′|r〉 = δ(r′ − r) ←− Dirac distribution

where "∀f",
∫

dr f(r)δ(r′ − r) = f(r′) ↔
∑
i

fiδii′ = fi′ ←− Kronecker delta

• Pauli theory: the spin of the electron is now considered as an additional degree of freedom. The
quantum state of a single electron is then written as

|Ψ〉 =

∫
dr

∑
σ=α,β

Ψ(r, σ)|r, σ〉

where |r, α〉 denotes the quantum state "electron at position r with spin up" and |r, β〉 corresponds
to the state "electron at position r with spin down".
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Second quantization

Two-electron wavefunction

• In the non-relativistic case, a single electron will have a spin σ0 which is either up or down. The
corresponding wavefunction Ψσ0 can then be written as a spin-orbital Ψσ0 (r, σ) = Ψ(r)δσσ0 .

• With the notations X ≡ (r, σ) and
∫

dX ≡
∫

dr
∑
σ=α,β

,

a one-electron quantum state in Pauli theory is simply written as

|Ψ〉 =

∫
dX Ψ(X)|X〉

with 〈X′|X〉 = δ(X −X′) = δσσ′δ(r
′ − r) and, consequently, 〈X′|Ψ〉 = Ψ(X′).

• Two-electron case:
|Ψ〉 =

∫ ∫
dX1dX2 Ψ(X1, X2)|1: X1, 2: X2〉

where the two-electron quantum state |1: X1, 2: X2〉 corresponds to "electron 1 in state |X1〉 and
electron 2 in state |X2〉".
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Second quantization

• Anti-symmetrization principle: a physical two-electron wavefunction should fulfill the condition

Ψ(X1, X2) = −Ψ(X2, X1)

thus leading to

|Ψ〉 = −
∫ ∫

dX1dX2 Ψ(X2, X1)|1: X1 , 2: X2〉 = −
∫ ∫

dX1dX2 Ψ(X1, X2)|1: X2, 2: X1 〉︸ ︷︷ ︸
|Ψ1↔2〉

and

|Ψ〉 =
1

2

∫ ∫
dX1dX2

[
Ψ(X1, X2)−Ψ(X2, X1)

]
︸ ︷︷ ︸ |1: X1, 2: X2〉

0 if X1 = X2

Conclusion: the anti-symmetrization of the wavefunction ensures that electrons are
indistinguishable and that they cannot be in the same quantum state (Pauli principle).
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Second quantization

Slater determinants
• Let

{
ϕK(X)

}
K

denote an orthonormal basis of (molecular) spin-orbitals. Two electrons that

occupy the spin-orbitals ϕI(X) and ϕJ (X) will be described by the (normalized) Slater
determinant

ΦIJ (X1, X2) =
1
√

2

∣∣∣∣∣∣ ϕI(X1) ϕI(X2)

ϕJ (X1) ϕJ (X2)

∣∣∣∣∣∣ =
1
√

2

(
ϕI(X1)ϕJ (X2)− ϕI(X2)ϕJ (X1)

)

• Note that Slater determinants and, consequently, linear combinations of Slater determinants are
anti-symmetric.

• Therefore, Slater determinants are convenient "building blocks" for computing the electronic
wavefunction.

• Still, we may wonder if we really need this complicated expression obtained from the determinant
(obviously things get worse for a larger number of electrons).

• Another drawback of the current formulation: both Slater determinant and Hamiltonian expressions
depend on the number of electrons.
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Second quantization

"What is occupied ?" rather than "Who occupies what ?"

• Since electrons are indistinguishable, there is no need to know that electron 1 occupies ϕI and
electron 2 occupies ϕJ or the other way around ...

• The important information is that spin-orbitals ϕI and ϕJ are occupied and the remaining ones are
empty.

• Second quantization is a formalism that relies on this idea. Let us tell the story ...

• At the beginning, there was "nothing" ... |vac〉 ←− normalized "vacuum state"

• ... then was introduced the concept of annihilation of an electron occupying ϕI , that would

obviously give zero when applied to the vacuum state: ∀ I, âI |vac〉 = 0 (rule 1)

• ... and then came the concept of creation of an electron occupying ϕI : â†I |vac〉 ≡ |ϕI〉

June 2017 ISTPC 2017, Aussois, France Page 7



Second quantization

"What is occupied ?" rather than "Who occupies what ?"
• ... and then came the idea to create another electron occupying ϕJ : â†J â

†
I |vac〉 ≡ |ΦIJ 〉

• Note that the creation operator â†I is the adjoint of the annihilation operator âI . This ensures, in
particular, that one-electron and vacuum states are orthogonal:

〈ϕI |vac〉 = 〈â†Ivac|vac〉 = 〈vac|âI |vac〉 = 0

• In order to have a representation that is equivalent to the one used in first quantization, we only
need two more rules:

∀ I, J, [âI , âJ ]+ = âI âJ + âJ âI = 0 (rule 2) −→
[
â†I , â

†
J

]
+

= [âJ , âI ]†+ = 0

∀ I, J,
[
âI , â

†
J

]
+

= âI â
†
J + â†J âI = δIJ (rule 3)

• Notation: the anticommutator of Â with B̂ reads
[
Â, B̂

]
+

=
{
Â, B̂

}
= ÂB̂+B̂Â while the

commutator equals
[
Â, B̂

]
= ÂB̂ − B̂Â.
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Second quantization

"What is occupied ?" rather than "Who occupies what ?"

• Rule 2 contains the indistinguishability of the electrons, â†J â
†
I |vac〉 = −â†I â

†
J |vac〉,

and the Pauli principle, â†I â
†
I |vac〉 = 0.

• Rule 3 ensures that you can only annihilate what has already been created (!),

âI â
†
J |vac〉 = δIJ |vac〉 − â†J âI |vac〉 = δIJ |vac〉

• It is now very easy to generate representations of Slater determinants for an arbitrary number N of
electrons: multiply more creation operators !

|I1I2 . . . IN−1IN 〉 = â†I1 â
†
I2
. . . â†IN−1

â†IN
|vac〉 ≡

1
√
N !

det
[
ϕIi (Xj)

]
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Second quantization

EXERCISE: (1) Show that |I1I2 . . . IN−1IN 〉 is normalized.

(2) Let us consider another state |J1J2 . . . JN−1JN 〉 and assume that at least one of the occupied
spin-orbitals (let us denote it ϕJk ) is not occupied in |I1I2 . . . IN−1IN 〉. Show that the two states are
orthogonal.

(3) The "counting" operator N̂ is defined as N̂ =
∑
I

n̂I where n̂I = â†I âI . Show that

n̂I |I1I2 . . . IN−1IN 〉 = |I1I2 . . . IN−1IN 〉 if I = Ik 1 ≤ k ≤ N

= 0 otherwise

and conclude that N̂ |I1I2 . . . IN−1IN 〉 = N |I1I2 . . . IN−1IN 〉 .

(4) Explain why states corresponding to different numbers of electrons are automatically orthogonal.

(5) Explain why any normalized state |Ψ〉 fulfills the condition 0 ≤ 〈Ψ|n̂I |Ψ〉 ≤ 1 .
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Second quantization

One-electron operators in second quantization

• Let ĥ denote a one-electron operator (t̂+ v̂ne for example): it acts on the one-electron states |ϕI〉.

• Resolution of the identity:
∑
I

|ϕI〉〈ϕI | = 1̂,

which leads to the conventional representation ĥ = 1̂ ĥ 1̂ =
∑
I,J

〈ϕI |ĥ|ϕJ 〉|ϕI〉〈ϕJ | .

• Second-quantized representation: ĥ ≡
∑
I,J

〈ϕI |ĥ|ϕJ 〉â†I âJ

Indeed,∑
I,J

〈ϕI |ĥ|ϕJ 〉â†I âJ

 |ϕK〉 =

∑
I,J

〈ϕI |ĥ|ϕJ 〉â†I âJ

 â†K |vac〉 =

∑
I,J

〈ϕI |ĥ|ϕJ 〉â†I δJK

 |vac〉

=
∑
I

〈ϕI |ĥ|ϕK〉|ϕI〉 = ĥ|ϕK〉
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Second quantization

• What is convenient is that this second-quantized representation is valid for any number N of
electrons:

N∑
i=1

ĥ(i) ≡
∑
I,J

〈ϕI |ĥ|ϕJ 〉â†I âJ ≡ ĥ

The information about N has been completely transferred to the states. It does not appear in the
operator anymore.

EXERCISE: Let us consider another orthonormal basis
{
ϕ̃K(X)

}
K

of spin-orbitals that we

decompose in the current basis as follows, |ϕ̃P 〉 =
∑
Q

UQP |ϕQ〉.

(1) Show that the matrix U is unitary (U† = U−1).

(2) Explain why â†
P̃

=
∑
Q

UQP â†Q and show that
∑
I,J

〈ϕ̃I |ĥ|ϕ̃J 〉â†Ĩ âJ̃ ≡ ĥ.

(3) Show how the diagonalization of ĥ in the one-electron space leads automatically to the
diagonalization in the N -electron space (use exercise page 10).
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Second quantization

Two-electron operators in second quantization

• Let ŵ denote a two-electron operator: it acts on two-electron states |ϕIϕJ 〉 = |1: ϕI , 2: ϕJ 〉.

• A complete anti-symmetrized basis should be used for describing the two electrons:

|IJ〉 =
1
√

2

(
|ϕIϕJ 〉 − |ϕJϕI〉

)
≡ â†I â

†
J |vac〉 with I < J .

Consequently, any two-electron anti-symmetrized state |Ψ〉 shoud fulfill the condition

P̂A|Ψ〉 = |Ψ〉 where P̂A =
∑
I<J

|IJ〉〈IJ | ←− projection operator !

• Projection of the two-electron operator onto the space of anti-symmetrized states:

ŵA = P̂AŵP̂A =
∑

I<J,K<L

〈IJ |ŵ|KL〉 |IJ〉〈KL|
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Second quantization

Two-electron operators in second quantization

EXERCISE: Prove that ŵA ≡
1

2

∑
IJKL

〈ϕIϕJ |ŵ|ϕKϕL〉 â†I â
†
J âLâK

hint: apply ŵA and the proposed second-quantized representation to |PQ〉 ≡ â†P â
†
Q|vac〉 (P < Q).

Conclude.

• What is convenient is that this second-quantized representation is valid for any number N of
electrons and includes the projection onto anti-symmetrized states:

1

2

N∑
i6=j

ŵ(i, j) ≡
1

2

∑
IJKL

〈ϕIϕJ |ŵ|ϕKϕL〉 â†I â
†
J âLâK ≡ ŵ
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Second quantization

Summary

• In summary, the electronic Hamiltonian can be written in second quantization as follows,

Ĥ =
∑
IJ

〈ϕI |ĥ|ϕJ 〉â†I âJ +
1

2

∑
IJKL

〈ϕIϕJ |ŵee|ϕKϕL〉 â†I â
†
J âLâK

where 〈ϕI |ĥ|ϕJ 〉 =

∫
dX ϕ∗I (X)

(
ĥϕJ

)
(X) ← one-electron integrals

〈ϕIϕJ |ŵee|ϕKϕL〉 =

∫ ∫
dX1dX2 ϕ

∗
I (X1)ϕ∗J (X2)

(
ŵeeϕKϕL

)
(X1, X2) ←two-electron integrals

• Note that this expression is also valid for a relativistic Hamiltonian. Two or four-component spinors
should be used rather than spin-orbitals in conjunction with the Dirac (Breit) Coulomb Hamiltonian.

• The standard (non-relativistic) Hamiltonian will be used in the following.
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Second quantization

Why "second" quantization ?

• Let us focus on the (one-electron) electron-nuclei local potential operator which, in second

quantization, reads V̂ne =

N∑
i=1

v̂ne(i) ≡
∑
IJ

〈ϕI |v̂ne|ϕJ 〉â†I âJ where

〈ϕI |v̂ne|ϕJ 〉 =

∫
dX vne(r)ϕ∗I (X)ϕJ (X),

thus leading to

V̂ne ≡
∫

dX vne(r)

(∑
I

ϕ∗I (X)â†I

)
︸ ︷︷ ︸

(∑
J

ϕJ (X)âJ

)
︸ ︷︷ ︸

=

∫
dr vne(r)

∑
σ

Ψ̂†(r, σ)Ψ̂(r, σ) ≡ V̂ne

Ψ̂†(X) Ψ̂(X) ← field operators

• For a single electron occupying the spin-orbital Ψ(X) = Ψ(r, σ), the corresponding expectation
value for the electron-nuclei potential energy equals

〈Ψ|v̂ne|Ψ〉 =

∫
dX vne(r)Ψ∗(X)Ψ(X) =

∫
dr vne(r)

∑
σ

Ψ∗(r, σ)Ψ(r, σ).
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Second quantization

• Physical interpretation of the field operators:

Ψ̂†(X)|vac〉 =
∑
I

ϕ∗I (X)â†I |vac〉 =
∑
I

ϕ∗I (X)|ϕI〉 =
∑
I

|ϕI〉〈ϕI |X〉 = |X〉 = Ψ̂†(X)|vac〉 ,

which means that Ψ̂†(X) = Ψ̂†(r, σ) creates an electron at position r with spin σ.

• Consequently, the density operator reads in second quantization n̂(r) =
∑
σ

Ψ̂†(r, σ)Ψ̂(r, σ) ,

and the electron density associated with the normalized N -electron wavefunction Ψ is simply
calculated as follows,

nΨ(r) = 〈Ψ|n̂(r)|Ψ〉.

• Anticommutation rules:
[
Ψ̂(X), Ψ̂(X′)

]
+

=
∑
IJ

ϕJ (X)ϕI(X′) [âJ , âI ]+ = 0 and

[
Ψ̂(X), Ψ̂†(X′)

]
+

=
∑
IJ

ϕJ (X)ϕ∗I (X′)
[
âJ , â

†
I

]
+

=
∑
IJ

ϕJ (X)ϕ∗I (X′)δIJ

=
∑
I

〈X|ϕI〉〈ϕI |X′〉 = 〈X|X′〉 = δ(X −X′).
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Second quantization

EXERCISE:

(1) Show that each contribution to the electronic Hamiltonian reads in second quantization as follows,

T̂ ≡ −
1

2

∫
dr
∑
σ

Ψ̂†(r, σ)∇2
rΨ̂(r, σ), V̂ne ≡

∫
dr vne(r) n̂(r),

Ŵee ≡
1

2

∫ ∫
drdr′

∑
σσ′

Ψ̂†(r, σ)Ψ̂†(r′, σ′)Ψ̂(r′, σ′)Ψ̂(r, σ)

|r− r′|

=
1

2

∫ ∫
drdr′

n̂(r)n̂(r′)− δ(r− r′)n̂(r)

|r− r′|
.

(2) At the non-relativistic level, real algebra can be used, ϕI(X) = ϕiσ(r, τ) = φi(r)δστ ,

ĥ ≡ −
1

2
∇2

r + vne(r)× and ŵee ≡
1

|r1 − r2|
× .

Show that the Hamiltonian, that is here a spin-free operator, can be rewritten in the basis of the molecular

orbitals
{
φp(r)

}
p

as follows

Ĥ =
∑
p,q

hpqÊpq +
1

2

∑
p,q,r,s

〈pr|qs〉
(
ÊpqÊrs − δqrÊps

)
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Second quantization

where Êpq =
∑
σ

â†p,σ âq,σ , hpq = 〈φp|ĥ|φq〉 and

〈pr|qs〉 =

∫ ∫
dr1dr2 φp(r1)φr(r2)

1

|r1 − r2|
φq(r1)φs(r2) = (pq|rs).
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Second quantization

Model Hamiltonians: example of the Hubbard Hamiltonian

hij −→ −t
(
δi,j−1 + δi,j+1

)
+ εiδij

〈ij|kl〉 −→ Uδijδikδlj

ÊikÊjl − δkjÊil −→ n̂in̂i − n̂i

where n̂i = Êii = n̂i↑ + n̂i↓ so that n̂in̂i = 2n̂i↑n̂i↓ + n̂i

Ĥ −→ −t
∑
〈i,j〉

∑
σ=↑,↓

â†i,σ âj,σ︸ ︷︷ ︸
+ U

∑
i

n̂i↑n̂i↓︸ ︷︷ ︸ +
∑
i

εin̂i︸ ︷︷ ︸
T̂ (hopping) on-site repulsion local potential
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Second quantization
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