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Notations

Molecular orbitals: ¢p(r) = Z Cup Xu(r) (Op|dg) = dpg
W

Non-orthogonal set of atomic orbitals (Gaussian functions): (Xulxv) = Suv

Hamiltonian in second quantization:

where  hpg = [ dr ép(0)[ = JVE + vue(s)]64(®)

and (prigs) = //dr1dr2 Pp(r1)Pr(r2) ——— @q(r1)Ps(r2) = (pqrs)

|1—2|




Variational and non-variational approximations

e The exact electronic ground state ¥ and its energy Eg can be obtained two ways:

Eo = min e 1Y) (YolH Do) H|Vo) = Eo| o)
v (P|W) (Wo|Wo)

Approximate parametrized ground-state wave function: W(\o)

where Ao denotes the complete set of optimized parameters.

Variational calculation Non-variational calculation

0 (T(N)|H|T(N))

X (T[T HIT(A) — EQ)[W(A)) =0 for A= Xg

A=Xg
\ \

Hartree-Fock (HF) Many-Body Perturbation Theory (MBPT)
Configuration Interaction (CI) Coupled Cluster (CC)
Multi-Configurational Self-Consistent Field (MCSCF)




Spin-orbital rotation

e Let {¢p}p denote an orthonormal basis of spin-orbitals and {¢p } p another orthonormal basis
obtained by unitary transformation:

[Bp) = > Uqrleg)
Q

e Ucanbewrittenas| U =e * with vl = —k

e ~pg can be used rather than Upg for parametrizing the spin-orbital rotation

Using EX2, show that in second quantization the unitary transformation can be simply written as

where R




Spin-orbital rotation

e Note that the rotation operator ~ is anti-Hermitian:

e Unitary transformation for a N-electron Slater determinant:

.I.

~ — R A fo—hat
..a_~ |vaC) = € a e’'e a
P | ) Py Py




Spin-restricted orbital rotation

e In a restricted formalism the same set of orbitals is used for o and 3 spins:

Rk = ZKLPQ aPaQ = ZZKP,UCI o a;g,adq’(,/ = g Kpql
PQ 1N Pq

Prq oo’

KpgOoo

e Since Kpq = —Kqp (real algebra)




Hartree-Fock approximation

e For simplicity we consider here the particular case of a non-degenerate singlet closed-shell ground
state

e The HF method consists then in approximating the exact wave function W by a single Slater
determinant ®¢. The orbital space is thus divided in two:

doubly occupied molecular orbitals ¢;, ¢;, . .. unoccupied molecular orbitals ¢, ¢p, . ..

OcCC.

|Pg) = H H dg’a vac)

oc=uo,3

e The initial set of molecular orbitals is usually not optimized — the optimized HF molecular orbitals
will be obtained by means of unitary transformations (orbital rotation)




Hartree-Fock approximation

e " |®g)  with

denotes the column vector containing all the parameters to be optimized

P>q
occupied-occupied and unoccupied-unoccupied rotations:

k= Z Rij (Em — Ejz) + Z Kai (Eai - Eia) + Z Rab (Eab — Eba)
1,a

1>7 a>b

7

K

RO°C|Pg) = RUMO°C | @) = 0 — only occupied-unoccupied rotations will be optimized — ~ =




Hartree-Fock approximation

Hartree-Fock energy expression:

Bl - (2 R)H|®(r)) _ (Pole "' H e *|®o) _
(®(r)|(x)) (Pole"" e F|Do)

Variational optimization of «: E,EJ]r =

Iterative procedure (Newton method):

<<I>0|6'%]:IG_'%|CI>0> = E(K,)

E(r) ~ E(0)+r"EMN + %F.-,TE(?]F.; - Bl ~EM+EMk. =0 - EJ K= — g\

Update the HF determinant:  ®¢ < ®(x4)

HF calculation converged when

Newton step




Analytical gradient and Hessian in Hartree-Fock

A . . A d . "
EX2: | By using the relation e ** Be?*4 = B 4 / d§ & e 54 Be*? |, which holds for any \ and
0

any B operator, prove the Baker-Campbell-Hausdorff (BCH) expansion:

[[B7Aﬂn+l :[[[B7AHH7A]7 [[B’A]]l :[éaA]

e Analytical formulas for the gradient and the hessian:

B(x) = B(0) + (@ol[#, o) + (o], [5, ATl ®o) + ...

\

-~

0,a1

> ki (@ol[Bai — Big, A)|®0) = By}, = (®0|[Eai — Eia, H]|®0)
at

= —2(®g|HE4;|®o) = 0 (Brillouin theorem)




H, (112g+, aug—cc-pVQ2z)

N
=
©

~
>
(@)
=
&)
c

LL

4 5 6 7
Interatomic distance (a.u.)




Short-range dynamical correlation

Ground-state configuration singly-excited conf. doubly-excited conf.




Static correlation




Static correlation

e Hos in the equilibrium geometry:

W) = Co|1a§‘105> +...| where |Cy|? = 98% no static correlation

e In the dissociation limit: H4...Hp and NOT

1
¢1ag (r) = ﬁ

1
10510]) = - (|1sj:§1sﬁB> + 13185 ) 4155 17) + 153152

(¢13A (r) + P15 (r)) and P10, (r) =

1
~lof10f) = 2 (|1si13‘;> + |1 1s5) — 1159 157) — 155157

(| loy 105 ) — 169107 >) strong static correlation




H, (112g+, aug—cc-pVQ2z)
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Multi-Configurational Self-Consistent Field model (MCSCF)

The MCSCF model consists in performing a CI calculation with a reoptimization of the orbitals

¥ (x,C)) = —“'(ch\detg)

The MCSCF model is a multicontfigurational extension of HF which aims at describing static
correlation: a limited number of determinants should be sufficient.

Short-range dynamical correlation is treated afterwards (post-MCSCF models)

Choice of the determinants: active space

H.. H 2 electrons in 2 orbitals (104, 104,) — 2/2

2 electrons in 4 orbitals (2s, 2p,, 2py, 2p2) — 2/4




Multi-Configurational Self-Consistent Field model (MCSCF)

o Complete Active Space (CAS) for Be: [1s°2s?), [1s%2p2), |1s%2p7), |1s%2p7),
if all the determinants are included in the MCSCEF calculation — CASSCF

if a Restricted Active Space (RAS) is used RASSCF

The orbital space is now divided in three:

doubly occupied molecular orbitals (inactive) DiyDjy .. 1s
active molecular orbitals buy Pvsy - - 2s,2py, 2py, 2p2

unoccupied molecular orbitals ba, Db, - - - 3s,3p, 3d, . ..
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e Iterative optimization of the orbital rotation vector « and the CI coefficients C;:

(@ (0)y) = Z CZ.(O) |7) +—  normalized starting wave function

(T(A)) =e ® +—  convenient parametrization A\ =

1+ (81018)

Q=1-[¢O)y@®|, |5 =3"5l), (POQ5) =0, (TA)|T()) =1

e MCSCEF energy expression:  E(\) = (F(A\)|H|¥(N))

e Variational optimization: = = where

and EC[”




e Newton method:

1
E(0)+ ATEMN + §>\TE([)2])\ — BV ~Bll+ BN =0 - Ef' A, =-E[
~—

Newton step

e Convergence reached when E([)l] =0

Show that Egll = (WO)|[Eyy — Eqp, H[W©) and  Ef = z(HCAS - E(O))c<0>

where H%Asz(iufﬂj) and C0O) = C’i(o)

Note: Ej =0 isknown as generalized Brillouin theorem.
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Multi-state MCSCF approach

State-averaged MCSCF model: simultaneous optimization of the ground and the lowest A/ — 1
excited states at the MCSCEF level.

[terative procedure: N initial orthonormal states are built from the same set of orbitals.

o =S" 0l iy,

Double-exponential parametrization:

Uy (k,8)) = e " e 51wl

and Z i) (il = > o (W)

K




Multi-state MCSCF approach

e Gross—Oliveira—-Kohn (GOK) variational principle for an ensemble of ground and excited states:

For any set {U};_, »r of N orthonormal states, the following inequality holds,

N X N
> wp(UH|Y) > wikr
=1 =1

where F; < Ey <...< Ej arethe N lowest exact eigenvalues of H, and the weights are
ordered as follows,

EXERCISE: | Prove the theorem in the particular case of two states by using Theophilou’s
variational principle: (¥ |H| W) + (Uy|H|¥s) > Ey + Ey.  Hint: Show that

wi (1 [ W1) + wo (Vo | H|W2) = wo | (W1 A W1) + (Wa| H|W2)| + (w1 — wo) (1 |H]91)




EXERCISE: | Proof of Theophilou’s variational principle for two states

(1) Let A = (U1 |H|W¥1) + (Uo|H| W) — E1 — Eo. We consider the complete basis of the exact

eigenvectors {\~If I} of H with eigenvalues { F1} I=12..

I1=1,2,...
Both trial wavefunctions can be expanded in that basis as follows,

Vi) =) Ckil¥r), K=1,2.
I

2
Show that A = Z(pI —DE; + ZPIEI where p; = C%I + CSI.
I=1 I>2

2
(2) Show that A = Z(l —pr)(E2 — Er) + ZPI(EI — F2).  Hint: prove first that ij = 2.
I=1 I1>2 1

(3) Let us now decompose the two first eigenvectors (I = 1, 2) in the basis of the trial wavefunctions and

the orthogonal complement:  |U;) = C17|¥1) + Cor|¥2) + Q12|¥;)  where

2
Qra=1-— Z W) (U] Explainwhy pr<1 when [=1,2 and conclude.
K=1




Multi-state MCSCF approach

N
State-averaged energy: E(k,S) = Z wr (U7 (k, S)|H|¥(k,S))
=1

where wy are arbitrary weights. In the so-called "equal weight" state-averaged MCSCF calculation
1

wr — ﬁ
OE(k,S) O0FE(k,S) 0
ox  8S

Variational optimization:

Note that, in contrast to the exact theory, converged individual energies (and therefore excitation
energies) may vary with the weights. This is due to the orbital optimization.

Short-range dynamical correlation is usually recovered with multi-reference perturbation theory
(multi-state CASPT2 or NEVPT2 for example) or multi-reference CI.




