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Notations

• Molecular orbitals: φp(r) =
∑
µ

Cµp χµ(r) 〈φp|φq〉 = δpq

• Non-orthogonal set of atomic orbitals (Gaussian functions): 〈χµ|χν〉 = Sµν

• Hamiltonian in second quantization:

Ĥ =
∑
p,q

hpqÊpq +
1

2

∑
p,q,r,s

〈pr|qs〉
(
ÊpqÊrs − δqrÊps

)

where hpq =

∫
dr φp(r)

[
−

1

2
∇2

r + vne(r)
]
φq(r)

and 〈pr|qs〉 =

∫ ∫
dr1dr2 φp(r1)φr(r2)

1

|r1 − r2|
φq(r1)φs(r2) = (pq|rs)
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Variational and non-variational approximations

• The exact electronic ground state Ψ0 and its energy E0 can be obtained two ways:

E0 = min
Ψ

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

=
〈Ψ0|Ĥ|Ψ0〉
〈Ψ0|Ψ0〉

Ĥ|Ψ0〉 = E0|Ψ0〉

• Approximate parametrized ground-state wave function: Ψ(λ0)

where λ0 denotes the complete set of optimized parameters.

Variational calculation Non-variational calculation

∂

∂λ

〈Ψ(λ)|Ĥ|Ψ(λ)〉
〈Ψ(λ)|Ψ(λ)〉

∣∣∣∣∣
λ=λ0

= 0 Ĥ|Ψ(λ)〉 − E(λ)|Ψ(λ)〉 = 0 for λ = λ0

↓ ↓

Hartree-Fock (HF) Many-Body Perturbation Theory (MBPT)
Configuration Interaction (CI) Coupled Cluster (CC)
Multi-Configurational Self-Consistent Field (MCSCF)
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Multi-configurational self-consistent field

Spin-orbital rotation

• Let {ϕP }P denote an orthonormal basis of spin-orbitals and {ϕ̃P }P another orthonormal basis
obtained by unitary transformation:

|ϕ̃P 〉 =
∑
Q

UQP |ϕQ〉

• U can be written as U = e−κ with κ† = −κ ← U† =
(
e−κ

)†
= e−κ†

= eκ = U−1

• κPQ can be used rather than UPQ for parametrizing the spin-orbital rotation

EX1: Using EX2, show that in second quantization the unitary transformation can be simply written as

â†
P̃

=
∑
Q

(
e−κ

)
QP

â†Q = e−κ̂ â†P eκ̂ = â†
P̃

where κ̂ =
∑
PQ

κPQ â†P âQ
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Spin-orbital rotation

• Note that the rotation operator κ̂ is anti-Hermitian:

κ̂† =
∑
PQ

κ∗PQ â†QâP =
∑
PQ

κ†QP â†QâP = −
∑
PQ

κQP â†QâP = −κ̂

• Unitary transformation for a N -electron Slater determinant:

|P̃1P̃2 . . . P̃N 〉 = â†
P̃1
â†
P̃2
. . . â†

P̃N
|vac〉 = e−κ̂â†P1

eκ̂e−κ̂â†P2
eκ̂ . . . e−κ̂â†PN

eκ̂|vac〉

= e−κ̂â†P1
â†P2

. . . â†PN
eκ̂|vac〉︸ ︷︷ ︸
|vac〉

|P̃1P̃2 . . . P̃N 〉 = e−κ̂ |P1P2 . . . PN 〉
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Spin-restricted orbital rotation

• In a restricted formalism the same set of orbitals is used for α and β spins:

κ̂ =
∑
PQ

κPQ â†P âQ =
∑
pq

∑
σσ′

κp,σq,σ′︸ ︷︷ ︸ â†p,σ âq,σ′ =
∑
pq

κpqÊpq

κpqδσσ′

• Since κpq = −κqp (real algebra)

κ̂ =
∑
p>q

κpqÊpq −
∑
p<q

κqpÊpq

κ̂ =
∑
p>q

κpq
(
Êpq − Êqp

)
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Hartree-Fock approximation

• For simplicity we consider here the particular case of a non-degenerate singlet closed-shell ground
state

• The HF method consists then in approximating the exact wave function Ψ0 by a single Slater
determinant Φ0. The orbital space is thus divided in two:

doubly occupied molecular orbitals φi, φj , . . . unoccupied molecular orbitals φa, φb, . . .

|Φ0〉 =

occ.∏
i

∏
σ=α,β

â†i,σ |vac〉

• The initial set of molecular orbitals is usually not optimized→ the optimized HF molecular orbitals
will be obtained by means of unitary transformations (orbital rotation)
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Hartree-Fock approximation

• Exponential parametrization: |Φ(κ)〉 = e−κ̂ |Φ0〉 with κ̂ =
∑
p>q

κpq
(
Êpq − Êqp

)

κ =


...

κpq
...


p>q

denotes the column vector containing all the parameters to be optimized

• occupied-occupied and unoccupied-unoccupied rotations:

κ̂ =
∑
i>j

κij

(
Êij − Êji

)
︸ ︷︷ ︸

+
∑
i,a

κai

(
Êai − Êia

)
+
∑
a>b

κab

(
Êab − Êba

)
︸ ︷︷ ︸

κ̂occ. κ̂unocc.

κ̂occ.|Φ0〉 = κ̂unocc.|Φ0〉 = 0→ only occupied-unoccupied rotations will be optimized→ κ =


...

κai
...
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Hartree-Fock approximation
• Hartree-Fock energy expression:

E(κ) =
〈Φ(κ)|Ĥ|Φ(κ)〉
〈Φ(κ)|Φ(κ)〉

=
〈Φ0|e−κ̂

†
Ĥ e−κ̂|Φ0〉

〈Φ0|e−κ̂† e−κ̂|Φ0〉
= 〈Φ0|eκ̂Ĥe−κ̂|Φ0〉 = E(κ)

• Variational optimization of κ: E
[1]
κ+

=
∂E(κ)

∂κ

∣∣∣∣
κ+

= 0

• Iterative procedure (Newton method):

E(κ) ≈ E(0) + κTE
[1]
0 +

1

2
κTE

[2]
0 κ → E

[1]
κ+
≈ E[1]

0 + E
[2]
0 κ+ = 0 → E

[2]
0 κ+︸︷︷︸ = −E[1]

0

Newton step• Update the HF determinant: Φ0 ← Φ(κ+)

• HF calculation converged when E
[1]
0 = 0
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Analytical gradient and Hessian in Hartree-Fock

EX2: By using the relation e−λÂ B̂ eλÂ = B̂ +

∫ λ

0
dξ

d

dξ

(
e−ξÂ B̂ eξÂ

)
, which holds for any λ and

any B̂ operator, prove the Baker-Campbell-Hausdorff (BCH) expansion:

e−Â B̂ eÂ = B̂ +

+∞∑
n=1

1

n!
JB̂, ÂKn JB̂, ÂKn+1 = [JB̂, ÂKn, Â], JB̂, ÂK1 = [B̂, Â]

= B̂ + [B̂, Â] +
1

2
[[B̂, Â], Â] + . . .

• Analytical formulas for the gradient and the hessian:

E(κ) = E(0) + 〈Φ0|[κ̂, Ĥ]|Φ0〉︸ ︷︷ ︸+
1

2
〈Φ0|[κ̂, [κ̂, Ĥ]]|Φ0〉+ . . .

∑
ai

κai〈Φ0|[Êai − Êia, Ĥ]|Φ0〉 → E
[1]
0,ai = 〈Φ0|[Êai − Êia, Ĥ]|Φ0〉

= −2〈Φ0|ĤÊai|Φ0〉 = 0 (Brillouin theorem)
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Short-range dynamical correlation

HOMO

LUMO

2

HOMO

LUMO

2

HOMO

LUMO

2

Ground-state configuration singly-excited conf. doubly-excited conf.
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Static correlation

HOMO

LUMO

2

HOMO
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2
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2

June 2017 ISTPC 2017, Aussois, France Page 14



Multi-configurational self-consistent field

Static correlation
• H2 in the equilibrium geometry:

|Ψ0〉 = C0|1σαg 1σβg 〉+ . . . where |C0|2 = 98% no static correlation

• In the dissociation limit: HA. . . HB and NOT H−A . . . H+
B or H+

A. . . H−B

φ1σg (r) =
1
√

2

(
φ1sA (r) + φ1sB (r)

)
and φ1σu (r) =

1
√

2

(
φ1sA (r)− φ1sB (r)

)
|1σαg 1σβg 〉 =

1

2

(
|1sαA1sβB〉+ |1sαB1sβA〉+|1s

α
A1sβA〉+ |1sαB1sβB〉

)
−|1σαu1σβu〉 =

1

2

(
|1sαA1sβB〉+ |1sαB1sβA〉−|1s

α
A1sβA〉 − |1s

α
B1sβB〉

)

|Ψ0〉 =
1
√

2

(
|1σαg 1σβg 〉 − |1σαu1σβu〉

)
strong static correlation
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Multi-Configurational Self-Consistent Field model (MCSCF)

• The MCSCF model consists in performing a CI calculation with a reoptimization of the orbitals

|Ψ(κ,C)〉 = e−κ̂
(∑

ξ

Cξ|detξ〉
)

• The MCSCF model is a multiconfigurational extension of HF which aims at describing static
correlation: a limited number of determinants should be sufficient.

• Short-range dynamical correlation is treated afterwards (post-MCSCF models)

• Choice of the determinants: active space

H. . .H 2 electrons in 2 orbitals (1σg , 1σu) −→ 2/2

Be 2 electrons in 4 orbitals (2s, 2px, 2py , 2pz) −→ 2/4
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Multi-Configurational Self-Consistent Field model (MCSCF)

• Complete Active Space (CAS) for Be: |1s22s2〉, |1s22p2
x〉, |1s22p2

y〉, |1s22p2
z〉,

if all the determinants are included in the MCSCF calculation −→ CASSCF

if a Restricted Active Space (RAS) is used −→ RASSCF

• The orbital space is now divided in three:

doubly occupied molecular orbitals (inactive) φi, φj , . . . 1s

active molecular orbitals φu, φv , . . . 2s, 2px, 2py , 2pz

unoccupied molecular orbitals φa, φb, . . . 3s, 3p, 3d, . . .
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i, j, . . .

u, v, . . .

a, b, . . .

2
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↑
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• Iterative optimization of the orbital rotation vector κ and the CI coefficients Ci:

|Ψ(0)〉 =
∑
i

C
(0)
i |i〉 ←− normalized starting wave function

|Ψ(λ)〉 = e−κ̂
|Ψ(0)〉+ Q̂|δ〉√

1 + 〈δ|Q̂|δ〉
←− convenient parametrization λ =



...

κpq
...

δi
...


p > q

Q̂ = 1− |Ψ(0)〉〈Ψ(0)|, |δ〉 =
∑
i

δi|i〉, 〈Ψ(0)|Q̂|δ〉 = 0, 〈Ψ(λ)|Ψ(λ)〉 = 1

• MCSCF energy expression: E(λ) = 〈Ψ(λ)|Ĥ|Ψ(λ)〉

• Variational optimization: E
[1]
λ+

=

Eo[1]
λ+

E
c[1]
λ+

 = 0 where E
o[1]
λ+

=
∂E(λ)

∂κ

∣∣∣∣
λ+

and Ec[1]
λ+

=
∂E(λ)

∂δ

∣∣∣∣
λ+
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• Newton method:

E(λ) ≈ E(0) + λTE
[1]
0 +

1

2
λTE

[2]
0 λ → E

[1]
λ+
≈ E[1]

0 + E
[2]
0 λ+ = 0 → E

[2]
0 λ+︸︷︷︸ = −E[1]

0

Newton step

• Convergence reached when E[1]
0 = 0

EX7: Show that E
o[1]
0,pq = 〈Ψ(0)|[Êpq − Êqp, Ĥ]|Ψ(0)〉 and E

c[1]
0 = 2

(
HCAS − E(0)

)
C(0)

where HCAS
ij = 〈i|Ĥ|j〉 and C(0) =


...

C
(0)
i

...



Note: E
o[1]
0 = 0 is known as generalized Brillouin theorem.
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Multi-state MCSCF approach

• State-averaged MCSCF model: simultaneous optimization of the ground and the lowest N − 1

excited states at the MCSCF level.

• Iterative procedure: N initial orthonormal states are built from the same set of orbitals.

|Ψ(0)
I 〉 =

∑
i

C
(0)
I,i |i〉, I = 1, . . . ,N

• Double-exponential parametrization:

|ΨI(κ,S)〉 = e−κ̂ e−Ŝ |Ψ(0)
I 〉 where Ŝ =

N∑
J=1

∑
K>J

SKJ

(
|Ψ(0)
K 〉〈Ψ

(0)
J | − |Ψ

(0)
J 〉〈Ψ

(0)
K |
)

and
∑
i

|i〉〈i| =
∑
K

|Ψ(0)
K 〉〈Ψ

(0)
K |
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Multi-state MCSCF approach

• Gross–Oliveira–Kohn (GOK) variational principle for an ensemble of ground and excited states:

For any set {ΨI}I=1,N ofN orthonormal states, the following inequality holds,

N∑
I=1

wI〈ΨI |Ĥ|ΨI〉 ≥
N∑
I=1

wIEI

where E1 ≤ E2 ≤ . . . ≤ EN are theN lowest exact eigenvalues of Ĥ , and the weights are
ordered as follows,

w1 ≥ w2 ≥ . . . ≥ wN > 0.

EXERCISE: Prove the theorem in the particular case of two states by using Theophilou’s
variational principle: 〈Ψ1|Ĥ|Ψ1〉+ 〈Ψ2|Ĥ|Ψ2〉 ≥ E1 + E2. Hint: Show that

w1〈Ψ1|Ĥ|Ψ1〉+ w2〈Ψ2|Ĥ|Ψ2〉 = w2

[
〈Ψ1|Ĥ|Ψ1〉+ 〈Ψ2|Ĥ|Ψ2〉

]
+ (w1 − w2)〈Ψ1|Ĥ|Ψ1〉
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EXERCISE: Proof of Theophilou’s variational principle for two states

(1) Let ∆ = 〈Ψ1|Ĥ|Ψ1〉+ 〈Ψ2|Ĥ|Ψ2〉 − E1 − E2. We consider the complete basis of the exact

eigenvectors
{

Ψ̃I

}
I=1,2,...

of Ĥ with eigenvalues {EI}I=1,2,...

Both trial wavefunctions can be expanded in that basis as follows,

|ΨK〉 =
∑
I

CKI |Ψ̃I〉, K = 1, 2.

Show that ∆ =
2∑
I=1

(pI − 1)EI +
∑
I>2

pIEI where pI = C2
1I + C2

2I .

(2) Show that ∆ =

2∑
I=1

(1− pI)(E2 − EI) +
∑
I>2

pI(EI − E2). Hint: prove first that
∑
I

pI = 2.

(3) Let us now decompose the two first eigenvectors (I = 1, 2) in the basis of the trial wavefunctions and

the orthogonal complement: |Ψ̃I〉 = C1I |Ψ1〉+ C2I |Ψ2〉+ Q̂12|Ψ̃I〉 where

Q̂12 = 1−
2∑

K=1

|ΨK〉〈ΨK |. Explain why pI ≤ 1 when I = 1, 2 and conclude.
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Multi-state MCSCF approach

• State-averaged energy: E(κ,S) =

N∑
I=1

wI 〈ΨI(κ,S)|Ĥ|ΨI(κ,S)〉

where wI are arbitrary weights. In the so-called "equal weight" state-averaged MCSCF calculation

wI =
1

N
.

• Variational optimization:
∂E(κ,S)

∂κ
=
∂E(κ,S)

∂S
= 0

• Note that, in contrast to the exact theory, converged individual energies (and therefore excitation
energies) may vary with the weights. This is due to the orbital optimization.

• Short-range dynamical correlation is usually recovered with multi-reference perturbation theory
(multi-state CASPT2 or NEVPT2 for example) or multi-reference CI.
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