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Variational and non-variational approximations

e The exact electronic ground state ¥ and its energy Eg can be obtained two ways:

Ey = min ZHIT)_ (Yol H[To) H|Vo) = Eo[¥o)
v () (Wo|¥o)

Approximate parametrized ground-state wave function: W (Xg)

where Ag denotes the complete set of optimized parameters.

Variational calculation Non-variational calculation

0 (T(N)|H|T(N))

Ox (T(N)[¥(N)) A[W(A) — EQ)[W(A) =0 for A = Ag

A=Xo
d d

Hartree-Fock (HF) Many-Body Perturbation Theory (MBPT)
Configuration Interaction (CI) Coupled Cluster (CC)
Multi-Configurational Self-Consistent Field (MCSCF)
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Configuration Interaction method (CI)

Expansion of the wave function in the basis of determinants based on the canonical doubly-occupied
and unoccupied (virtual) HF orbitals.

These determinants are obtained when applying single, double, triple, quadruple, ... excitations to
the HF determinant ®g.

[U(C)) = Col®o) + > _CslS)+> CplDy+> Cr|T)+> CqlQ)+...=>_ Cili)
S D T Q i

If no truncation in the CI expansion (all excitations included) — Full CI (FCI) — exact for a given
one-electron basis set.

Truncated CI models: CIS, CISD, CISDT, CISDTQ), ...
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H, in a minimal basis

Bonding and antibonding orbitals in the minimal 1s orbital basis:

1

_ L =
V2

S0y (1) = = (0104 (1) + 0105 (1) and  Gu, (1) =

(6154 (1) = d155(r))

The Hamiltonian matrix for Ha can be written in the basis of the two single-determinantal states

\103‘105) and |1 105) as follows,

o
[H]| = ,  where

for i=g,u, F;=2hy;+ (loylo;|losloy), hiy = (loglhlloy), K = (loylou|logloy).
E, corresponds to the HF energy in the minimal basis.

1 K
Let A = 5 (Eu — Eg) . The ratio N gives the strength of the electron correlation.

U K U
The symmetric Hubbard dimer model is recovered when A = 2¢ and K = 5 — NS
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Size-consistency problem in truncated CI calculations

Size-consistency property of a method: multiplicatively separable wave function and additively
separable energy that is E(14+2)=E(1)+ E(2)

where 1 and 2 denote two non-interacting monomers (H = H, + H>).

Example: Ho dimer in a minimal basis set.
For the monomer I (I = 1, 2), the 104 and 10, orbitals only are considered.

Ground-state HF determinant for the monomer: |®q (1))

size-consistent !
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Size-consistency problem in truncated CI calculations
e CID corresponds to FCI for the monomer:
WO (1)) = (14 Dy ) @0 (1))

A . . . . L
where D = g, a0, p000,7,8010,7,0 — double excitation on monomer 1

K 2A

HCP () — Byp(I) = [O K] — EC™D () = Eugp(I) + A — VA2 + K2

e CIDis not FCI for the dimer:  |UCIP(1 4 2)) = (1 +eDy + cf)Q) Do (1 +2))

WFCL(1 4 2)) = (1 +eDy +chy + cmﬁlf)g) Do (1 + 2))
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Size-consistency problem in truncated CI calculations

EX5: | Show that, for the dimer,

(i) the CID Hamiltonian matrix equals HC™P(142) — Egrp(1+2) =

(ii) the FCI Hamiltonian matrix equals HFCY(1 4+ 2) — Egp(1 +2) =

(iii) CID is not size-consistent since

ECID(1 4 2) = Eup(14+2) + A — VA2 4 2K2 + ECID(1) 4 ECID(9)

(iv) FCI is size-consistent and c1> = c?
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Size-consistency problem in truncated CI calculations

o EFCI(1+2)_ECID(1+2):A<1—|—\/14—2(%)2_2\/1-!- (%)2)
~s(-5(3)

e FCI wave function written as a Coupled-Cluster wave function (exponential ansatz):

WFCL(1 4 2)) = (1 +eDy +chy + c2f)1f72> Do (1 + 2))

_ (1 + c[)1) (1 + cbg) B0 (14 2)) = e“P1eeP2|Dy (1 + 2))

[WFCH(1 + 2)) = eeP1HeD2 P (1 + 2))

CCD generates quadruple excitations, by means of the exponential, as products of double excitations
and thus ensures size-consistency !
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Coupled-Cluster theory (CC)

e Note that the exponential used in CC enables to describe not only orbital rotations (single

excitations) but also electron correlation.

e Exponential ansatz in the general case: | |¥(t)) = e7Ad|<I>0> where

%:Ztsg—FZtl)D—FZtTf—FZtQQA‘F :Ztﬁﬂzﬂ
S D T Q i

7| Po) = |u) +— excited determinant

tu +— CC amplitudes to be optimized

e Truncated and approximate CC models: CCSD, CCSDT, CCSDTQ, CCSD(T), CC2, ...
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Coupled-Cluster theory (CC)

Variational optimization of the CC amplitudes not convenient

(T HT(E))  (DoleT " HeT |®o)

— . , N
(T(t)|T(t)) (@ |€7-T e¢|¢0> the BCH expansion cannot be used (7" # —7)

Non-variational optimization: ~ H|¥(t)) = E(t)|¥(t)) — I—AIe;r|<I>0> = E(t)e;r|<I>0>
"Linked" formulation: e_%ﬁe%@o) = E(t)|®o)

CC energy: E(t) = (Bole~T HeT |@g) = (@o|He |D0)

E(t) = <<I>o|H<1+ZtDD+ (ZtsS) )I%

CC amplitudes: (,u|e_7A'I§I e;r|<1>0) = 0 <— the BCH expansion can be used (no terms beyond
fourth order!)
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Example of approximate CC theory: the closed-shell CCSD model

o Leti,j,k,...and a,b,c, ... denote doubly occupied and virtual (unoccupied) orbitals in the HF
determinant, respectively.

The CCSD model is an approximate version of CC theory where single and double excitations only
are taken into account in the excitation operator 7

7'—>7'CCSD=7E+7'2,

< single excitations

< double excitations

b _ 1b : n n —
and ¢ = t7, since [Eq;, Ey;] = 0.
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CC energy expression

e As shown previously, the CC energy can be written as follows,

1 .
Eoc = Bup + 5 ) (t%b + tgtg’-) (0| H Eqi By |®0),
abij

where  (®o|H Eqi Eyj|Po) = (Pol[H, Eail Ebj|Po) = (Pol[[H, Eail, Eyj]|®o),
since (<I>0|EAM- = (EMCI)0| =0= (<I>O|Ebj.

e From the second-quantized expression of the Hamiltonian,

N N 1 A
H = E hpgEpg + ) E - (prigs) (quETS - 5q7°EpS)>
P.q P,q,7,S

it can be shown (see exercise page 19) that

(®ol[[H, Easl, Eu;)|®0) = 2(2(ijlab) — (ijlba) ) |
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CC energy expression

Therefore, the final expression for the CC energy in terms of the singles and doubles CC amplitudes
is

Boc = Bur + > (#4) + 104 ) (2(ijlab) — (ijlba) ).
abij

Note that this expression is "exact" (i.e., corresponds to the Full CI energy) if exact amplitudes are
used.

The CCSD energy will be approximate because the amplitudes will be approximate. Indeed, they
will be determined in the absence of higher-order excitation amplitudes.

The energy is linear in the doubles amplitudes tfjb and quadratic in the singles amplitudes ¢¢.

As long as electron correlation is not too strong, we can expect the doubles to contribute the most to
the CC energy (in agreement with MP2).

Large singles amplitudes indicate a need for orbital reoptimization (7% diagnostic). This can happen
when electron correlation is strong.

Returning to the weakly correlated regime, let us ignore (as it could be the case in the first iteration
of a CC calculation) the singles amplitudes, thus leading to the CCD model.
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CCD amplitudes

e The CCD energy reads

Eccp = Bur + > t4] (2(ijlab) — (ijlba)).
abij

e The doubles amplitudes tfjb will be determined by projecting the CC equation in the linked
formulation onto the doubly-excited states ’CI);‘Jb> = FEg4; E’bj |Po):

(@eleT2heT @) =0

where e T ieT = [+ [1,7] + - [[,72] . 7] +% [[a.%] %] .72 + ..

\ 7
Ve

1
2

creates sextuple and higher-order excitations than can be reduced to quadruple and higher-order
excitations thanks to H — does not contribute to the CCD amplitudes equations !
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Consequently, the CCD amplitudes equations can be simplified as follows,

(ot s 7] + 3 [ 2] o) <o

In a weakly correlated regime, one may only keep the linear term in 73, thus leading to

(o + 11,72 |c1>0> ~ 0.

From the Moller-Plesset (MP) partitioning H = f + W, where f = Z €; EA“- + Z saEaa is the
) a

Fock operator (written here in the canonical HF orbital basis), it comes

<<I>ab W+ [ ] + [WB} |<I>0> ~ 0.

where we used f|®g) = 2 ( > 57;) |Pg).
75 is at least a first-order (linear) contribution in V. If we keep linear terms in ) only we obtain

<<1>ab W+ [fTQ] (cbo> ~ 0.
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e Note that (see page 13)
<<1>gf W‘q>0> - <c1>gf ﬁ]<1>0> — <c1>0‘ﬁ1 c1>g;?> - <<I>o|ﬁEaiEbj‘<I>o> - 2(2(z'j|ab> - <z’j|ba>),
so that the simplified CCD amplitudes equations read
(@32|[f,72] @0 ) ~ —2(2(ijlab) — (ijlba)).
e The term on the left-hand side can be rewritten in terms of nested commutators as follows,
<¢?Jb [f, 7'2] |(1>0> <¢0)Ejbf‘7m [f, 75] ‘¢0>

— <<I>0’Ejb Hfji] ,Eia] CI>0>

(30| [[[573) £ B ] o)

e By using the exercise page 19, it can finally be shown that

<<I>§ij [f, 7-2] ’<D0> = (sa +ep — € — sj) (415?;’ — Qt%’) .
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e Therefore, for any ¢, j,a,b we have (through first order in the fluctuation potential)

2(2(z'j|ab> . (ij\ba>)
4120 — 9¢al :
J Tt Ei +E€j —Ea — Ep

and, by interchanging ¢ and 7,

2(2(z'j|ba> . <7;j\ab>)

i +€j —Ea — €p

b b
490 — 2t

e Conclusion:

(ig]ab)
€ +€j —Ea — €p

1
(475?}’ — 2t§§) + 2 (4t;‘§ — Qt%b) =|t3 =

1
3

(ijlab) (2(ijlab) — (ijlba))

€ +€j —Ea — €p

Eccp =~ Eur + = Envpo !

abij
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Ar, (aug—cc—pVQZ)

~—~~
I
3
N
>
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c
(b)
c
Q
i
O
©
S
Q
')
c

Reference (Tang etal.) ——
HF ——
MP2
] ] ] CCSID(T) ]

9 10 11 12 13 14
Interatomic distance (a.u.)
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EXERCISE:

q,0’

() Deduce from (1) that ~ |a}, ,a
that

[qu

(3) Let épgrs =D - d;,a&l,Tds,qu,g = EpqFrs — 0grEps.  Show from (2) that

[Emrm épqrs] — pnémqrs - 5mqépnrs + 5rnépqms - 5msépqrn .

(4) Let DHF — <@O|qu(c1>o> and DHE = (®g|épqrs|®o).

Explain why both matrix elements are equal to zero if one of the orbitals p, ¢, r or s is a virtual one.

(5) Show that, in the occupied orbital space, DHF = 2§;; and ngkl 460k — 20,5041

(6) Prove the equalities in boxes on pages 13 and 17.
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