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Do we actually need the N-electron wavefunction ?

The exact ground-state energy of an electronic system can be obtained
variationally, E0 = min

Ψ
〈Ψ|Ĥ|Ψ〉, or by solving the Schrödinger equation,

Ĥ|Ψ0〉 = E0|Ψ0〉.

In both formulations (variational or non-variational), the basic variable is the
electronic wavefunction Ψ.

The expression of the electronic Hamiltonian (which only contains one- and
two-body terms) and the fact that electrons are indistinguishable (fermionic)
particles greatly simplifies the energy expression.

In the ”r representation” (real space):

Ĥ = −1

2

∫ ∫
drdr′ δ(r − r′)∇2

r′ n̂1(r, r′) +
1

2

∫ ∫
drdr′

n̂2(r, r′)

|r − r′| +

∫
dr vne(r) n̂(r)

where
n̂1(r, r′) =

∑
σ

Ψ̂†(rσ)Ψ̂(r′σ)

n̂(r) = n̂1(r, r)

n̂2(r, r′) =
∑
σσ′

Ψ̂†(rσ)Ψ̂†(r′σ′)Ψ̂(r′σ′)Ψ̂(rσ)
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Do we actually need the N-electron wavefunction ?
As readily seen, the expectation value for the energy 〈Ψ|Ĥ|Ψ〉 is an explicit
functional of the one-electron density matrix

nΨ
1 (r, r′) = 〈Ψ|n̂1(r, r′)|Ψ〉

and the pair density

nΨ
2 (r, r′) = 〈Ψ|n̂2(r, r′)|Ψ〉.

Note that both quantities are needed. In other words, the one-electron density
matrix cannot be obtained from the pair density.

If we want to use a single quantity, then we need to consider the more general
3-position function nΨ

2 (r, r′, r′′) = 〈Ψ|n̂2(r, r′, r′′)|Ψ〉 where

n̂2(r, r′, r′′) =
∑
σσ′

Ψ̂†(rσ)Ψ̂†(r′σ′)Ψ̂(r′σ′)Ψ̂(r′′σ)

= n̂1(r, r′′)n̂(r′)− δ(r′ − r′′)n̂1(r, r′),

thus leading to

∫
dr′ nΨ

2 (r, r′, r′′) = (N − 1)× nΨ
1 (r, r′′) since∫

dr′ n̂(r′)|Ψ〉 = N|Ψ〉. Moreover nΨ
2 (r, r′) = nΨ

2 (r, r′, r) .
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Do we actually need the N-electron wavefunction ?

Let us return to our main result: the exact ground-state (or excited-state) energy
can be determined from two 2-position functions, namely the one-electron density
matrix and the pair density.

Regarding the two-electron interaction contribution, note that we could even use a
function of the electron-electron distance (intracule density) rather than the pair
density.

Most importantly, in principle, we do not need the N-electron ground-state
(anti-symmetrized and normalized) wavefunction

Ψ0(r1σ1, r2σ2, . . ., rNσN)

for calculating the ground-state energy. What we need are nΨ0
1 (r, r′) and nΨ0

2 (r, r′).

As readily seen, these two quantities depend on two electron positions whatever
the number of electrons. Obviously, some information is ”lost” when switching
from Ψ0 to nΨ0

1 (r, r′) and nΨ0
2 (r, r′), hence the name reduced quantities.
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Do we actually need the N-electron wavefunction ?

The ”reduction” becomes more apparent when writing the normalized
ground-state quantum state as

|Ψ0〉 =
1√
N!

∑
σ1...σN

∫
dr1 . . .

∫
drN Ψ0(r1σ1, . . ., rNσN)Ψ̂†(r1σ1) . . . Ψ̂†(rNσN)|vac〉,

thus leading to, for the one-electron density matrix,

nΨ0
1 (r, r′) =

∑
σ

〈
Ψ0

∣∣∣Ψ̂†(rσ)Ψ̂(r′σ)
∣∣∣Ψ0

〉
= N

∑
σ

∑
σ2...σN

∫
dr2 . . .

∫
drN Ψ∗0 (rσ, r2σ2. . ., rNσN)Ψ0(r′σ, r2σ2, . . ., rNσN),

and, for the pair density,

nΨ0
2 (r, r′) =

∑
σσ′

〈
Ψ0

∣∣∣Ψ̂†(rσ)Ψ̂†(r′σ′)Ψ̂(r′σ′)Ψ̂(rσ)
∣∣∣Ψ0

〉
= N(N − 1)

∑
σσ′

∑
σ3...σN

∫
dr3 . . .

∫
drN

∣∣Ψ0(rσ, r′σ′, r3σ3. . ., rNσN)
∣∣2.
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Do we actually need the N-electron wavefunction ?

Let us stress that, once again, if the one-electron density matrix and the pair
density are used as basic variables, the energy functional is known and its explicit
expression is

E [n1, n2] = −1

2

∫ ∫
drdr′ δ(r − r′)∇2

r′n1(r, r′) +
1

2

∫ ∫
drdr′

n2(r, r′)

|r − r′|

+

∫
dr vne(r) n1(r, r).

Note that, by differentiating the energy with respect to some perturbation strength
(nuclear displacement, electric or magnetic field, ...), one can in principle have
access to (static) molecular response properties.

An important question should be raised at this point: is it possible to calculate the
energy variationally (i.e. by straight minimization) from the energy functional ?

Obviously, if there are no constraint on n1 and n2, the answer is NO !

Indeed, by considering the particular case n1(r, r′) = 0 and n2(r, r′)→ −∞, we

obtain min
n1,n2

E [n1, n2] = −∞ .

This case is unphysical. The minimization should be performed under constraint.
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N-representability conditions
If we want to recover the true ground-state energy E0 from the energy functional
E [n1, n2] we must restrict the minimization to physical (so-called N-representable)
one-electron density matrices and pair densities.

A one-electron density matrix n1 and a pair density n2 are N-representable if there
exists an N-electron (anti-symmetrized and normalized) wavefunction Ψ (with
finite kinetic energy) such that

n1(r, r′) = nΨ
1 (r, r′) = 〈Ψ|n̂1(r, r′)|Ψ〉,

n2(r, r′) = nΨ
2 (r, r′) = 〈Ψ|n̂2(r, r′)|Ψ〉.

Variational principle under N-representability constraints:

E0 = min
Ψ
〈Ψ|Ĥ|Ψ〉

= min
Ψ

E [nΨ
1 , n

Ψ
2 ].

Basic N-representability conditions: nΨ
1 (r, r) (electron density) and the pair density

are positive functions and they integrate to N and N(N − 1), respectively:∫
dr nΨ

1 (r, r) = N,

∫ ∫
drdr′ nΨ

2 (r, r′) = N(N − 1).
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Explicit and implicit dependence on the electron density

Density-functional theory (DFT) is using the electron density nΨ(r) = nΨ
1 (r, r) as

basic variable without actually knowing the N-electron wavefunction Ψ.

It can be shown that the set of N-representable densities is the set of positive
functions n(r) that integrate to the number of electrons N and that give a finite
von Weizsäcker kinetic energy∗:

1

2

∫
dr
∣∣∣∇n1/2(r)

∣∣∣2 < +∞.

Even though the domain of ”physical densities” is well identified (which is good),
both kinetic and electronic repulsion energies are implicit functionals of the density
(which is bad).

The Hohenberg–Kohn variational principle for the Hamiltonian
Ĥ[v ] = T̂ + Ŵee +

∫
dr v(r)n̂(r) with ground-state energy E [v ] reads

E [v ] = min
n

{
F [n] +

∫
dr v(r)n(r)

}
⇔ F [n] = max

v

{
E [v ]−

∫
dr v(r)n(r)

}
.

∗ Principles of DFT, lecture given by Trygve Helgaker at the GDR Correl mini-school on mathematics in electronic structure

theory, Paris, January 2017.

Emmanuel Fromager (UdS) ISTPC 2017, Aussois, France June 2017 8 / 25



One-electron density-matrix functional theory

What about using the one-electron density matrix as basic variable ?

By expanding the field operators in an orthonormal orbital basis (and using real
algebra) we obtain within a spin-restricted formalism

nΨ
1 (r, r′) =

∑
pq

φp(r)φq(r′)
〈

Ψ
∣∣∣Êpq

∣∣∣Ψ〉︸ ︷︷ ︸
orbital basis representation → DΨ

pq =
∑
σ

〈
Ψ
∣∣â†pσ âqσ∣∣Ψ〉 =

∑
σ D

pσ
qσ .

DΨ is hermitian. It can therefore be diagonalized, in the so-called natural orbital

basis
{
φ̃p(r)

}
p
, thus leading to

nΨ
1 (r, r′) =

∑
p

φ̃p(r)φ̃p(r′)ñp where 0 ≤ ñp ≤ 2.

N-representable one-electron density matrices can therefore be parametrized in
terms of natural orbitals and occupation numbers (both have to be determined).
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Explicit functionals versus clear representability conditions

In one-electron reduced density-matrix functional theory (or natural orbital
functional theory if the previous parameterization is used), both exact kinetic and
nuclear potential energy functionals are known (explicitly).

The electronic repulsion energy remains an implicit functional of the one-electron
reduced density matrix (1-RDM) for which approximations must be developed.

Finally, we could use the two-electron reduced density matrix (2-RDM) as basic
variable. Its representation in an orthonormal orbital basis is

DΨ
pqrs =

〈
Ψ
∣∣∣ÊpqÊrs − δqr Êps

∣∣∣Ψ〉 =
∑
σσ′

〈
Ψ
∣∣∣â†pσ â†rσ′ âsσ′ âqσ∣∣∣Ψ〉 =

∑
σσ′

Dpσrσ′

qσsσ′ .

Since
〈

Ψ
∣∣∣Ĥ∣∣∣Ψ〉 =

∑
pq hpqD

Ψ
pq +

1

2

∑
pqrs〈pr |qs〉D

Ψ
pqrs where∑

r

DΨ
pqrr = (N − 1)DΨ

pq it comes that the total energy is an explicit functional

of the 2-RDM. The challenge is then to identify N-representability conditions for
the latter, which is far from trivial.

Conclusion: A given reduced quantity will lead either to an explicit energy
functional (2-RDM theory) or well-defined N-representability conditions (DFT) but
never both at the same time :-(
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Representability and higher-order reduced density matrices

Ground-state p-electron reduced density matrix (p-RDM) elements in a given
orthonormal spin-orbital basis (1 ≤ p ≤ N):

D
J1J2...Jp
I1I2...Ip

=
〈

Ψ0

∣∣∣â†J1
â†J2

. . . â†Jp âIp . . . âI2 âI1

∣∣∣Ψ0

〉
.

The ground-state energy is a functional of the 2-RDM.

The latter is in principle deduced from the ground-state wavefunction Ψ0 which is
completely determined by the N-RDM.

Indeed, from the full configuration interaction (FCI) expansion,

|Ψ0〉 =
∑

I1<I2<...<IN

CI1I2...IN â†I1 â
†
I2
. . . â†IN |vac〉,

it comes DJ1J2...JN
I1I2...IN

= CJ1J2...JNCI1I2...IN .

Therefore, |CI1I2...IN | =
√

D I1I2...IN
I1I2...IN

. The sign is determined from the N-RDM by

fixing the sign of one single coefficient.
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Representability and higher-order reduced density matrices

Rewriting the FCI expansion as |Ψ0〉 =
∑
I CI |detI〉 leads to the following

expression for the p-RDM elements,

D
J1J2...Jp
I1I2...Ip

=
∑
I,J

CICJ
〈
detJ

∣∣∣â†J1
â†J2

. . . â†Jp âIp . . . âI2 âI1

∣∣∣detI〉︸ ︷︷ ︸
known (anti-commutation rules)

A p-RDM is N-representable if it can be written as above with the normalization
condition

∑
I C

2
I = 1.

Let us focus on the 2-RDM elements:

DJ1J2
I1I2

=
∑
I,J

CICJ
〈
detJ

∣∣∣â†J1
â†J2

âI2 âI1

∣∣∣detI〉.
In contrast to the N-RDM, many CI coefficients will contribute !

Obviously, we do not want to parametrize the 2-RDM with these coefficients (this
would simply correspond to making a FCI calculation).
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Representability and higher-order reduced density matrices

Instead, we want to use the 2-RDM elements DJ1J2
I1I2

as basic variables.

The N-representability is connected to the fact that the N-RDM elements can be
written as DJ1J2...JN

I1I2...IN
= CJ1J2...JNCI1I2...IN .

The higher the order p of the RDM is, the more we know about the wavefunction
Ψ0 and the higher the control on the N-representability of the 2-RDM is.

Connections between the 2-RDM and the higher-order RDMs can be established
from the so-called anti-Hermitian contracted Schrödinger equation∗ (ACSE).

The ACSE is obtained by projection (nonvariational approach).

As discussed further in the following, the ACSE can also be used in 1-RDM theory,
thus providing interesting formal connections between RDM and Green’s functions
formalisms.

∗ D. A. Mazziotti, Phys. Rev. Lett. 97, 143002 (2006).
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Connecting 1-RDM and Green’s function formalisms

We would like to derive an equation for the ground-state 1-RDM that would be
the analog of the equation of motion for the one-electron Green’s function (1-GF).

Let us start with the Schrödinger equation Ĥ|Ψ0〉 = E0|Ψ0〉, apply a one-electron
excitation â†I âJ on both sides and project onto Ψ0, thus leading to

〈
Ψ0

∣∣∣â†I âJĤ∣∣∣Ψ0

〉
= E0

〈
Ψ0

∣∣∣â†I âJ ∣∣∣Ψ0

〉
︸ ︷︷ ︸

D I
J ← exact 1-RDM !

The latter projection onto the one-electron space is usually referred to as
contraction, hence the name Contracted Schrödinger Equation (CSE).

Using Ĥ =
∑
KL

hKLâ
†
K âL +

1

2

∑
KLMN

〈KL|MN〉â†K â
†
LâN âM leads to

∑
L

hJLD
I
L −

∑
KL

hKLD
IK
LJ +

1

2

∑
KMN

〈JK ||MN〉D IK
MN +

1

2

∑
KLMN

〈KL|MN〉D IKL
MNJ = E0D

I
J

where 〈JK ||MN〉 = 〈JK |MN〉 − 〈KJ|MN〉.
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Connecting 1-RDM and Green’s function formalisms

As readily seen, it is far from straightforward to obtain the 1-RDM from the CSE.

Indeed, we need the (unknown) exact ground-state energy E0 :-/

Moreover, we need the 2- and 3-RDMs :-/

It is actually more convenient to split the CSE as follows,

HI
J =

〈
Ψ0

∣∣∣â†I âJĤ∣∣∣Ψ0

〉
=

1

2

〈
Ψ0

∣∣∣[â†I âJ , Ĥ]∣∣∣Ψ0

〉
︸ ︷︷ ︸+

1

2

〈
Ψ0

∣∣∣∣[â†I âJ , Ĥ]
+

∣∣∣∣Ψ0

〉
︸ ︷︷ ︸ = E0D

I
J ,

HI
J −HJ

I HI
J +HJ

I

The anti-Hermitian part of the CSE (ACSE) reads〈
Ψ0

∣∣∣[â†I âJ , Ĥ]∣∣∣Ψ0

〉
= 0 .

The advantage of using the ACSE is that the commutator of â†I âJ with Ĥ will
generate one- and two-electron excitations only, thus making the connection
between the 1-RDM and the 2-RDM explicit.
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Connecting 1-RDM and Green’s function formalisms

EXERCISE: By using the relations[
Â, B̂Ĉ

]
=
[
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
=
[
Â, B̂

]
+
Ĉ − B̂

[
Â, Ĉ

]
+

,

show that [â†I âJ , â
†
K âL] = δJK â†I âL − δI L â†K âJ and[

â†I âJ , â
†
K â
†
LâN âM

]
= δJK â†I â

†
LâN âM + δJL â†K â

†
I âN âM − δIN â†K â

†
LâJ âM − δIM â†K â

†
LâN âJ .

From the second-quantized expression of the Hamiltonian and the ACSE we finally
obtain (by using real algebra)

∑
K

(
D I

KhKJ − hIKD
K
J

)
︸ ︷︷ ︸+

∑
KLM

(
〈JM|LK〉DKL

MI − 〈IM|LK〉DKL
MJ

)
= 0

[D, h]I J

As readily seen, the ACSE involves the 1- and 2-RDMS only :-)
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Connecting 1-RDM and Green’s function formalisms

[D, h]I J +
∑
KLM

(
〈JM|LK〉DKL

MI − 〈IM|LK〉DKL
MJ

)
= 0

We can formally rewrite the latter equation in terms of the 1-RDM only simply by
introducing a (frequency-independent) analog Σ of the self-energy matrix defined
as follows,

(
ΣD

)
I J

=
∑
KLM

〈IM|LK〉DKL
MJ ,

or, equivalently,

ΣIP =
∑
KLMN

〈IM|LK〉DKL
MN

[
D−1]

NP
,

thus leading to [D, h]I J +
(
ΣD

)
JI
−
(
ΣD

)
I J

= 0 or, in a compact form,

[D, h] + DΣ† −ΣD = 0 .
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Connecting 1-RDM and Green’s function formalisms

Note that, in the x ≡ (r, σ) representation, the (local in space) two-electron
repulsion operator is diagonal, thus leading to

ΣIP → Σ(x1, x4) =

∫
dx2

∫
dx3

1

|r1 − r3|
Γ(x1, x3; x2, x3)γ−1(x2, x4)

where γ(x1, x2) =
〈

Ψ0

∣∣∣Ψ̂†(x1)Ψ̂(x2)
∣∣∣Ψ0

〉
and

Γ(x1, x3; x2, x3) =
〈

Ψ0

∣∣∣Ψ̂†(x1)Ψ̂†(x3)Ψ̂(x3)Ψ̂(x2)
∣∣∣Ψ0

〉
are connected to the (time-dependent) one- and two-particle Green’s functions as
follows,

γ(x1, x2) = −
〈

Ψ0

∣∣∣T [Ψ̂(x2, t2)Ψ̂†(x1, t
+
2 )
]∣∣∣Ψ0

〉
= −iG(x2t2, x1t

+
2 )

and

Γ(x1, x3; x2, x3) =
〈

Ψ0

∣∣∣T [Ψ̂(x3, t3)Ψ̂(x2, t
−
3 )Ψ̂†(x1, t

++
3 )Ψ̂†(x3, t

+
3 )
]∣∣∣Ψ0

〉
= −G2(x3t3, x2t

−
3 ; x3t

+
3 , x1t

++
3 ).
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Connecting 1-RDM and Green’s function formalisms

As readily seen in the following equations there are strong similarities between the
(static) self-energy function we introduced and the conventional (time-dependent)
self-energy:

Σ(x1, x4) =

∫
dx2

∫
dx3

1

|r1 − r3|
Γ(x1, x3; x2, x3)γ−1(x2, x4)

Σ(1, 4) = −i
∫ ∫

d2d3
1

|r1 − r3|
δ(t1 − t3)G2(1, 3+; 2, 3++)G−1(2, 4)

where 1 ≡ (x1, t1), 2 ≡ (x2, t2), 3 ≡ (x3, t3), 4 ≡ (x4, t4).

The connection between the ACSE and the equation of motion for the 1-GF (and,
consequently, between the two self-energies) lies in the fact that, for an operator
written in the Heisenberg picture, a differentiation with respect to time is
equivalent to the calculation of its commutator with the Hamiltonian:

i
∂G(1, 2)

∂t1
= δ(1, 2) + θ(t1 − t2)〈Ψ0|

∂Ψ̂(1)

∂t1
Ψ̂†(2)|Ψ0〉 − θ(t2 − t1)〈Ψ0|Ψ̂†(2)

∂Ψ̂(1)

∂t1
|Ψ0〉

where Ψ̂(1) = eiĤt1 Ψ̂(x1)e−iĤt1 and
∂Ψ̂(1)

∂t1
= −ieiĤt1 [Ψ̂(x1), Ĥ]e−iĤt1 .
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Exact energy from the 1-RDM and the self-energy

Let us return to the ACSE for the 1-RDM:

[D, h] + DΣ† −ΣD = 0 .

Note that, if the exact self-energy matrix Σ is known, we obtain the exact 1-RDM
D by solving the ACSE.

The exact ground-state energy can be rewritten in terms of D and Σ as follows,

E0 =
∑
KL

hKLD
K
L +

1

2

∑
KLMN

〈KL|MN〉DKL
MN

=
∑
L

[hD]LL +
1

2

∑
KLMNPQ

〈NM|LK〉DKL
MP

[
D−1

]
PQ

DQ
N

=
∑
L

[hD]LL +
1

2

∑
NQ

ΣNQD
Q
N ,

thus leading to the compact expression E0 = Tr

[(
h +

1

2
Σ

)
D

]
,

where Tr denotes the trace.
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Non-interacting ACSE

Let us consider the non-interacting case first (Σ = 0).

According to the ACSE, the solution Dh commutes with the one-electron
Hamiltonian matrix:

[Dh, h] = 0.

Therefore, the eigenfunctions of h (molecular spin-orbitals) diagonalize the
non-interacting 1-RDM. If the former are ordered with increasing energies
ε1 ≤ ε2 ≤ . . . ≤ εN ≤ . . . then

h ≡



ε1 0 0 0 0 0
0 ε2 0 0 0 0

0 0
. . . 0 0 0

0 0 0 εN 0 0
0 0 0 0 εN+1 0

0 0 0 0 0
. . .


, Dh ≡



1 0 0 0 0 0
0 1 0 0 0 0

0 0
. . . 0 0 0

0 0 0 1 0 0
0 0 0 0 0 0

0 0 0 0 0
. . .


.

Note that Dh is idempotent i.e. D2
h = Dh .
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First-order approximation in Σ

From the non-interacting solution Dh we can construct an approximate solution
Dh + D(1) through first order in Σ by solving

[D(1), h] + DhΣ
† −ΣDh = 0.

If we denote I , J, . . . and A,B, . . . the occupied and unoccupied (virtual)
spin-orbitals in Dh, respectively, it comes for the occupied-occupied block

(εJ − εI )D(1)
I J = ΣI J − ΣJI ,

and for the virtual-virtual block

(εB − εA)D
(1)
AB = 0.

Similarly, we obtain for the occupied-virtual block,

(εA − εI )D(1)
IA = −ΣAI .

Note that, if the self-energy matrix is non-zero only in the occupied-occupied block
and hermitian (of course it does not have to be), then D(1) = 0. This was
expected as unitary transformations inside the occupied spin-orbital space leave Dh

unchanged.
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Hartree-Fock approximation

At this point we should raise an important question: how do we approximate Σ ?

The simplest approximation is the mean-field (mf) one:

Ψ0 → Φ (single Slater determinant)

D IJ
KL →

〈
Φ
∣∣∣â†I â†J âLâK ∣∣∣Φ〉 = δJLD

I
K − δJKD I

L

= D I
KD

J
L − DJ

KD
I
L

Note that the latter expression for the 2-RDM element actually holds on the entire
spin-orbital space (it gives zero if one of the spin-orbital is not occupied in Φ).

Consequently, the corresponding mean-field self-energy matrix elements,

Σmf
PQ =

∑
RSTU

〈PT |SR〉DRS
TU

[
D−1]

UQ
,

become an explicit functional of the 1-RDM:

Σmf
PQ [D] =

∑
RT

(
〈PT |QR〉 − 〈PT |RQ〉

)
DR

T .
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Hartree-Fock approximation

Note that Σmf [D] is hermitian (unlike the exact self-energy).

Note also that, in the occupied/unoccupied orbital basis associated to Φ, the
mean-field self-energy reads

Σmf
PQ =

occ∑
I

〈PI |QI 〉︸ ︷︷ ︸−〈PI |IQ〉︸ ︷︷ ︸ = [ΣHx]PQ ,

Hartree exchange

where we recognize the Hartree–Fock potential ΣHx expression in the canonical
orbital basis.

Within the mean-field approximation, we obtain from the ACSE the following
self-consistent equation

[D, f (D)] = 0 where f (D) = h + ΣHx (D) ← Fock matrix !

which is equivalent to the Hartree–Fock equations.
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Beyond Hartree-Fock

One could think about developing a perturbation theory based on the converged
mean-field 1-RDM rather than the bare non-interacting one Dh.

Diagrammatic techniques could be used for expanding the (time-independent)
self-energy in perturbation.

One may wonder if Hedin-type equations can be derived in this context.

Note that the exact self-energy matrix is in principle not hermitian.

In this formalism there is no need to work in the (delocalized) canonical molecular
orbital basis.

The 1-RDM elements (in any orthonormal basis) are used as variables. Localized
orbitals could therefore be used in this context which is convenient for large scale
calculations.

Emmanuel Fromager (UdS) ISTPC 2017, Aussois, France June 2017 25 / 25


