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The "SOET team”

From left to right: L. Mazouin, E. F., MS Tsuchiizu (Nara), N. Nakatani (Tokyo), and B.
enjean.

More recently, we started a collaboration with M. Saubanére (Montpellier).
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The one-dimensional Hubbard model Hamiltonian
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@ From a chemical point of view, the Hubbard Hamiltonian is a quantum chemical
Hamiltonian written in a basis of non-overlapping atomic orbitals where the one- and
two-electron integrals are simplified as follows,

h,'j — 71‘(5,"141 -+ 6,'71',1) -+ 5,-jv,' and <Ij|kl> — U6,-j6k16jk

@ A different interpretation of the model, that is usually adopted by physicists and is
convenient for extending density-functional theory (DFT) to model Hamiltonians, relies on
the discretization of real continuous space. The latter is then transformed into a /attice.

@ In other words, we assume that electrons jump from one point in space (site) to another.
The hopping parameter t can be interpreted as a kinetic energy contribution.

@ An electron will also have an energy v; if it stands on site i. This local energy contribution
is the analog of the nuclear potential (also called external potential) in DFT.

@ Finally, two electrons will have a repulsion energy U if they occupy the same site.
Longer-range repulsions are neglected in the model.
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DFT for the Hubbard Hamiltonian in a nutshell

@ Let us write the Hubbard Hamiltonian as I:I(v) =T+0+ > vifii  where fj is the
density operator on site i.

@ Note that T and U are "universal” in this context (i.e. t and U are fixed).

@ Let us create the following ground-state density map for a fixed integral number N of
electrons:

vE{uh o W) o no(v) = { (We(w)|A|We(v) }

i

@ According to the Hohenberg—Kohn theorem, this map can be inverted (up to a constant):
n = vin) — Y <v(n)) = Wy(n)

@ Moreover, the exact N-electron ground-state energy Ey(v, N) of A(v) can be obtained
variationally,

Eo(v, ) = min {F(n) + Z v,n,}

where F(n) = <Wo(n)‘ T+ 0""0(“)> is the "universal” Hohenberg—Kohn (HK) functional.
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Kohn—=Sham DFT and site-occupation embedding theory

fictitious Kohn—Sham system o

fictitious embedded impurity (3

physical model system 3

o

@ In Kohn-Sham (KS) DFT:
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\ F(n) = Tu(n) + Enxc(n) \

—=bath

@ |In site occupation embedding theory (SOET): ‘ F(n) = F™?(n) + Ep.. (n)

E. Fromager, Mol. Phys. 113, 419 (2015).

B. Senjean, M. Tsuchiizu, V. Robert, and E. Fromager, Mol. Phys. 115, 48 (2017).
B. Senjean, N. Nakatani, M. Tsuchiizu, and E. Fromager, arXiv:1710.03125 (2017).
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A flavor of density matrix embedding theory (DMET)

@ Let us consider the following expansion of the exact N-electron ground-state wavefunction
(in the basis of Slater determinants)

N’U(V» = Z C01P1<P2~P3,---‘0ﬂp17P?7p3="'>+

P1:P2,P35---—N

Z CTaP1vP2=P3-,~-~|T7P17p27p37'")+

P1:P2,P35- - —N—1

Z C¢,p1.p2.p3,...|~l/7pl7p27p37"')+
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= [0,V )+ I VN + L VIR + 1T VT 2)

@ If we adpot the point of view of the impurity site (site 0), we need to describe an open
quantum system.

@ One could think of a single "super” neighbouring site, referred to as bath site, that would
play the role of a reservoir and integrate informations about the environment.

@ Thus we would construct an embedded impurity from which (approximate) properties of
the system (like the per-site energy) can be extracted. This is the basic idea of DMET*.

*Knizia and Chan, Phys. Rev. Lett. 109, 186404 (2012).
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Partition DFT applied to the Hubbard Hamiltonian

@ A general density-functional embedding theory is obtained by partitioning the system into
fragments.

@ The partitioning is arbitrary. In quantum chemistry, it is usually driven by the nuclear
potentials centered on each atom of the molecule:

nuclei ZA fragments
W==3 H e X e
A |I’ - RA| -

@ The density of the full system is then decomposed into fragment densities:

fragments

n(r) = Z n“(r).

et

@ In practice*, one would first calculate the density of each isolated fragment n*®(r) and
then reoptimize them in a DFT calculation for the full system.

@ The converged fragment densities should reproduce, after summation, the exact density of
the full system.

@ Let us stress that, in partition DFT, the basic variable is now the set of fragment densities

{n* (0},

*P. Elliott, K. Burke, M. H. Cohen, and A. Wasserman, Phys. Rev. A. 82, 024501 (2010).
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Partition DFT applied to the Hubbard Hamiltonian

U t U t U t U
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no n n n3

@ It seems to me (even though | am not completely sure) that partitioning is less ambiguous
on a lattice.

@ Let us consider the following one,

n = (no,m,m,ns...,nj,...)=(no,nm,0,0,...,0,...)+(0,0,m,n3,...,n,...)

nemb. + nenv-

where the to-be-embedded fragment (emb.) is separated from the rest of the system, here
referred to as the environment (env.).

@ Note that, in the density-matrix embedding theory (DMET) terminology, site 0 is the
fragment and the other sites belong to the environment.

@ in SOET, site 0 is the impurity and the other sites are referred to as the bath.
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Partition DFT applied to the Hubbard Hamiltonian

@ Note that, in the particular case of the L-site 1D Hubbard system with uniform density
n= N/L, the total number of electrons in the embedded fragment is
no + m = 2n=2N/L, which gives 0.5 if N = L/4.

@ Obviously, in this case, we need a DFT for fractional numbers of electrons.
@ We may actually also consider the following partitioning,

(no, i, o, nz...,ni,...)

= (n,2—n0,0,0,...,0,...) + (0, +no—2,m,ns3,...,ni,...)

n

where the embedded fragment is now a two-electron Hubbard dimer. In the latter case,
site 1 is playing the role of a reservoir that communicates with the rest of the environment.

@ What about the following partitioning ?

noo= (moymyna s ) = (00,0,0,0,...,0,...) + (0, m, myns,. .. iy )

@ It is unclear how convenient any of these choices would be in practice. They should
formally boil down to the same (in-principle-exact) theory.
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Interlude on the chemical potential

@ Let us consider non-interacting electrons (U = 0). In the latter case, the many-electron
problem boils down to a one-electron problem in which orbital energies must be
calculated.

The many-electron energy is obtained by summing up energies of the occupied orbitals.

@ Of course, we need to know the number N of electrons. Alternatively, we may not specify
the value of N and, instead, introduce a shift denoted —p into the external potential,

Vi — Vi — [

Zviﬁ,' — ZV;ﬁ,‘—uZﬁ,’:ZViﬁi_ﬂN
I:I:7A'+Zv,-ﬁ,- — I-AI—/J,I\AI:I-AI(p,)

where N = Z fAj is the counting operator.

i

@ For a given chemical potential 1, we will determine the ground-state energy G(u) of H(1),
which is referred to as the ground-state grand-canonical energy.

@ Note that the number of electrons is allowed to vary in the grand-canonical energy
minimization.

@ As shown in the following, the value of p will fix the number of electrons.
@ Most importantly, it will allow us to consider a non-integral number of electrons ().
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Ep+2

Ep+1

Ep

@ Let GN(i) denote the N-electron grand-canonical ground-state energy.

@ In the situation depicted above, we have for 1 < k < p

G () = G () | = e — 2k + (2K — D =[G () — G* (W) =54 —u <0

@ Moreover, if k > p then G¥**(u) — G*(u) = G¥*2(u) — G** () =1 —pu >0

@ Conclusion:

ep < < Epp1 N:Zp‘
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Ep+2

Ep+1

Ep = H

€3
&2

€1

@ In the situation depicted above,

2p- and (2p-1)-electron grand-canonical ground-state
energies are equal:

G*(p) = <2§:€f>—2pu
= <2ia;>—u—(2p—l)u

= |97 (W = 9" = 9w
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@ In other words, the 2p- and (2p-1)-electron eigenfunctions of H(u) are degenerate:
A(p) |©7) = G(u) [®7)  and  A(p) [6771) = G(p) [67)
@ Any linear combination of these two states is ground state of Ifl(u):

Ap) [®Y) = G(u) [oV)

where

MY = /2p — N [ 71 + /N — (2p — 1) @) | with 2p—1 <N <2p.

@ Note that N\ varies continuously from (2p — 1) to 2p and corresponds to a (possibly
fractional) number of electrons:

R

<¢M

@ The corresponding ground-state density n’V is a linear combination of (2p — 1)- and
2p-electron ground-state densities:

) =N

m = (O |7 @) = (2p — N) (92| Ai| 02 1) (W - (2p — 1)) (07| 7] 0%)
N—— —Y—™¥ ————
2p—1 2p
n,- n:

i
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@ Note that the energy varies linearly with \:

< oV

This is the so-called " piecewise linearity of the energy” *

Ao} = o0 (87 0) + (3~ G- 1) (o7 }il).

@ If we remove the energy contribution from the external potential, we obtain the following
extension of the universal HK functional to ground-state densities that do not integrate to
integers:

F () = (2p = N) x F (n"7) + (N = (2p = 1)) x F (n)

* J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz Jr., Phys. Rev. Lett. 49, 1691 (1982).
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DFT for grand canonical ensembles

@ Let us consider the full (not necessarily uniform) Hubbard system with a fixed total
number of electrons N.

@ Alternatively, we may not impose the value of N but, instead, use the corresponding
chemical potential ;. The grand-canonical energy is obtained variationally in DFT as
follows,

G(v, ) = min {F(N) + Z (vi— u)”f}

@ The minimizing density n(v, 1) fulfills the following stationarity condition,

OF(n)
on;

=—Vvitp

n=n(v,1)

@ In a so-called orbital free DFT approach, the Kohn-Sham decomposition
F(n) = Ts(n) + Egxc(n) would be considered but, rather than solving KS equations, a
density-functional approximation to Ts(n) would be employed and the following equation
would hold for any site i:

_9T.(n)
8!7,'

aE xc 1
= v+ 9Eixc(n) — +— KS potential !

n=n(v, )
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Partitioning of the grand canonical energy

@ Let us use {n°™ ne-} = {n“}  as basic variable rather than n = }__n©.

@ The grand-canonical energy to be minimized reads*

n) +Z (vi —p)ni = Z {F(n"‘) +Z (v f,u)n,-o‘} + E, ({v*,n*})

e

where the partition energy functional equals

& (v ")) = F (Z ) IILCOED IS I

i BHa

@ If the fragment densities do not overlap (which was the case for some partitionings
proposed previously) then

E, ({v*,n°}.) = E, ({n°} —F<Zn >—;F(n )

*P. Elliott, K. Burke, M. H. Cohen, and A. Wasserman, Phys. Rev. A. 82, 024501 (2010).
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Partition SOET

@ In the spirit of WFT-in-DFT quantum chemical embedding techniques, we would like to
use SOET for the embedded (two-site) fragment and the KS decomposition of F(n) for

the environment (like in orbital-free DFT):

F(nemb,) — Fimp(nemb_) +E;a;t:l(nemb,) and F(nenv_) — Ts(nenv.) + EHXC(nenv.)

U t t
®-———---- ° — | E ({v*,n°} ) | — ®-———---- o ----
ng ny n n3
@ Stationarity condition for the embedded fragment:
OFo(n™) oy, , OFie (1) | OE, ({v*,n°},)
_— =y . —
an}emb. I an}emb. anlc_emb. M
@ Stationarity condition for the environment:
OTs(ne" OEq, . (n* OE, ({v*,n*
LA™Y B (0) 0B ((vnt))
6nl_EnV. 8ni€nV. é)nfﬂv.
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