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The ”SOET team”

From left to right: L. Mazouin, E. F., M. Tsuchiizu (Nara), N. Nakatani (Tokyo), and B.
Senjean.

More recently, we started a collaboration with M. Saubanère (Montpellier).
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The one-dimensional Hubbard model Hamiltonian

U U U Ut t t

v0 v1 v2 v3

From a chemical point of view, the Hubbard Hamiltonian is a quantum chemical
Hamiltonian written in a basis of non-overlapping atomic orbitals where the one- and
two-electron integrals are simplified as follows,

hij → −t(δi,j+1 + δi,j−1) + δijvi and 〈ij|kl〉 → Uδijδklδjk

A different interpretation of the model, that is usually adopted by physicists and is
convenient for extending density-functional theory (DFT) to model Hamiltonians, relies on
the discretization of real continuous space. The latter is then transformed into a lattice.

In other words, we assume that electrons jump from one point in space (site) to another.
The hopping parameter t can be interpreted as a kinetic energy contribution.

An electron will also have an energy vi if it stands on site i. This local energy contribution
is the analog of the nuclear potential (also called external potential) in DFT.

Finally, two electrons will have a repulsion energy U if they occupy the same site.
Longer-range repulsions are neglected in the model.
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DFT for the Hubbard Hamiltonian in a nutshell

Let us write the Hubbard Hamiltonian as Ĥ(v) = T̂ + Û +
∑

i vi n̂i where n̂i is the
density operator on site i .

Note that T̂ and Û are ”universal” in this context (i.e. t and U are fixed).

Let us create the following ground-state density map for a fixed integral number N of
electrons:

v ≡ {vi}i → Ψ0(v) → n0(v) ≡
{
〈Ψ0(v)|n̂i |Ψ0(v)〉

}
i

According to the Hohenberg–Kohn theorem, this map can be inverted (up to a constant):

n → v(n) → Ψ0

(
v(n)

)
≡ Ψ0(n)

Moreover, the exact N-electron ground-state energy E0(v,N) of Ĥ(v) can be obtained
variationally,

E0(v,N) = min
n→N

{
F (n) +

∑
i

vini

}

where F (n) =
〈

Ψ0(n)
∣∣∣T̂ + Û

∣∣∣Ψ0(n)
〉

is the ”universal” Hohenberg–Kohn (HK) functional.
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Kohn–Sham DFT and site-occupation embedding theory

physical model system

U U U Ut t t

n0 n1 n2 n3

fictitious embedded impurity

U t t t

n0 n1 n2 n3

fictitious Kohn–Sham system

t t t

n0 n1 n2 n3

In Kohn–Sham (KS) DFT: F (n) = Ts(n) + EHxc(n)

In site occupation embedding theory (SOET): F (n) = F imp(n) + E
bath

Hxc (n)

E. Fromager, Mol. Phys. 113, 419 (2015).
B. Senjean, M. Tsuchiizu, V. Robert, and E. Fromager, Mol. Phys. 115, 48 (2017).
B. Senjean, N. Nakatani, M. Tsuchiizu, and E. Fromager, arXiv:1710.03125 (2017).
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A flavor of density matrix embedding theory (DMET)

Let us consider the following expansion of the exact N-electron ground-state wavefunction
(in the basis of Slater determinants)

|Ψ0(v)〉 =
∑

p1,p2,p3,...→N

C0,p1,p2,p3,...
|0, p1, p2, p3, . . .〉+

∑
p1,p2,p3,...→N−1

C↑,p1,p2,p3,...
|↑, p1, p2, p3, . . .〉+

∑
p1,p2,p3,...→N−1

C↓,p1,p2,p3,...
|↓, p1, p2, p3, . . .〉+

∑
p1,p2,p3,...→N−2

C↑↓,p1,p2,p3,...
|↑↓, p1, p2, p3, . . .〉

= |0,Ψenv.
0,N 〉+ |↑,Ψenv.

↑,N−1〉+ |↓,Ψenv.
↓,N−1〉+ |↑↓,Ψenv.

↑↓,N−2〉

If we adpot the point of view of the impurity site (site 0), we need to describe an open
quantum system.

One could think of a single ”super” neighbouring site, referred to as bath site, that would
play the role of a reservoir and integrate informations about the environment.

Thus we would construct an embedded impurity from which (approximate) properties of
the system (like the per-site energy) can be extracted. This is the basic idea of DMET∗.

∗Knizia and Chan, Phys. Rev. Lett. 109, 186404 (2012).
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Partition DFT applied to the Hubbard Hamiltonian

A general density-functional embedding theory is obtained by partitioning the system into
fragments.

The partitioning is arbitrary. In quantum chemistry, it is usually driven by the nuclear
potentials centered on each atom of the molecule:

v(r) = −
nuclei∑

A

ZA

|r − RA|
=

fragments∑
α

vα(r)

The density of the full system is then decomposed into fragment densities:

n(r) =
fragments∑

α

nα(r).

In practice∗, one would first calculate the density of each isolated fragment nα(0)(r) and
then reoptimize them in a DFT calculation for the full system.

The converged fragment densities should reproduce, after summation, the exact density of
the full system.

Let us stress that, in partition DFT, the basic variable is now the set of fragment densities
{nα(r)}α.

∗P. Elliott, K. Burke, M. H. Cohen, and A. Wasserman, Phys. Rev. A. 82, 024501 (2010).
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Partition DFT applied to the Hubbard Hamiltonian

U U U Ut t t

n0 n1 n2 n3

It seems to me (even though I am not completely sure) that partitioning is less ambiguous
on a lattice.

Let us consider the following one,

n = (n0, n1, n2, n3 . . . , ni , . . .) = (n0, n1, 0, 0, . . . , 0, . . .) + (0, 0, n2, n3, . . . , ni , . . .)

= nemb. + nenv.

where the to-be-embedded fragment (emb.) is separated from the rest of the system, here
referred to as the environment (env .).

Note that, in the density-matrix embedding theory (DMET) terminology, site 0 is the
fragment and the other sites belong to the environment.

in SOET, site 0 is the impurity and the other sites are referred to as the bath.
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Partition DFT applied to the Hubbard Hamiltonian

Note that, in the particular case of the L-site 1D Hubbard system with uniform density
n = N/L, the total number of electrons in the embedded fragment is
n0 + n1 = 2n = 2N/L, which gives 0.5 if N = L/4.

Obviously, in this case, we need a DFT for fractional numbers of electrons.

We may actually also consider the following partitioning,

n = (n0, n1, n2, n3 . . . , ni , . . .)

= (n0, 2− n0, 0, 0, . . . , 0, . . .) + (0, n1 + n0 − 2, n2, n3, . . . , ni , . . .)

where the embedded fragment is now a two-electron Hubbard dimer. In the latter case,
site 1 is playing the role of a reservoir that communicates with the rest of the environment.

What about the following partitioning ?

n = (n0, n1, n2, n3 . . . , ni , . . .) = (n0, 0, 0, 0, . . . , 0, . . .) + (0, n1, n2, n3, . . . , ni , . . .)

It is unclear how convenient any of these choices would be in practice. They should
formally boil down to the same (in-principle-exact) theory.
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Interlude on the chemical potential

Let us consider non-interacting electrons (U = 0). In the latter case, the many-electron
problem boils down to a one-electron problem in which orbital energies must be
calculated.

The many-electron energy is obtained by summing up energies of the occupied orbitals.

Of course, we need to know the number N of electrons. Alternatively, we may not specify
the value of N and, instead, introduce a shift denoted −µ into the external potential,

vi → vi − µ∑
i

vi n̂i →
∑
i

vi n̂i − µ
∑
i

n̂i =
∑
i

vi n̂i − µN̂

Ĥ = T̂ +
∑
i

vi n̂i → Ĥ − µN̂ = Ĥ(µ)

where N̂ =
∑
i

n̂i is the counting operator.

For a given chemical potential µ, we will determine the ground-state energy G(µ) of Ĥ(µ),
which is referred to as the ground-state grand-canonical energy.

Note that the number of electrons is allowed to vary in the grand-canonical energy
minimization.

As shown in the following, the value of µ will fix the number of electrons.

Most importantly, it will allow us to consider a non-integral number of electrons (!).
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ε1

ε2

ε3

...

εp

µ

εp+1

εp+2

...

Let GN(µ) denote the N-electron grand-canonical ground-state energy.

In the situation depicted above, we have for 1 ≤ k ≤ p

G2k(µ)− G2k−1(µ) = εk − 2kµ+ (2k − 1)µ = G2k−1(µ)− G2k−2(µ) = εk − µ < 0

Moreover, if k ≥ p then G2k+1(µ)− G2k(µ) = G2k+2(µ)− G2k+1(µ) = εk+1 − µ > 0

Conclusion: εp < µ < εp+1 ⇐⇒ N = 2p
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ε1

ε2

ε3

...

εp = µ

εp+1

εp+2

...

In the situation depicted above, 2p- and (2p-1)-electron grand-canonical ground-state
energies are equal:

G2p(µ) =

(
2

p∑
i=1

εi

)
− 2pµ

=

(
2

p∑
i=1

εi

)
− µ− (2p − 1)µ

= G2p−1(µ) = G2p(µ) ≡ G(µ)
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In other words, the 2p- and (2p-1)-electron eigenfunctions of Ĥ(µ) are degenerate:

Ĥ(µ)
∣∣Φ2p

〉
= G(µ)

∣∣Φ2p
〉

and Ĥ(µ)
∣∣Φ2p−1

〉
= G(µ)

∣∣Φ2p−1
〉

Any linear combination of these two states is ground state of Ĥ(µ):

Ĥ(µ)
∣∣ΦN 〉 = G(µ)

∣∣ΦN 〉
where

∣∣ΦN 〉 =
√

2p −N
∣∣Φ2p−1

〉
+
√
N − (2p − 1)

∣∣Φ2p
〉

with 2p − 1 ≤ N ≤ 2p.

Note that N varies continuously from (2p − 1) to 2p and corresponds to a (possibly
fractional) number of electrons:

〈
ΦN

∣∣∣N̂∣∣∣ΦN〉 = N

The corresponding ground-state density nN is a linear combination of (2p − 1)- and
2p-electron ground-state densities:

nNi =
〈
ΦN

∣∣n̂i ∣∣ΦN 〉 = (2p −N )
〈
Φ2p−1

∣∣n̂i ∣∣Φ2p−1
〉︸ ︷︷ ︸+
(
N − (2p − 1)

) 〈
Φ2p
∣∣n̂i ∣∣Φ2p

〉︸ ︷︷ ︸
n2p−1
i n2p

i
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Note that the energy varies linearly with N :〈
ΦN

∣∣∣Ĥ∣∣∣ΦN〉 = (2p −N )
〈

Φ2p−1
∣∣∣Ĥ∣∣∣Φ2p−1

〉
+
(
N − (2p − 1)

)〈
Φ2p
∣∣∣Ĥ∣∣∣Φ2p

〉
.

This is the so-called ”piecewise linearity of the energy”∗

If we remove the energy contribution from the external potential, we obtain the following
extension of the universal HK functional to ground-state densities that do not integrate to
integers:

F
(
nN
)

= (2p −N )× F
(
n2p−1

)
+
(
N − (2p − 1)

)
× F

(
n2p
)

∗ J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz Jr., Phys. Rev. Lett. 49, 1691 (1982).
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DFT for grand canonical ensembles

Let us consider the full (not necessarily uniform) Hubbard system with a fixed total
number of electrons N.

Alternatively, we may not impose the value of N but, instead, use the corresponding
chemical potential µ. The grand-canonical energy is obtained variationally in DFT as
follows,

G(v, µ) = min
n

{
F (n) +

∑
i

(
vi − µ

)
ni

}

The minimizing density n(v, µ) fulfills the following stationarity condition,

∂F (n)

∂ni

∣∣∣∣
n=n(v,µ)

= −vi + µ

In a so-called orbital free DFT approach, the Kohn-Sham decomposition
F (n) = Ts(n) + EHxc(n) would be considered but, rather than solving KS equations, a
density-functional approximation to Ts(n) would be employed and the following equation
would hold for any site i :

−
∂Ts(n)

∂ni

∣∣∣∣
n=n(v,µ)

= vi +
∂EHxc(n)

∂ni

∣∣∣∣
n=n(v,µ)

− µ ←− KS potential !
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Partitioning of the grand canonical energy

Let us use
{

nemb., nenv.
}
≡ {nα}

α
as basic variable rather than n =

∑
α nα.

The grand-canonical energy to be minimized reads∗

F (n) +
∑
i

(
vi − µ

)
ni =

∑
α

[
F (nα) +

∑
i

(
vαi − µ

)
nαi

]
+ Ep

(
{vα, nα}α

)

where the partition energy functional equals

Ep

(
{vα, nα}

α

)
= F

(∑
α

nα
)
−
∑
α

F (nα) +
∑
α

∑
i

vαi
∑
β 6=α

nβi

If the fragment densities do not overlap (which was the case for some partitionings
proposed previously) then

Ep

(
{vα, nα}

α

)
≡ Ep

(
{nα}

α

)
= F

(∑
α

nα
)
−
∑
α

F (nα)

∗P. Elliott, K. Burke, M. H. Cohen, and A. Wasserman, Phys. Rev. A. 82, 024501 (2010).
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Partition SOET
In the spirit of WFT-in-DFT quantum chemical embedding techniques, we would like to
use SOET for the embedded (two-site) fragment and the KS decomposition of F (n) for
the environment (like in orbital-free DFT):

F (nemb.) = F imp(nemb.) + E
bath

Hxc (nemb.) and F (nenv.) = Ts(nenv.) + EHxc(nenv.)

U t t

n0 n1 n2 n3

← Ep

(
{vα, nα}

α

)
→

Stationarity condition for the embedded fragment:

−
∂F imp(nemb.)

∂nemb.
i

= v emb.
i +

∂E
bath

Hxc (nemb.)

∂nemb.
i

+
∂Ep

(
{vα, nα}α

)
∂nemb.

i

− µ

Stationarity condition for the environment:

−
∂Ts(nenv.)

∂nenv.
i

= v env.
i +

∂EHxc(nenv.)

∂nenv.
i

+
∂Ep

(
{vα, nα}

α

)
∂nenv.

i

− µ
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