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Molecular Schrödinger equation

In order to model chemical problems in quantum mechanics we should in principle solve
the molecular Schrödinger equation.

”molecular” means electronic and nuclear.

For clarity, we will consider a diatomic molecule A–B (without loss of generality) and
denote R = RAB the bond distance.

Rotation will be ignored.

The molecular wavefunction Ψmol(R, q) depends not only on the electronic space (and
spin) coordinates q ≡ (r1, r2, . . . , rN) but also on the bond distance R.

Finally, we assume that the mass M of nucleus B is much larger than the mass m of
nucleus A (m << M) thus leading to the following Schrödinger equation for the molecule

ĤmolΨmol(R, q) = EmolΨmol(R, q)

where the molecular Hamiltonian equals in atomic units

Ĥmol ≡ −
1

2m

∂2

∂R2
+

ZAZB

R
+ Ĥ(R)

The N-electron Hamiltonian Ĥ(R), which is geometry-dependent, reads

Ĥ(R) ≡ −
1

2

N∑
i=1

∇2
ri
−

N∑
i=1

(
ZA

|ri − RA|
+

ZB

|ri − RB |

)
+

N∑
i<j

1

|ri − rj |
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Molecular wavefunction

We will show that the molecular wavefunction can be expressed exactly in terms of
nuclear and electronic (ground- and excited-state) wavefunctions.

Let us consider, for a fixed bond distance R, the solutions
{

ΨI (R, q) = 〈q|ΨI (R)〉
}

I=0,1,...

to the electronic Schrödinger equation

Ĥ(R)|ΨI (R)〉 = EI (R)|ΨI (R)〉

For any bond distance R, the electronic resolution of the identity formula holds:

|q〉 =
∑
I

|ΨI (R)〉〈ΨI (R)|q〉 =
∑
I

Ψ∗I (R, q)|ΨI (R)〉

Since Ψmol(R, q) = 〈R, q|Ψmol〉 with |R, q〉 = |R〉 ⊗ |q〉 =
∑

I Ψ∗I (R, q)|R,ΨI (R)〉

we finally obtain the exact decomposition

Ψmol(R, q) =
∑
I

ΨI (R, q)χI (R)

where the (to-be-determined) I th nuclear wavefunction reads χI (R) = 〈R,ΨI (R)|Ψmol〉.
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Born–Oppenheimer and adiabatic approximations

In the so-called Born-Oppenheimer approximation, nuclear wavefunctions are determined
from a single (ground or excited) electronic state:

∑
I

ΨI (R, q)χI (R) → ΨI0 (R, q)χI0 (R)

Within the so-called adiabatic approximation, variations of the electronic wavefunction
with nuclear displacements are neglected: ∂ΨI0 (R, q)/∂R ≈ 0 ≈ ∂2ΨI0 (R, q)/∂R2 .

Such an approximation is in principle relevant when the molecule is at equilibrium (R does
not vary significantly).

In this case, the nuclear wavefunction fulfills the following Schrödinger equation[
−

1

2m

d2

dR2
+ VI0 (R)

]
χI0
n (R) = Emol

n χI0
n (R),

where VI0 (R) = EI0 (R) +
ZAZB

R
.

VI0 (R) is the potential interaction energy between the two nuclei in the field of electrons
that are described by the wavefunction ΨI0 (R, q).
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Harmonic approximation

Let us consider fluctuations x = R − R0 around the equilibrium bond distance R0.

From the Taylor expansion through second order in x,

VI0 (R) = VI0 (R0 + x) ≈ VI0 (R0) +
1

2

(
d2VI0 (R)

dR2

∣∣∣∣
R=R0

)
x2,

we recover the Schrödinger equation for the harmonic oscillator with frequency

ωI0 =

√
1

m

d2VI0 (R)

dR2

∣∣∣∣
R=R0

or, equivalently, with constant kI0 =
d2VI0 (R)

dR2

∣∣∣∣
R=R0

,

[
−

1

2m

d2

dx2
+

1

2
mω2

I0
x2

]
ϕI0

n (x) =
(
Emol
n − VI0 (R0)

)
ϕI0

n (x)

where ϕ
I0
n (x) = χ

I0
n (R0 + x).

This approximation is known as the harmonic approximation.
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Harmonic approximation
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Non-adiabatic couplings

Let us return to the exact theory and insert the decomposition
Ψmol(R, q) =

∑
I ΨI (R, q)χI (R) into the molecular Schrödinger equation, thus leading to

−
1

2m

∑
I

[
ΨI (R, q)

d2χI (R)

dR2
+ 2

∂ΨI (R, q)

∂R

dχI (R)

dR
+
∂2ΨI (R, q)

∂R2
χI (R)

]

+
∑
I

[
ZAZB

R
+ EI (R)

]
ΨI (R, q)χI (R) = Emol

∑
I

ΨI (R, q)χI (R).

From the orthonormalization condition 〈ΨJ(R)|ΨI (R)〉 =
∫
dq Ψ∗J (R, q)ΨI (R, q) = δIJ ,

we finally obtain coupled Schrödinger equations for the nuclear wavefunctions,

[
−

1

2m

d2

dR2
+

ZAZB

R
+ EJ(R)

]
χJ(R)−

1

2m

∑
I

[
2FJI (R)

d

dR
+ GJI (R)

]
χI (R) = EmolχJ(R)

where the so-called non adiabatic couplings (NACs) read

FJI (R) =

〈
ΨJ(R)

∣∣∣∣dΨI (R)

dR

〉
and GJI (R) =

〈
ΨJ(R)

∣∣∣∣d2ΨI (R)

dR2

〉
.
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Non-adiabatic couplings in ensemble DFT

Note that FJI (R) = −F∗IJ(R) since
d

dR

[
〈ΨJ(R)|ΨI (R)〉

]
=

dδIJ

dR
= 0.

As a result, for real electronic wavefunctions, FII (R) = 0 .

NACs can be connected to electronic energies as follows,

〈
ΨJ(R)

∣∣∣Ĥ(R)
∣∣∣ΨI (R)

〉
= δIJEI (R)

d
dR−→ FJI (R) =

〈
ΨJ(R)

∣∣∣∣∣∂Ĥ(R)

∂R

∣∣∣∣∣ΨI (R)

〉
− δIJ dEI (R)

dR

EI (R)− EJ(R)

Similarly, NACs can be determined for a fictitious Kohn–Sham (KS) system whose
(ensemble) density equals the true physical one:

FKS
JI (R) =

〈
ΦKS

J (R)

∣∣∣∣∣∂ĤKS(R)

∂R

∣∣∣∣∣ΦKS
I (R)

〉
− δIJ

dEKS
I

(R)

dR

EKS
I (R)− EKS

J (R)
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Non-adiabatic couplings in ensemble DFT

There is a priori no reason for the KS NACs to be equal to the true physical ones.

Nevertheless, we know from ensemble DFT that KS and physical energy differences can
be connected as follows,

EI (R)− EJ(R) = EKS
I (R)− EKS

J (R)+
∑
K>0

(δKI − δKJ)
∂Ew

Hxc[n]

∂wK

∣∣∣∣
n=nw(R)

where the (geometry-dependent) ensemble density reads

nw(R) = nΨ0(R) +
∑
K>0

wK

(
nΨK (R) − nΨ0(R)

)
= nΦKS

0
(R) +

∑
K>0

wK

(
nΦKS

K
(R) − nΦKS

0
(R)

)

Consequently, we obtain the following exact relation (for I 6= J),〈
ΨJ(R)

∣∣∣∣∣∂Ĥ(R)

∂R

∣∣∣∣∣ΨI (R)

〉
FJI (R)

=

〈
ΦKS

J (R)

∣∣∣∣∣∂ĤKS(R)

∂R

∣∣∣∣∣ΦKS
I (R)

〉
FKS
JI (R)

+
∑
K>0

(δKI − δKJ)
∂Ew

Hxc[n]

∂wK

∣∣∣∣
n=nw(R)
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Non-adiabatic couplings in DFT

Note that the Hxc kernel (which is a key quantity in time-dependent DFT) appears in the
following contribution,

∂ĤKS(R)

∂R
=
∂Ĥ(R)

∂R
+

N∑
i=1

∫
dr
δ2Ew

Hxc[nw(R)]

δn(r)δn(ri )

∂nw(R, r)

∂R
×

How can we turn these derivations into a practical method for computing NACs ?

If, for convenience, we approximate the physical wavefunctions with the KS ones then

FJI (R) ≈

〈
ΦKS

J (R)

∣∣∣∣∣∂Ĥ(R)

∂R

∣∣∣∣∣ΦKS
I (R)

〉

EKS
I (R)− EKS

J (R) +
∑

K>0(δKI − δKJ)
∂Ew

Hxc[n]

∂wK

∣∣∣∣
n=nw(R)

The latter approximation should be tested on the Hubbard dimer !
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