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Optical and fundamental gaps in DFT

The difference in energy between the N-electron first excited and ground states is referred
to as the optical gap. It is expressed as follows,

ωN = EN
1 − EN

0

Note that the optical gap describes a neutral excitation.

On the other hand, the fundamental gap is a ground-state quantity.

It describes the removal and addition of an electron to the system.

It is calculated from the electron affinity [EA] AN and the ionization potential [IP] IN :

EN
g =

(
EN−1

0 − EN
0

)
︸ ︷︷ ︸−

(
EN

0 − EN+1
0

)
︸ ︷︷ ︸

IN AN = IN+1

Interestingly, for non-interacting electrons, the two gaps boil down to the same quantity,
namely the HOMO-LUMO gap of the N-electron system:

ωN = EN
g = εNL − εNH.
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Limitations of the one-electron picture

Mind the gap!

Jean-Luc Bredasab

The energy gap between the highest occupied and lowest unoccupied electronic levels is a critical

parameter determining the electronic, optical, redox, and transport (electrical) properties of a material.

However, the energy gap comes in many flavors, such as the band gap, HOMO–LUMO gap,

fundamental gap, optical gap, or transport gap, with each of these terms carrying a specific meaning.

Failure to appreciate the distinctions among these different energy gaps has caused much confusion in

the literature, which is manifested by the frequent use of improper terminology, in particular, in the case

of organic molecular or macromolecular materials. Thus, it is our goal here to clarify the meaning of the

various energy gaps that can be measured experimentally or evaluated computationally, with a focus on

p-conjugated materials of interest for organic electronics and photonics applications.

It is useful to start our discussion at the molecular level.
Without losing generality, we will assume the most common,
simple case of p-conjugated systems with a closed-shell, singlet
electronic ground state. Currently, in the organic materials
community, there is widespread use of readily available
quantum-chemistry computational codes based on the Hartree–
Fock (HF) method or density functional theory (DFT). As a
consequence, a large number of manuscripts present the results
of molecular orbital (MO) calculations on the neutral mole-
cules. From the outset, it is important to keep in mind that MOs
correspond to one-electron wave functions, each associated
with a specic energy level; of special interest then are the
energies of the highest occupied and lowest unoccupied
molecular orbitals, the HOMO and LUMO. Importantly,
however, what is measured experimentally upon excitation [or
ionization] is the difference in energy between the N-electron
ground state of the molecule and its N-electron excited state [or
its N ! 1-electron ionized state].

In the context of Hartree–Fock calculations, following Koop-
mans’ theorem, the energy of the HOMO level can be considered
as (minus) the vertical ionization potential (IP) while the LUMO
energy represents (minus) the vertical electron affinity (EA,
where we adopt the IUPAC denition, i.e., the electron affinity is
the negative of the energy change when adding an electron to the
neutral species; within this denition, most p-conjugated
systems have positive EA values since the extra electron is
bound). Koopmans’ theorem in fact constitutes a rather crude
approximation since the ionization potential, from a rigorous
standpoint, corresponds to the difference between the total

energies of the N " 1-electron and N-electron states while the
electron affinity is the difference between the total energies of
the N-electron and N + 1-electron states. (It is interesting to
realize that the application of Koopmans’ theorem somehow
works for a number of systems because of a compensation of
errors related to neglecting the impact upon vertical ionization
of both electron relaxations and electron correlations). In the
context of DFT, we note that the exact functional obeys the
property that the HOMO energy corresponds exactly to (minus)
the vertical ionization potential; the electron affinity is then
obtained as (minus) the HOMO energy of the N + 1-electron
system. At this point in time, however, nding the exact func-
tional remains the holy grail of DFT practitioners.

In the molecular case, the fundamental gap is dened as the
difference between the ionization potential and electron affinity:
Efund ¼ IP " EA. Experimentally, it can be determined via a
combination of gas-phase ultraviolet photoelectron spectroscopy
and electron attachment spectroscopy; at the computational
level, it requires the comparison between the total energy of the
N-electron ground state and that of the N + 1-electron state (to
determine EA) or that of the N " 1-electron state (to determine
IP). The calculated HOMO–LUMO gap, i.e., the difference between
the calculated HOMO and LUMO energy levels, only provides an
approximation to the fundamental gap; the quality of that
approximation strongly depends on the specics of the compu-
tational methodology (for instance, in the case of DFT, it very
much depends on the nature of the exchange–correlation func-
tional and the amount of Hartree–Fock exchange it includes).

The optical gap of a molecule corresponds to the energy of
the lowest electronic transition accessible via absorption of a
single photon. (Note that in both molecule and material cases,
our discussion will assume that the lowest transition involves
the rst excited state and neglects the more complex instances
where this state is optically forbidden). The optical gap Eopt is
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generally substantially lower than the fundamental gap; the
reason is that, in the excited state (contrary to the ionized state),
the electron and hole remain electrostatically bound to one
another. The difference between the fundamental gap and the
optical gap (when the latter reects the transition from the
ground state to the lowest excited state) is then a measure of
the electron–hole pair binding energy, EB. Fig. 1 provides a
general illustration of the fundamental and optical gaps when
considering molecular state energies.

We now turn our attention from organic molecules to
organic molecular (or polymeric) materials. Here, intermolec-
ular interactions broaden the molecular energy levels into
electronic bands. The widths of these bands depend on the
strengths of these interactions, i.e., on the electronic couplings
between adjacent molecules. As in the case of inorganic semi-
conductors, the upper occupied band can be referred to as the
valence band and the lower unoccupied band as the conduction
band. In perfectly ordered structures, such as defect-free single
crystals, the wave functions delocalize over the whole system.
However, in the disordered structures commonly found in
organic thin lms, the wave functions tend to localize over a few
neighboring molecules or even a single molecule. We note that
the degree of localization/delocalization is a function of the
balance between the strength of the intermolecular electronic
couplings, which favors delocalization, and the extent of
disorder, which leads to localization.

The band gap is dened as the energy difference between the
top of the valence band and the bottom of the conduction band.
Thus, rigorously speaking, it corresponds to the energy differ-
ence between the ionization potential and electron affinity of
the material. The band gap is also referred to as the transport
gap since it represents the minimum energy necessary to create
a positive charge carrier somewhere in the material (IP) minus
the energy gained by adding a negative charge carrier (EA)
elsewhere. The band gap or transport gap can be estimated

experimentally via a combination of ultraviolet photoelectron
spectroscopy (UPS) and inverse photoemission spectroscopy
(IPES). Thus, the band gap is the equivalent, at the materials
level, of the molecular fundamental gap. It is important to note,
however, that the band gap is typically considerably smaller in
energy than the molecular fundamental gap; this is due to the
fact that, in the solid state, p-conjugated molecules adjacent to
the one carrying a charge do strongly polarize, an effect that
stabilizes the cationic and anionic states (each generally by
about one eV in p-conjugated materials).

Upon photon absorption in a p-conjugated organic material,
the lowest optical transition denes the optical gap. It also leads
to the formation of a bound electron–hole pair, termed an
exciton in the context of condensed-matter physics (the elec-
tron–hole pair can indeed be considered as a quasiparticle as it
can move from molecule to molecule). Then, the difference
between, on the one hand, the band gap or transport gap and, on
the other hand, the optical gap between the ground state and the
lowest excited state denes the exciton binding energy; in
p-conjugatedmaterials, EB is usually on the order of a few tenths
of eV (again, a value smaller than the electron–hole pair binding
energy in the gas phase due to stabilization of both cations and
anions by polarization of surrounding molecules). It is useful to
bear inmind that themagnitude of the exciton binding energy is
due not only to the small dielectric constant (3! 3–5) but also to
substantial electron–electron and electron–vibration interac-
tions typical of p-conjugated materials. In contrast, in conven-
tional inorganic semiconductor crystals, the exciton binding
energy is oen so small (a few meV) that at room temperature
optical excitation directly leads to the formation of free charge
carriers (and thus in these systems Eopt ! Etransport).

Finally, it is useful to mention that the solid-state values of
ionization potential and electron affinity are, in many instances,
approximated experimentally via cyclic voltammetry measure-
ments of the oxidation and reduction potentials carried out in
solution. Conversion factors, assessed on a limited set of systems,
are then used to translate the redox potentials into solid-state
ionization energies. The values of ionization potential and elec-
tron affinity determined in this way have thus to be taken with
much caution. Moreover, given the use of several approaches to
the conversion factors, it is difficult to compare values from
different sources; to minimize this issue, it is highly desirable
that, in addition to the estimated IP and EA values, the experi-
mental electrode potentials and the approximations and
assumptions used in the conversions be reported. (Oen, these
cyclic-voltammetry-based ionization potentials and electron
affinities are inappropriately referred to as “HOMO” and “LUMO”
energies).

In a number of instances, either the oxidation potential or the
reduction potential is experimentally not accessible. A common
procedure is then to use the optical gap to deduce the missing
potential. For instance, in the absence of a measurable reduction
potential, the electron affinity would be assessed by subtracting
the optical gap from the ionization potential. As should be clear
from our discussion, this practice is highly misleading since it
ignores the exciton binding energy built into the optical gap.
Other complications also arise with this practice when the

Fig. 1 Illustration of gap energies in the molecular case:S0 denotes the
(singlet) electronic ground state and S1 the lowest (singlet) excited state
(considered here to be accessible via one-photon absorption). The S1" S0
energy difference then corresponds to the optical gap Eopt. The magni-
tude of the ionization potential is given by the blue vertical line and the
magnitude of the electron affinity by the green vertical line; the IP " EA
difference represents the fundamental gap, Efund. The electron–hole pair
binding energy, EB, is given by Efund " Eopt.
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DFT for a fixed (integral) number N of electrons

In quantum mechanics, the electronic repulsion energy is expressed (in atomic
units) as follows,

Wee =
N(N − 1)

2

∫
R3

dr1

∫
R3

dr2

∫
R3

dr3 . . .

∫
R3

drN
Ψ2(r1, r2, r3, . . . , rN)

|r1 − r2|
,

where Ψ(r1, r2, r3, . . . , rN) is the N-electron wavefunction.

In standard Kohn–Sham (KS) density-functional theory (DFT), the latter energy
can be determined, in principle exactly, from the electron density n(r), which is
mathematically a much simpler quantity than the wavefunction.

For that purpose, the so-called Hartree-exchange-correlation (Hxc) density
functional has been introduced,

Wee → EHxc[n],

where the density is determined exactly from the KS orbitals as follows,

n(r) =
N∑
i=1

|ϕi (r)|2 .
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Self-consistent equations fulfilled by the KS orbitals:

−1

2
∇2ϕi (r) +

[
vext(r) +

δEHxc[n]

δn(r)

]
× ϕi (r) = εiϕi (r),

where vext(r) is any external local (multiplicative) interaction potential energy (the
nuclear-electron attraction potential for example) at position r.

The additional Hxc potential δEHxc[n]/δn(r) ensures that the density of the true
system is recovered, in principle exactly, from the KS orbitals.

HOMO '6(r), "6

'1(r), "1

'2(r), "2

'3(r), '4(r), '5(r), "3 = "4 = "5

'7(r), "7

'8(r), "8

LUMO

2
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Do the KS orbital energies have any physical meaning ?

Let us denote εH and εL the Kohn–Sham HOMO and LUMO energies, respectively.

In the following, we will focus on the (in-principle) exact calculation of the
ionization potential (IP)

IN = EN−1 − EN

and the electron affinity (EA)

AN = EN − EN+1 = IN+1

of the molecule within DFT.

The energies EN−1, EN , and EN+1 of the cationic, N-electron and anionic molecule,
respectively, should in principle be computed with different KS orbitals and
energies.

A simple but non trivial question: can we calculate both IP and EA from the KS
energies and orbitals of the N-electron molecule ?

In other words: IN
?
= − εH , AN

?
= − εL , and IN − AN

?
= εL − εH .

This is known as the fundamental gap problem in DFT.
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Chemical potential in DFT

For a fixed (integral) number N of electrons, shifting the local potential by a
constant −µ has no impact on the KS orbitals and therefore no impact on the
density:

−1

2
∇2ϕi (r) +

[
vext(r) +

δEHxc[n]

δn(r)
− µ

]
× ϕi (r) = εiϕi (r)− µϕi (r)

=
(
εi − µ

)
ϕi (r),

However, the total energy of the KS system is affected by such a shift:

N∑
i=1

εi →
N∑
i=1

(
εi − µ

)
=

(
N∑
i=1

εi

)
− µN.

As readily seen, the impact on the energy depends on the number of electrons.

This is the reason why the constant µ, which is nothing but the chemical potential,
plays a crucial role in grand canonical ensemble DFT (where N can vary).
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Fractional number of electrons in the Hubbard atom

The Hubbard atom is a model system consisting of a single (atomic) site that can
contain up to 2 electrons:

|0i |1i |2i

E0 = 0 E1 = vext E2 = 2vext + U

2

Starting from the one-electron atom case (N = 1) the IP and the EA read

I 1 = E0 − E1 = −vext and A1 = E1 − E2 = −vext − U, respectively,

so that the fundamental gap equals E 1
g = I 1 − A1 = U .

In this simple (one-orbital atomic) model the HOMO-LUMO gap equals zero.

Thus we conclude that, in general, the fundamental gap is not equal to the KS
HOMO-LUMO gap.
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Fractional number of electrons in the Hubbard atom

If we now introduce the chemical potential µ, the energies are modified as follows,

|0i |1i |2i

E0 = 0 E1 = vext � µ E2 = 2vext + U � 2µ

2

By varying µ we will be able to change the number of electrons N continuously∗.

When µ < vext, the lowest energy is E0 thus leading to N = 0.

When vext < µ < vext + U, the lowest energy is E1 thus leading to N = 1.

When µ > vext + U, the lowest energy is E2 thus leading to N = 2.

∗ Principles of DFT, lecture given by Trygve Helgaker at the GDR Correl mini-school on mathematics in electronic structure

theory, Paris, January 2017.
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Fractional number of electrons in the Hubbard atom

number N of electrons

µ-vext

0
1 2

U

• •

••

2
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Fractional number of electrons in the Hubbard atom

What happens when µ = vext ?

In the latter case, the quantum states |0〉 and |1〉 are strictly degenerate
(E0 = E1 = 0).

Consequently, it is possible to mix them (and the energy will remain equal to zero)
in order to obtain an N -electron quantum state,

|N 〉 =
√

1−N |0〉+
√
N |1〉

where 0 < N < 1.

The number of electrons N can vary continuously from 0 to 1 when µ = vext.

Similarly, when µ = vext + U, the states |1〉 and |2〉 are strictly degenerate
(E1 = E2 = −U).

In the latter case, |N 〉 =
√

2−N |1〉+
√
N − 1 |2〉 where 1 < N < 2.

As a result, the number of electrons can vary continuously from 1 to 2 when
µ = vext + U.
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Fractional number of electrons in the Hubbard atom

number N of electrons

µ-vext

0
1 2

U

• •

••

2
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Fractional number of electrons in the Hubbard atom

What happens to the energy (from which we remove the chemical potential
contribution) when µ = vext ?

For the mixed N-electron quantum state |N 〉 =
√

1−N |0〉+
√
N |1〉,

the expectation value for the energy reads

E (N ) =
(√

1−N
)2

× E0 +
(√
N
)2

× E1,

thus leading to E(N ) = (1−N )E0 +NE1 when 0 ≤ N ≤ 1.

Similarly, when µ = vext + U, we have 1 ≤ N ≤ 2 and

E(N ) = (2−N )E1 + (N − 1)E2

Important conclusion: the energy varies linearly (piecewise) with respect to the
number N of electrons.

Emmanuel Fromager (Unistra) Lab seminar, Strasbourg, France 20/11/2018 13 / 29



Fractional number of electrons in the Hubbard atom

number N of electrons

E (N )

0 1 2

0 •

•
•

dE(N )

dN = �I1

dE(N )

dN = �A1

1

It is therefore possible to calculate both IP and EA from a single DFT calculation
by differentiating the energy with respect to N around N = 1.

Note that N → 1− and N → 1+ limits are not the same !

Designing density functionals able to reproduce such a feature still remains a
challenge. This is known as the derivative discontinuity problem.
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IP theorem

Let us denote ν a fractional number of electrons in the range N − 1 < ν < N .

In the extension of Kohn–Sham DFT to open systems, the piecewise linear∗ ν-electron

energy E(ν) = EN−1
0 − IN × (ν − N + 1) is written as E(ν) = min

{ϕi}i

{
E
[
ν, {ϕi}i

]}
with

E
[
ν, {ϕi}i

]
=

N−1∑
i=1

〈
ϕi

∣∣∣∣−∇2

2
+ vne(r)×

∣∣∣∣ϕi

〉
+

(
ν − N + 1

)〈
ϕN

∣∣∣∣−∇2

2
+ vne(r)×

∣∣∣∣ϕN

〉

+EHxc [nν ],

where the density nν(r) =
N−1∑
i=1

|ϕi (r)|2 + (ν − N + 1) |ϕN(r)|2 integrates to ν.

The minimizing (ν-dependent) orbitals fulfill the KS equations:(
−∇

2

2
+ vne(r) +

δEHxc [nν ]

δn(r)

)
ϕνi (r) = ενi ϕ

ν
i (r).

∗J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
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IP theorem

Note that EHxc [n] is ”truly” universal here as it applies to an arbitrary number of
electrons (not only integral ones).

IP theorem:
dE(ν)

dν
= ενN −→ ενN = −IN −→ IN = −εNH

Consequence of the IP theorem:

EN
g = IN − IN+1 = εN+1

H − εNH.

Note that, in principle, the LUMO of the N-electron system is not the HOMO of the
(N + 1)-electron one.

Therefore, there is no reason to believe that εN+1
H is equal to εNL .

Let us stress that this statement does not give much hint about the way the difference
between the latter orbital energies can be modelled in practical calculations.

If we simply write εN+1
H = εNL + ∆fun.

xc , then we recover the standard expression

EN
g = εNL − εNH+∆fun.

xc
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Why ∆fun.
xc is referred to as derivative discontinuity ?

Let us now look at what happens when the number of electrons ν crosses an integer N.

Three situations should be considered in the KS equations:

(
−∇

2

2
+ vne(r) +

δEHxc [nν ]

δn(r)

)
ϕνi (r) = ενi ϕ

ν
i (r).

Situation 1: ν = N−η where η → 0+ ← KS potential unique.

Situation 2: ν = N+η ← KS potential unique.

Situation 3: ν = N ← KS potential unique up to a constant!

The Hartree potential
δEH[n]

δn(r)
=

∫
dr′

n(r′)

|r − r′| is a continuous functional of the density.

Therefore
δExc

[
nN+η

]
δn(r)

− δExc

[
nN−η

]
δn(r)

= constant = εN+1
H − εNL = ∆fun.

xc .
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Fractional number of electrons in the Hubbard atom

number N of electrons

µ-vext

0
1 2

U

• •

••

2
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N-centered ensemble DFT

integral number M of electrons

EM
0

N � 1 N N + 1

•

•
•

1

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018).
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Levy–Zahariev shift-in-potential procedure
Let us consider the N-electron KS-DFT energy expression

EN
0 =

N∑
i=1

〈
ϕi

∣∣∣∣−∇2

2
+ vne(r)×

∣∣∣∣ϕi

〉
+ EHxc [n]

=

(
N∑
i=1

εi

)
+ EHxc [n]−

∫
dr
δEHxc[n]

δn(r)
n(r)

Shift-in-potential approach∗:

δEHxc[n]

δn(r)
→ δEHxc[n]

δn(r)
+

EHxc[n]−
∫
dr

δEHxc[n]

δn(r)
n(r)∫

dr n(r)

εi → ε̃i

EN
0 =

N∑
i=1

ε̃i

Note that this procedure fixes the KS orbital energy levels. They are not defined anymore
up to a constant.

Levy and Zahariev have shown that IN = −ε̃NH + w̃ [n](r)|r→+∞ where w̃ [n](r) is the

shifted Hxc potential.

∗ M. Levy and F. Zahariev, Phys. Rev. Lett. 113, 113002 (2014).
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Two-weight N-centered ensemble DFT

In order to extract both IP and EA separately, we consider the two-weight N-centered
ensemble density,

nξ
0 (r) = ξ−n

N−1
0 (r) + ξ+n

N+1
0 (r) +

[
1− ξ−

N − 1

N
− ξ+

N + 1

N

]
nN

0 (r)

where ξ ≡ (ξ−, ξ+) and the following convexity condition is fulfilled,

0 ≤ (N − 1)ξ− + (N + 1)ξ+ ≤ N.

Note that the latter density integrates to N.

Extension of DFT to N-centered ground-state ensembles:

Exc[n] = EN,ξ=0
xc [n]

ξ+>0−→
ξ−>0

EN,ξ
xc [n] ← to be modeled !

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018).
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Two-weight N-centered ensemble DFT

Choosing ξ = 0 (i.e. returning to standard N-electron DFT) leads to1

EN
0 =

N∑
i=1

ε̃N,ξ=0
i and EN±1

0 =
N±1∑
i=1

ε̃N,ξ=0
i +

1

N ± 1

∂EN,ξ
xc

[
nN

0

]
∂ξ±

∣∣∣∣∣
ξ=0



where
{
ε̃N,ξ=0
i

}
i=1,2,...

are the Levy–Zahariev shifted KS orbital energies2.

Interestingly, we recover the Levy–Zahariev expression for the IP,

IN = EN−1
0 − EN

0 = −ε̃N,ξ=0
H +

∂EN,ξ
xc

[
nN

0

]
∂ξ−

∣∣∣∣∣
ξ=0

where the shifted Hxc potential at position r →∞ is now written explicitly as a
density-functional derivative discontinuity contribution.

1 B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018).
2 M. Levy and F. Zahariev, Phys. Rev. Lett. 113, 113002 (2014).
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How to use the N-centered paradigm in practice ?

A finite (N < +∞) and uniform electron gas∗ is the perfect toy system for modeling DDs.

Indeed, in the latter case,

nξ(r) = ξ−
N − 1

V
+ ξ+

N + 1

V
+

[
1− ξ−

N − 1

N
− ξ+

N + 1

N

]
× N

V

=
N

V

= nN(r) ← ξ-independent!

We should be able to extract from this model generalized LDA functionals for ensembles∗:

N

V
= n(r)

N ↔ α(r) =
1

CFn5/3(r)

(
τ(r)− |∇n(r)|2

4n(r)

)
,

where τ(r) is the kinetic energy density and CF =
3

5
(6π2)2/3.

Those will exhibit DDs through their ξ dependence.

∗P.-F. Loos, J. Chem. Phys. 146, 114108 (2017).
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1D finite uniform electron gas: the ringium model

y
a

electron 2

BB

R
42

-
I

•
electrons

'

) TY
BB 9

K

I →

HI = IT
,
-4/2=2 R2

,

2 r
, .rs

= 21241 -

as ( ez . 9 ) )

N-electron Hamiltonian: Ĥ = − 1

2R2

N∑
i=1

∂2

∂ϕ2
i

+
N∑
i<j

1

rij

P.-F. Loos, C. J. Ball, and P. M. W. Gill, J. Chem. Phys. 140, 18A524 (2014).
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1D finite uniform electron gas: the ringium model

Kohn–Sham orbitals: Φm(ϕ) =
1√
2πR

exp (imϕ) with m = 0,±1,±2, . . .

Uniform electron density: nN =
N∑

m=1

|Φm(ϕ)|2 =
N

2πR
.

Accurate Hxc energies can be computed for such a model (generalized LDA functional).

Application to non-uniform 1D systems:

(i) electrons in a box: boxium model.

(ii) electrons in a harmonic potential: hookium model ← quantum dots !

So far, pure ground-state energies only have been computed∗.

The extension of the latter work to N-centered ensembles is in progress.

∗P.-F. Loos, C. J. Ball, and P. M. W. Gill, J. Chem. Phys. 140, 18A524 (2014).
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Individual energy levels in ensemble DFT
For a given (non-degenerate) M-state canonical ensemble, the ensemble energy reads

Ew =

(
1−

M−1∑
i=1

wi

)
EN

0 +
M−1∑
i=1

wiE
N
i .

Similarly, the ensemble density reads

nw(r) =

(
1−

M−1∑
i=1

wi

)
nN

0 (r) +
M−1∑
i=1

win
N
i (r).

Exact energy expression for state j: Ej = Ew +
M−1∑
i=1

(δij − wi )
∂Ew

∂wi

, thus leading to1

Ej = ẼKS,w
j +

M−1∑
i=1

(δij − wi )
∂Ew

xc[n]

∂wi

∣∣∣∣
n=nw

.

Important consequences:

(1) excited-state molecular gradients.

(2) Gould-Pittalis-like2 decomposition Ew
xc[n] =

∑M−1
i=0 wiE i

xc[n] of the ens. xc energy.

1 K. Deur and E. Fromager, to be submitted (2018).
2 T. Gould and S. Pittalis, arXiv:1808.04994 (2018).
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