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Optical and fundamental gaps in DFT

@ The difference in energy between the N-electron first excited and ground states is referred
to as the optical gap. It is expressed as follows,

w' =g - E
@ Note that the optical gap describes a neutral excitation.
@ On the other hand, the fundamental gap is a ground-state quantity.

@ It describes the removal and addition of an electron to the system.

@ It is calculated from the electron affinity [EA] AV and the ionization potential [IP] /":

EN = (EON’l - EON) - (EON - E0N“>

IN AN — IN+1

@ Interestingly, for non-interacting electrons, the two gaps boil down to the same quantity,
namely the HOMO-LUMO gap of the N-electron system:

N_ N _ _N_ _N
wh =E; =e¢ep, —é€g-
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Fig. 1 Illustration of gap energies in the molecular case: S denotes the
(singlet) electronic ground state and S; the lowest (singlet) excited state

(considered here to be accessible via one-photon absorption). The S; — So h]/
energy difference then corresponds to the optical gap Eopt. The magni-
tude of the ionization potential is given by the blue vertical line and the

magnitude of the electron affinity by the green vertical line; the IP — EA
difference represents the fundamental gap, Eynq. The electron—hole pair
binding energy, Eg, is given by Eqyng — Eopt-
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DFT for a fixed (integral) number N of electrons

@ In quantum mechanics, the electronic repulsion energy is expressed (in atomic
units) as follows,

N(N -1 Y2 e
Wee = 7( ) / dl‘1 / drz / dr3 . / drN (rh r2, 13, ’ rN)7
2 R3 R3 R3 R3 r1 — o

where W(ry,ro,r3,...,ry) is the N-electron wavefunction.

@ In standard Kohn-Sham (KS) density-functional theory (DFT), the latter energy
can be determined, in principle exactly, from the electron density n(r), which is
mathematically a much simpler quantity than the wavefunction.

@ For that purpose, the so-called Hartree-exchange-correlation (Hxc) density
functional has been introduced,
Wee — EHXC["]7
where the density is determined exactly from the KS orbitals as follows,

n(r) = lei(n)P.

i=1

Emmanuel Fromager (Unistra) Lab seminar, Strasbourg, France 20/11/2018



@ Self-consistent equations fulfilled by the KS orbitals:

5EHXC [n]

_%V2<p,-(r)+ Vext (F) + 3n(n)

X pi(r) = €ipi(r),

where vext(r) is any external local (multiplicative) interaction potential energy (the
nuclear-electron attraction potential for example) at position r.

@ The additional Hxc potential §Erixc[n]/dn(r) ensures that the density of the true
system is recovered, in principle exactly, from the KS orbitals.

— ps(r), 8

LUMO — (),

o
-

HOMO
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Do the KS orbital energies have any physical meaning 7

@ Let us denote e and £1, the Kohn—Sham HOMO and LUMO energies, respectively.

@ In the following, we will focus on the (in-principle) exact calculation of the

ionization potential (IP)

and the electron affinity (EA)

‘AN = EN - EN+1 ‘ = IN+1

of the molecule within DFT.

@ The energies Ey_1, En, and En41 of the cationic, N-electron and anionic molecule,
respectively, should in principle be computed with different KS orbitals and
energies.

@ A simple but non trivial question: can we calculate both IP and EA from the KS
energies and orbitals of the N-electron molecule ?

? ? ?
@ In otherwords: |Iyn = —cu | |Av = —cr |, and|Iyn — Ay = e, —en |

@ This is known as the fundamental gap problem in DFT.
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Chemical potential in DFT

@ For a fixed (integral) number N of electrons, shifting the local potential by a
constant —y has no impact on the KS orbitals and therefore no impact on the
density:

—%V%f(r) + [Vext(r) + %’Eign] - u] x@i(r) = eipi(r) — ppi(r)

= (s,- - u) i(r),

@ However, the total energy of the KS system is affected by such a shift:
N N N
SRR SICERE RN B
i=1 i=1 i=1

@ As readily seen, the impact on the energy depends on the number of electrons.

@ This is the reason why the constant y, which is nothing but the chemical potential,
plays a crucial role in grand canonical ensemble DFT (where N can vary).
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Fractional number of electrons in the Hubbard atom

@ The Hubbard atom is a model system consisting of a single (atomic) site that can
contain up to 2 electrons:

0) 1) 12)
e b
EO =0 El = Vext E2 = 2Uext +U

@ Starting from the one-electron atom case (N = 1) the IP and the EA read

'=FEy— El = —vVext and Al = E| — E» = —veyx — U, respectively,

so that the fundamental gap equals Eg1 =I"—A'=U|

@ In this simple (one-orbital atomic) model the HOMO-LUMO gap equals zero.

@ Thus we conclude that, in general, the fundamental gap is not equal to the KS
HOMO-LUMO gap.
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Fractional number of elec s in the Hubbard atom

@ If we now introduce the chemical potential p, the energies are modified as follows,

10) 1) 12)
e d
80:0 51:vext—,u 82:2U8Xt+U—2,u

@ By varying p we will be able to change the number of electrons N continuously™.

@ When g < Vext, the lowest energy is & thus leading to N = 0.
@ When vext < pt < Vext + U,  the lowest energy is & thus leading to N = 1.
@ When p > Vext + U, the lowest energy is & thus leading to N = 2.

* Principles of DFT, lecture given by Trygve Helgaker at the GDR Correl mini-school on mathematics in electronic structure

theory, Paris, January 2017.
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Fractional number of electrons in the Hubbard atom

M'Uext E
Ut o .
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Fractional number of electrons in the Hubbard atom

@ What happens when = Vext ?

@ In the latter case, the quantum states |0) and |1) are strictly degenerate

(&0 = & = 0).

@ Consequently, it is possible to mix them (and the energy will remain equal to zero)
in order to obtain an A/-electron quantum state,

M) =V1I-N|0)+VNI|1)
where 0 <N < 1.
@ The number of electrons N can vary continuously from 0 to 1 when g = Vext.

@ Similarly, when p = veyxy + U, the states |1) and |2) are strictly degenerate
(&r=&=-U).

@ In the latter case, [N)=+v2—-N 1)+ VN —1]2) where 1<N <2

@ As a result, the number of electrons can vary continuously from 1 to 2 when
[= Vext + U.
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Fractional number of electrons in the Hubbard atom

M'Uext E
Ut o .
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Fractional number of electrons in the Hubbard atom

@ What happens to the energy (from which we remove the chemical potential
contribution) when = Vext ?

@ For the mixed N-electron quantum state |A) = /1 — N |0) + VN [1),

the expectation value for the energy reads

EWN) = (mf x Eo + (\/N)2 x Ei,

thus leading to \ EWN)=(1—-N)E+NE \ when 0< N <1.

@ Similarly, when pt = Vext + U, we have 1< N <2 and

] EWN)=(2-NE + N -1)E \

@ Important conclusion: the energy varies linearly (piecewise) with respect to the
number N of electrons.
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Fractional number of electrons in the Hubbard atom

T 1 Ty,
(NGRS S -

number N of electrons

@ It is therefore possible to calculate both IP and EA from a single DFT calculation
by differentiating the energy with respect to N around A = 1.

@ Note that ' — 1~ and A/ — 17 limits are not the same !

@ Designing density functionals able to reproduce such a feature still remains a
challenge. This is known as the derivative discontinuity problem.
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IP theorem

@ Let us denote v a fractional number of electrons in the range [N —-1<v <N |

@ In the extension of Kohn—Sham DFT to open systems, the piecewise linear* v-electron

energy‘ EW)=EM"?'—1"x(v-N+1)

is written as E(r) = min E[l/7 {‘Pi}f] with
{ei};

o)t (o wen) (o o)

2

Y (0%

E[v. (e :”Z”M,zgvm(r)x ’

i=1 2

+Enxe [07],
N—1
where the density  n”(r) = Z lpi(0))? + (v — N + 1) |on(r)*> integrates to v.
i-1

@ The minimizing (v-dependent) orbitals fulfill the KS equations:

( % 0 Eixe [n¥]

-+ Ve(r) + 0] ) @i (r) = e/ @7 (r).

*J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
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IP theorem

@ Note that Egy. [n] is "truly” universal here as it applies to an arbitrary number of
electrons (not only integral ones).

dEW) _ |

@ |P theorem: N
dv

@ Consequence of the IP theorem:

N _ N _ N+l _ _N+1 N
ES =1"—1 =€y —E€g-

@ Note that, in principle, the LUMO of the N-electron system is not the HOMO of the
(N + 1)-electron one.

@ Therefore, there is no reason to believe that ' is equal to /.

@ Let us stress that this statement does not give much hint about the way the difference
between the latter orbital energies can be modelled in practical calculations.

@ If we simply write ef*! = ¢N 4 Afun- | then we recover the standard expression

EgN =N N Alun

xc
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is referred to as derivative discontinuity ?

Let us now look at what happens when the number of electrons v crosses an integer N.

Three situations should be considered in the KS equations:

0 Epixe [n7]

(—%2 + vue(r) + ) @7 (r) = &7 ().

on(r)
Situation 1: v = N-n where 17— 0" < KS potential unique.
Situation 2: v = N+n <+ KS potential unique.
Situation 3: v =N < KS potential unique up to a constant!

SE r
The Hartree potential 5 IE[;] = /dr/ | ( )/| is a continuous functional of the density.
n(r . r—r

SEye [nN] 6B [n7] y

Therefore = constant = eltt _ N — Afun
on(r) on(r)
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Fractional number of electrons in the Hubbard atom
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N-centered ensemble DFT

=

|
=
=

integral number M of electrons

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018).
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Levy—Zahariev shift-in-potential procedure

@ Let us consider the N-electron KS-DFT energy expression

v S v
EO = Z <SD,’—7 + Vue(l')X

i=1

<pf> + Epixe [n]

OE

_ (s [ g 0Bl
_ 2&,>+Ech[n] /d S 0

@ Shift-in-potential approach*:

5EHXC[n]
dEnxe[n] - dEnxc[n] Eitscln] = [ dr on(r) n(r)
an(r) an(r) J dr n(r)
Ei — 5,‘

N
E) = E Ei
i=1

@ Note that this procedure fixes the KS orbital energy levels. They are not defined anymore
up to a constant.

IN = —&N + wln](r)|,_, .. | where W[n](r) is the

@ Levy and Zahariev have shown that

shifted Hxc potential.

* M. Levy and F. Zahariev, Phys. Rev. Lett. 113, 113002 (2014).
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Two-weight N-centered ensemble DFT

@ In order to extract both IP and EA separately, we consider the two-weight N-centered
ensemble density,

M = e+ [1oe Tt M gy

where £ = (£_, &) and the following convexity condition is fulfilled,

0< (N—1)5 +(N+1)5 <N.

@ Note that the latter density integrates to N.

@ Extension of DFT to N-centered ground-state ensembles:

Exc[n] = EN:4=0[n] ey EN:€[n] <+ to be modeled !
xc 2o xc

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018).
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Two-weight N-centered ensemble DFT

@ Choosing ¢ = 0 (i.e. returning to standard N-electron DFT) leads to*

N N+1 N N
_ _ 1 9EN:S [n)]
E' =Y &' and B =) |0y —— e 02
i=1 i=1 N+1 8£i £=0

where {€?"5:0}’,:1 ,  are the Levy—Zahariev shifted KS orbital energies?.

@ Interestingly, we recover the Levy—Zahariev expression for the IP,

DEL [f]
e

N=E'T B = et +
£=0

where the shifted Hxc potential at position r — oo is now written explicitly as a
density-functional derivative discontinuity contribution.

1 B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018).
2 M. Levy and F. Zahariev, Phys. Rev. Lett. 113, 113002 (2014).
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How to use the N-centered paradigm in practice ?

@ A finite (N < 400) and uniform electron gas* is the perfect toy system for modeling DDs.

@ Indeed, in the latter case,

N—-1 N+1 N—-1 N+1 N
3 — [ - 1—¢ — — X —
ns(r) 3 v +& v +[ 3 N & N] v
- N
TV
= n"(r) + ¢-independent!

@ We should be able to extract from this model generalized LDA functionals for ensembles*:

_ 1 | V()
<> a(r) - CFn5/3(r) <T(r) - 4n(r) > s

3
where 7(r) is the kinetic energy density and Cr = 5 (6m2)*/3.

@ Those will exhibit DDs through their & dependence.

*P.-F. Loos, J. Chem. Phys. 146, 114108 (2017).
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1D finite uniform electron gas: the ringium model

eledvom 2
Mo

R eleehrong

=
> 7 R= 2R 2

L are(ioen(t,-%))

12‘[2:

N 1 X o N1
A= —+ ) =

N-electron Hamiltonian: ey 3
2R 7 0p; S

P.-F. Loos, C. J. Ball, and P. M. W. Gill, J. Chem. Phys. 140, 18A524 (2014).
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1D finite uniform electron gas: the ringium model

1
@ Kohn—Sham orbitals: ¢ = exp (im with m=0,£1,42,...
m(%) WorT- p (ime)
N N
@ Unif lectron density: n" =" |® R
niform electron density: n [P ()] R

m=1
@ Accurate Hxc energies can be computed for such a model (generalized LDA functional).

@ Application to non-uniform 1D systems:

(i) electrons in a box: boxium model.

(i) electrons in a harmonic potential: hookium model <— quantum dots !
@ So far, pure ground-state energies only have been computed*.

@ The extension of the latter work to N-centered ensembles is in progress.

*P.-F. Loos, C. J. Ball, and P. M. W. Gill, J. Chem. Phys. 140, 18A524 (2014).
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Individual energy levels in ensemble DFT

@ For a given (non-degenerate) M-state canonical ensemble, the ensemble energy reads

M—1 M—1
EY = <1—ZW,-> E'+ Y wi
i=1 i=1

@ Similarly, the ensemble density reads

n"(r) = (1 - i W,‘> név(r) + i Wi",{v(r)~

M—1

@ Exact energy expression for state j: Ej=E"+ Z (65 — wi)

=
ow;

i

= aEw O [n]

E =
/ aW,'

(‘m
+
]
Ql
§

n:nw
@ Important consequences:

(1) excited-state molecular gradients.

, thus leading to!

(2) Gould-Pittalis-like> decomposition E¥ [n] = =M wiEZ_[n] of the ens. xc energy.

1 K. Deur and E. Fromager, to be submitted (2018).
2 T. Gould and S. Pittalis, arXiv:1808.04994 (2018).
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