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N -electron Schrödinger equation for the ground state
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where Ψ0 ≡ Ψ0(r1, r2, . . . , rN ) and Ĥ = T̂ + Ŵee + V̂ with

T̂ ≡ −1
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−→ local nuclear potential operator
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Kohn–Sham DFT in a nutshell

In Kohn–Sham (KS) DFT, the many-electron problem is formally transformed into a
one-electron-like problem.

The “magical” one-electron wavefunctions (so-called KS orbitals) fulfill the following
self-consistent KS equations:

(
− 1

2
∇2

r + v(r) +

∫
dr′

n(r′)

|r− r′| +
δExc[n]

δn(r)

)
ϕk(r) = εk ϕk(r)

where n(r) =
N∑

k=1

∣∣ϕk(r)
∣∣2 = N

∫
dr2 . . .

∫
drN

∣∣∣Ψ0(r, r2 . . . , rN )
∣∣∣
2

= nΨ0 (r) .

When convergence is reached, the (in-principle-exact) ground-state energy reads

E0 = −1

2

N∑

k=1

∫
dr ϕ∗k(r)∇2

rϕk(r) +

∫
dr v(r)n(r) +

1

2

∫ ∫
drdr′

n(r)n(r′)

|r− r′| + Exc[n].

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
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DFT for ground-state ensembles

The standard derivation of DFT holds for pure-state v-representable densities.

The ground-state density is not uniquely defined in case of degeneracy.

Densities of degenerate states can actually be mixed.

If the ground state is g times degenerate, we have

E0 =
g−1∑

i=0

wi
〈

Ψi

∣∣∣Ĥ
∣∣∣Ψi

〉
,

g−1∑

i=0

wi = 1, Ĥ|Ψi〉 = E0|Ψi〉.

or, equivalently,

E0 =
g−1∑

i=0

wi
〈

Ψi

∣∣∣T̂ + Ŵee

∣∣∣Ψi

〉

︸ ︷︷ ︸
≡F [n]

+

∫
dr v(r)×

(
g−1∑

i=0

winΨi
(r)

)

︸ ︷︷ ︸
≡n(r)

The density n is said to be ensemble v-representable.

C. A. Ullrich and W. Kohn, Phys. Rev. Lett. 87, 093001 (2001).
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Kohn–Sham DFT for ground-state ensembles

In KS-DFT, ensembles are described by fractionally-occupied orbitals.

Example (with g = 3):

n(r) =
g−1∑

i=0

wi

(
N−1∑

k=1

∣∣ϕk(r)
∣∣2 +

∣∣ϕN+i(r)
∣∣2
)

=
N−1∑

k=1

∣∣ϕk(r)
∣∣2 +

g−1∑

i=0

wi
∣∣ϕN+i(r)

∣∣2
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Molecular orbital energy diagram and gaps

HOMO "H = "6
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The HOMO-LUMO gap can be interpreted in two ways.

εL − εH =
(
EN+1

0 − EN0
)

+
(
EN−1

0 − EN0
)

= Eg ← fundamental gap [charged excit.]

εL − εH = EN1 − EN0 = ωg ← optical gap [neutral excitation]
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Limitations of the one-electron picture

Mind the gap!

Jean-Luc Bredasab

The energy gap between the highest occupied and lowest unoccupied electronic levels is a critical

parameter determining the electronic, optical, redox, and transport (electrical) properties of a material.

However, the energy gap comes in many flavors, such as the band gap, HOMO–LUMO gap,

fundamental gap, optical gap, or transport gap, with each of these terms carrying a specific meaning.

Failure to appreciate the distinctions among these different energy gaps has caused much confusion in

the literature, which is manifested by the frequent use of improper terminology, in particular, in the case

of organic molecular or macromolecular materials. Thus, it is our goal here to clarify the meaning of the

various energy gaps that can be measured experimentally or evaluated computationally, with a focus on

p-conjugated materials of interest for organic electronics and photonics applications.

It is useful to start our discussion at the molecular level.
Without losing generality, we will assume the most common,
simple case of p-conjugated systems with a closed-shell, singlet
electronic ground state. Currently, in the organic materials
community, there is widespread use of readily available
quantum-chemistry computational codes based on the Hartree–
Fock (HF) method or density functional theory (DFT). As a
consequence, a large number of manuscripts present the results
of molecular orbital (MO) calculations on the neutral mole-
cules. From the outset, it is important to keep in mind that MOs
correspond to one-electron wave functions, each associated
with a specic energy level; of special interest then are the
energies of the highest occupied and lowest unoccupied
molecular orbitals, the HOMO and LUMO. Importantly,
however, what is measured experimentally upon excitation [or
ionization] is the difference in energy between the N-electron
ground state of the molecule and its N-electron excited state [or
its N ! 1-electron ionized state].

In the context of Hartree–Fock calculations, following Koop-
mans’ theorem, the energy of the HOMO level can be considered
as (minus) the vertical ionization potential (IP) while the LUMO
energy represents (minus) the vertical electron affinity (EA,
where we adopt the IUPAC denition, i.e., the electron affinity is
the negative of the energy change when adding an electron to the
neutral species; within this denition, most p-conjugated
systems have positive EA values since the extra electron is
bound). Koopmans’ theorem in fact constitutes a rather crude
approximation since the ionization potential, from a rigorous
standpoint, corresponds to the difference between the total

energies of the N " 1-electron and N-electron states while the
electron affinity is the difference between the total energies of
the N-electron and N + 1-electron states. (It is interesting to
realize that the application of Koopmans’ theorem somehow
works for a number of systems because of a compensation of
errors related to neglecting the impact upon vertical ionization
of both electron relaxations and electron correlations). In the
context of DFT, we note that the exact functional obeys the
property that the HOMO energy corresponds exactly to (minus)
the vertical ionization potential; the electron affinity is then
obtained as (minus) the HOMO energy of the N + 1-electron
system. At this point in time, however, nding the exact func-
tional remains the holy grail of DFT practitioners.

In the molecular case, the fundamental gap is dened as the
difference between the ionization potential and electron affinity:
Efund ¼ IP " EA. Experimentally, it can be determined via a
combination of gas-phase ultraviolet photoelectron spectroscopy
and electron attachment spectroscopy; at the computational
level, it requires the comparison between the total energy of the
N-electron ground state and that of the N + 1-electron state (to
determine EA) or that of the N " 1-electron state (to determine
IP). The calculated HOMO–LUMO gap, i.e., the difference between
the calculated HOMO and LUMO energy levels, only provides an
approximation to the fundamental gap; the quality of that
approximation strongly depends on the specics of the compu-
tational methodology (for instance, in the case of DFT, it very
much depends on the nature of the exchange–correlation func-
tional and the amount of Hartree–Fock exchange it includes).

The optical gap of a molecule corresponds to the energy of
the lowest electronic transition accessible via absorption of a
single photon. (Note that in both molecule and material cases,
our discussion will assume that the lowest transition involves
the rst excited state and neglects the more complex instances
where this state is optically forbidden). The optical gap Eopt is
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generally substantially lower than the fundamental gap; the
reason is that, in the excited state (contrary to the ionized state),
the electron and hole remain electrostatically bound to one
another. The difference between the fundamental gap and the
optical gap (when the latter reects the transition from the
ground state to the lowest excited state) is then a measure of
the electron–hole pair binding energy, EB. Fig. 1 provides a
general illustration of the fundamental and optical gaps when
considering molecular state energies.

We now turn our attention from organic molecules to
organic molecular (or polymeric) materials. Here, intermolec-
ular interactions broaden the molecular energy levels into
electronic bands. The widths of these bands depend on the
strengths of these interactions, i.e., on the electronic couplings
between adjacent molecules. As in the case of inorganic semi-
conductors, the upper occupied band can be referred to as the
valence band and the lower unoccupied band as the conduction
band. In perfectly ordered structures, such as defect-free single
crystals, the wave functions delocalize over the whole system.
However, in the disordered structures commonly found in
organic thin lms, the wave functions tend to localize over a few
neighboring molecules or even a single molecule. We note that
the degree of localization/delocalization is a function of the
balance between the strength of the intermolecular electronic
couplings, which favors delocalization, and the extent of
disorder, which leads to localization.

The band gap is dened as the energy difference between the
top of the valence band and the bottom of the conduction band.
Thus, rigorously speaking, it corresponds to the energy differ-
ence between the ionization potential and electron affinity of
the material. The band gap is also referred to as the transport
gap since it represents the minimum energy necessary to create
a positive charge carrier somewhere in the material (IP) minus
the energy gained by adding a negative charge carrier (EA)
elsewhere. The band gap or transport gap can be estimated

experimentally via a combination of ultraviolet photoelectron
spectroscopy (UPS) and inverse photoemission spectroscopy
(IPES). Thus, the band gap is the equivalent, at the materials
level, of the molecular fundamental gap. It is important to note,
however, that the band gap is typically considerably smaller in
energy than the molecular fundamental gap; this is due to the
fact that, in the solid state, p-conjugated molecules adjacent to
the one carrying a charge do strongly polarize, an effect that
stabilizes the cationic and anionic states (each generally by
about one eV in p-conjugated materials).

Upon photon absorption in a p-conjugated organic material,
the lowest optical transition denes the optical gap. It also leads
to the formation of a bound electron–hole pair, termed an
exciton in the context of condensed-matter physics (the elec-
tron–hole pair can indeed be considered as a quasiparticle as it
can move from molecule to molecule). Then, the difference
between, on the one hand, the band gap or transport gap and, on
the other hand, the optical gap between the ground state and the
lowest excited state denes the exciton binding energy; in
p-conjugatedmaterials, EB is usually on the order of a few tenths
of eV (again, a value smaller than the electron–hole pair binding
energy in the gas phase due to stabilization of both cations and
anions by polarization of surrounding molecules). It is useful to
bear inmind that themagnitude of the exciton binding energy is
due not only to the small dielectric constant (3! 3–5) but also to
substantial electron–electron and electron–vibration interac-
tions typical of p-conjugated materials. In contrast, in conven-
tional inorganic semiconductor crystals, the exciton binding
energy is oen so small (a few meV) that at room temperature
optical excitation directly leads to the formation of free charge
carriers (and thus in these systems Eopt ! Etransport).

Finally, it is useful to mention that the solid-state values of
ionization potential and electron affinity are, in many instances,
approximated experimentally via cyclic voltammetry measure-
ments of the oxidation and reduction potentials carried out in
solution. Conversion factors, assessed on a limited set of systems,
are then used to translate the redox potentials into solid-state
ionization energies. The values of ionization potential and elec-
tron affinity determined in this way have thus to be taken with
much caution. Moreover, given the use of several approaches to
the conversion factors, it is difficult to compare values from
different sources; to minimize this issue, it is highly desirable
that, in addition to the estimated IP and EA values, the experi-
mental electrode potentials and the approximations and
assumptions used in the conversions be reported. (Oen, these
cyclic-voltammetry-based ionization potentials and electron
affinities are inappropriately referred to as “HOMO” and “LUMO”
energies).

In a number of instances, either the oxidation potential or the
reduction potential is experimentally not accessible. A common
procedure is then to use the optical gap to deduce the missing
potential. For instance, in the absence of a measurable reduction
potential, the electron affinity would be assessed by subtracting
the optical gap from the ionization potential. As should be clear
from our discussion, this practice is highly misleading since it
ignores the exciton binding energy built into the optical gap.
Other complications also arise with this practice when the

Fig. 1 Illustration of gap energies in the molecular case:S0 denotes the
(singlet) electronic ground state and S1 the lowest (singlet) excited state
(considered here to be accessible via one-photon absorption). The S1" S0
energy difference then corresponds to the optical gap Eopt. The magni-
tude of the ionization potential is given by the blue vertical line and the
magnitude of the electron affinity by the green vertical line; the IP " EA
difference represents the fundamental gap, Efund. The electron–hole pair
binding energy, EB, is given by Efund " Eopt.

18 | Mater. Horiz., 2014, 1, 17–19 This journal is ª The Royal Society of Chemistry 2014
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Levy–Zahariev shift-in-potential procedure
Let us consider the N -electron KS-DFT energy expression

EN0 =
N∑

k=1

〈
ϕk

∣∣∣∣−
∇2

2
+ vne(r)×

∣∣∣∣ϕk
〉

+ EHxc [n]

=

(
N∑

k=1

εk

)
+ EHxc [n]−

∫
dr
δEHxc[n]

δn(r)
n(r)

Shift-in-potential approach∗:

δEHxc[n]

δn(r)
→ δEHxc[n]

δn(r)
+

EHxc[n]−
∫

dr
δEHxc[n]

δn(r)
n(r)

∫
dr n(r)

εk → ε̃k

EN0 =
N∑

k=1

ε̃k

Note that this procedure truly fixes (not up to a constant) the KS orbital energy levels.

∗ M. Levy and F. Zahariev, Phys. Rev. Lett. 113, 113002 (2014).
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DFT for canonical ensembles
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DFT for an ensemble of states
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DFT for canonical ensembles

An ensemble consists of a given number of states and weights assigned to these states.

The simplest ensemble consists of the ground Ψ0 and first excited Ψ1 N-electron states,
with weights (1− w) and w, respectively.

Gross-Oliveira-Kohn (GOK) variational principle:

(1− w)〈Ψ|Ĥ|Ψ〉+ w〈Ψ′|Ĥ|Ψ′〉 ≥ (1− w)E0 + wE1 with 0 ≤ w ≤ 1/2.

The w-dependent lower bound Ew = (1− w)E0 + wE1 is the exact ensemble energy.

Note that the ensemble energy is linear in w and its slope is the optical gap ωg = E1−E0.

E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988).
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DFT for canonical ensembles

The Hohenberg–Kohn theorem can be extended to ensembles for any fixed weight w1.

In this context, the basic variable is the ensemble density:

nw(r) = (1− w)nN0 (r) + wnN1 (r) where

∫
drnw(r) = N.

The xc energy of the ensemble Ewxc[n] is a density functional which is w-dependent.

Why do we (now) need to consider w as an additional variable?

Why is the density not sufficient?

> Because a canonical ensemble density can be ground-state v-representable.2

> Variations in w (at fixed density) will become crucial when extracting excitation energies3.

1E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988).
2K. Deur, L. Mazouin, and E. Fromager, Phys. Rev. B 95, 035120 (2017).
3K. Deur and E. Fromager, J. Chem. Phys. 150, 094106 (2019).
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The optical gap in GOK-DFT

In GOK ensemble DFT1, the optical gap can be expressed as follows,

ωg = εNL − εNH +

[
∂Ewxc [n]

∂w

∣∣∣∣
n=nw

]

w=0︸ ︷︷ ︸
derivative discontinuity

or, equivalently,2

ωg = EN1 − EN0 = ε̃NL − ε̃NH +

[
∂Ewxc [n]

∂w

∣∣∣∣
n=nw

]

w=0

=

(
N−1∑

k=1

ε̃Nk + ε̃NL

)
+

[
∂Ewxc [n]

∂w

∣∣∣∣
n=nw

]

w=0︸ ︷︷ ︸
EN

1

−
N∑

k=1

ε̃Nk

︸ ︷︷ ︸
EN

0

1E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988).
2K. Deur and E. Fromager, J. Chem. Phys. 150, 094106 (2019).
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Jacob’s ladder for ensembles?

PC63CH14-Casida ARI 27 February 2012 14:45

Quantum chemical heaven

Hartree world

Exc

vxc

fxc

g xc

Ψσ
a (r),    σa

Ψσ
i (r)

τ(r),    2 ρ(r)

x(r)

ρ(r)
Hartree ee worldld

Hybrid

Double hybrid

mGGA

GGA

LDA

Figure 3
The front ( gray) ladder of “Jacob’s jungle gym” (22) represents the Jacob’s ladder for Exc (23). Spin indices
have been dropped for simplicity; however, present practice is to use spin-density functional theory wherever
the density is a two-component object, (ρα, ρβ ). The local density approximation (LDA) involves only the
density ρ(r) at each point; the generalized gradient approximation (GGA) involves both ρ(r) and the reduced
gradient x(r) = |∇⃗ρ(r)|/ρ4/3(r); the meta (m)GGA involves ρ(r), x(r), and the local kinetic energy
τ (r) = % p npψp (r)∇2ψp (r) or the Laplacian of the density, ∇2ρ(r). The fourth rung involves hybrid
functionals, exact exchange, and related functionals. There, explicit information about occupied orbitals is
also incorporated into the functional. On the fifth and highest rung, we encounter double hybrids,
functionals based on the adiabatic connection fluctuation-dissipation theorem, and related functionals. At
this highest level, explicit information is added about unoccupied orbitals and their orbital energies, and the
DFA closely approaches conventional many-body perturbation theory.

3.3. Scale-Up
Because the Kohn-Sham DFT resembles the HF approximation, which is the basis of much of
the development of (non-DFT) ab initio quantum chemistry, comparing the two approaches is
relatively easy, as is incorporating a Kohn-Sham solver into a wave-function ab initio approach.
This makes especially good sense if DFAs are viewed as a way of extending the accuracy of wave-
function ab initio approaches to systems larger than would otherwise be possible. In this sense,
the problem of how to scale-up calculations is highly relevant to the success of DFT and DFAs.
Owing to space limitations, however, we say only a few words about scale-up strategies.

The lower rungs of Jacob’s ladder (i.e., the LDA and the GGAs) have long been noted to
resemble the Hartree more closely than the HF approach. As such, rather than the formally
O(4)(N ) scaling of the HF approach, the introduction of density-fitting functions leads to a formal
O(3)(N ) scaling, which is further improved by integral prescreening. Beyond a certain system size
(i.e., once a certain level of computational power is reached), special algorithms such as those that
scale asymptotically as O(N ) can be used. These algorithms are especially easy to apply in the case
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Generalized adiabatic connection for ensembles

In ensemble DFT, the exchange-correlation functional becomes weight-dependent:

Exc[n] = E{w1=0,...,wM=0}
xc [n] −→ E{w1,...,wM}

xc [n]

This weight dependence plays a crucial role in the calculation of excited energy levels.1

Generalized adiabatic connection formalism for ensembles (GACE):2,3

Full ensemble

!", !$,⋯ , !&'", (&, 0,0, ⋯ , 00,0,⋯ , 0,0, ⋯ , 0 !", !$,⋯ , !&, ⋯ , !*

Partial ensemble
+ , + ,

Projet de recherche : DFT unifiée pour les ensembles

Extension exacte du formalisme de connexion adiabatique généralisé aux ensembles :

État fondamental

Ensemble complet

!", !$,⋯ , !&'", !&, 0,0,⋯ , 0

0,0,⋯ , 0,0,⋯ , 0

!", !$,⋯ , !&,⋯ , !)

Ensemble partiel

* +

* +

E{w1,...,wM }
xc [⇢] = Exc [⇢] +

MX

I=1

Z wI

0

d⇠I

@E
{w1,...,wI�1,⇠I ,0,...,0}
xc [⇢]

@⇠I

Validité mathématique de la GACE et “régularisation” en analyse convexe :
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« derivative discontinuity »

Ground state

1K. Deur and E. Fromager, J. Chem. Phys. 150, 094106 (2019).
2O. Franck and E. Fromager, Mol. Phys. 112, 1684 (2014).
3K. Deur, L. Mazouin, and E. Fromager, Phys. Rev. B 95, 035120 (2017).
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Jacob’s ladder for ensembles? Let’s try ...

Ens. LDA

Finite uniform electron gas

Projet de recherche : DFT unifiée pour les ensembles

E{w1,...,wM }
xc [⇢]

Exc [⇢]

Exc [⇢] +
MX

I=1

wI

Z
dr⇢(r)⇥

 
"I
xc

⇣
⇢(r)

⌘
� "I=0

xc

⇣
⇢(r)

⌘!
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xc [⇢]

Exc [⇢]

Exc [⇢] +
MX
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wI

Z
dr⇢(r)⇥

 
"I
xc

⇣
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⌘
� "I=0

xc

⇣
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two-electron
repulsion

P. F. Loos and E. Fromager, in preparation. P. F. Loos, J. Chem. Phys. 146, 114108 (2017).
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Ensemble DFT for charged excitations

Can we formally express the fundamental gap as the optical one?

Eg
?
= εNL − εNH +

[
∂Eαxc [n]

∂α

∣∣∣∣
n=nα

]

α=0

where Eαxc [n] would be the to-be-identified xc energy of a grand canonical ensemble.

Let us recall that ...

> The problem is usually adressed by calculating the IP and the EA separately∗.

> The total number N of electrons in a grand-canonical ensemble can be fractional.

> N can vary continuously between two integers.

∗J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
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Ensemble DFT for charged excitations

Eg
?
= εNL − εNH +

[
∂Eαxc [n]

∂α

∣∣∣∣
n=nα

]

α=0

Let us also recall that ...

> A grand-canonical ground-state ensemble density n is a piecewise linear function of N 1:

n(r) =
(
N −N

)
× nN−1

0 (r) +
(
N −N + 1

)
× nN0 (r) where N − 1 ≤ N ≤ N.

> The grand-canonical ensemble weight
(
N −N + 1

)
is determined from the density n.

... and therefore conclude that

> it makes no sense to introduce an ensemble weight α that would be independent from n.

1J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
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N -centered ensemble DFT
It is actually possible to push the analogy with GOK-DFT further.

We just have to choose another grand canonical ensemble.

The latter will be referred to as N -centered ensemble in the following.

integral number M of electrons

EM
0

N � 1 N N + 1

•

•
•

1

The N -centered ensemble density is defined as follows,

nξ0(r) = ξnN−1
0 (r) + ξnN+1

0 (r) +
(

1− 2ξ
)
nN0 (r) where 0 ≤ ξ ≤ 1/2.

Note that
∫
dr nξ0(r) = ξ

(
N − 1

)
+ ξ
(
N + 1

)
+
(

1− 2ξ
)
N = N ← ξ-independent !

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018).
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N -centered ensemble DFT

Similarly, an N -centered ground-state ensemble energy can be constructed,

Eξ0 = ξEN−1
0 + ξEN+1

0 +
(

1− 2ξ
)
EN0 .

It is linear in ξ and the slope is equal to the fundamental gap.

The latter ensemble energy is a functional of the N -centered ensemble density.

Extension of DFT to N -centered ground-state ensembles:

Exc[n] = EN,ξ=0
xc [n]

ξ>0−→ EN,ξxc [n]

Exact expression for the fundamental gap:

ENg =
dEξ0
dξ

= εN,ξL − εN,ξH +
∂EN,ξxc [n]

∂ξ

∣∣∣∣
n=n

ξ
0

← ∀ξ ∈ [0, 1/2]

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018).
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Comparing N -centered ensemble DFT with standard DFT

Standard approach (DFT for fractional electron numbers)1

N -8

#
Eµ*[n]

•• • •o•
✓

•• • >

N -2 Nt N Ntl N+2in1 E,§xc[n]

÷for
...

...•• •• •

•• ••,asN -2
Nt

-

- Nigh } NH Nt2t.io
:

:

N -centered ensemble DFT2

N -8

#
Eµ*[n]

•• • •o•
✓

•• • >

N -2 Nt N Ntl N+2in1 E,§xc[n]

÷for
...

...•• •• •

•• ••,asN -2
Nt

-

- Nigh } NH Nt2t.io
:

:1J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
2 B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018).
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Application to the Hubbard dimer

U Ut

−∆v/2

← →site 0 site 1

+∆v/2

Hamiltonian in second quantization: Ĥ = T̂ + Û +
∆v

2
(n̂1 − n̂0), where

T̂ = −t∑σ=↑,↓

(
â†0σ â1σ + â†1σ â0σ

)
←→ kinetic energy

Û = U
∑1
i=0 n̂i↑n̂i↓ ←→ two-electron repulsion

∆v

2
(n̂1 − n̂0) ←→ nuclear potential

In this context the density is a collection of two site occupations (n0 and n1).

In the following, the number of electrons will be set to N = 2. Consequently, the
ensemble density becomes a single number n = n0 since n1 = 2− n.

D. J. Carrascal, J. Ferrer, J. C. Smith, and K. Burke, J. Phys.: Condens. Matter 27, 393001 (2015).
K. Deur, L. Mazouin, and E. Fromager, Phys. Rev. B 95, 035120 (2017).

K. Deur, L. Mazouin, B. Senjean, and E. Fromager, Eur. Phys. J. B 91, 162 (2018) [Hardy Gross special issue].
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Application to the Hubbard dimer [N = 2, t = 1]

Ensemble energies in the symmetric (left panel) and asymmetric (right panel) cases.
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EEXX: EN,ξ
xc (n) ≈ EN,ξ

x (n)

GSc: EN,ξ
xc (n) ≈ EN,ξ

x (n) + EN,ξ=0
c (n)

“standard” xc functional −→ GSxc: EN,ξ
xc (n) ≈ EN,ξ=0

x (n) + EN,ξ=0
c (n)

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018).

Emmanuel Fromager (UdS) DFT workshop, Lyon, France 03/06/2019 22 / 25



Acknowledgments

From left to right: Laurent Mazouin, E. F., Killian Deur,
Bruno Senjean (now in Leiden, The Netherlands),

Thanks also to P.-F. Loos (Toulouse, France) for a nice and promising collaboration!

Emmanuel Fromager (UdS) DFT workshop, Lyon, France 03/06/2019 23 / 25



Funding

ANR jeune chercheur (MCFUNEX project)∗
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