

Density-functional theory for excited states: An ensemble perspective

Emmanuel Fromager

Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg Université de Strasbourg, Strasbourg, France.

PASTEUR, Département de Chimie, ENS Paris, France

20/02/2020

Outline

- (Time-independent) **DFT** for excited states: why and how?
- Connecting Kohn-Sham orbital energies to real (ground- and excited-state) energies.
- Individual exchange-correlation functionals for excited states (within an ensemble).

DFT and excited states

Hohenberg-Kohn theorem:

Ground- and excited-state energies are in principle functionals of the ground-state density n_{Ψ_0} .

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

(Linear response) time-dependent DFT

Practical limitations:

- Single-reference perturbation theory (not adequate for *nearly-degenerate* situations).
- Memory effects are absent from standard functionals (adiabatic approximation).
- *Multiple-electron excitations* are absent from the adiabatic TD-DFT spectrum.

E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
M. Casida and M. Huix-Rotllant, Annu. Rev. Phys. Chem. 63, 287 (2012).
G. Vignale, Phys. Rev. A 77, 062511 (2008).

M. Levy and A. Nagy, Phys. Rev. Lett. 83, 4361 (1999).

In *Coulomb systems*, individual densities are sufficient, i.e. $E_I \equiv E^{Coul}[n_{\Psi_I}]$ $v(\mathbf{r}) = -\sum_A \frac{Z_A}{|\mathbf{r} - \mathbf{R}_A|}$

P. W. Ayers, M. Levy, and A. Nagy, Phys. Rev. A 85, 042518 (2012).
P. W. Ayers, M. Levy, and A. Nagy, J. Chem. Phys. 143, 191101 (2015).
P. W. Ayers, M. Levy, and A. Nagy, Theor. Chem. Acc. 137, 152 (2018).

DFT for (canonical) ensembles

E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988).
E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988).
L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. A 37, 2821 (1988).

6

From DFT to GOK-DFT

Ensemble Kohn-Sham equations:

$$\begin{bmatrix} -\frac{\nabla^2}{2} + v_{\text{ext}}(\mathbf{r}) + \frac{\delta E_{\text{Hxc}}^{\mathbf{w}}[n]}{\delta n(\mathbf{r})} \end{bmatrix} \mathbf{\varphi}_i(\mathbf{r}) = \varepsilon_i^{\mathbf{w}} \varphi_i(\mathbf{r})$$

Levy-Zahariev shift*:
$$\varepsilon_{i}^{\mathbf{W}} \to \overline{\varepsilon_{i}}^{\mathbf{W}} = \varepsilon_{i}^{\mathbf{W}} + \frac{E_{\mathrm{Hxc}}^{\mathbf{W}}[n] - \int d\mathbf{r} \frac{\delta E_{\mathrm{Hxc}}^{\mathbf{W}}[n]}{\delta n(\mathbf{r})} n(\mathbf{r})}{\int d\mathbf{r} n(\mathbf{r})}$$

*M. Levy and F. Zahariev, Phys. Rev. Lett. 113, 113002 (2014).

 $n=n^{W}$

Extracting individual properties from GOK-DFT

$$E_{\rm c}^{\rm w}[n^{\rm w}] \equiv \sum_{I \ge 0} {\rm w}_{I} \left(\langle \Psi_{I} | \hat{H} | \Psi_{I} \rangle - \langle \Phi_{I}^{\rm w} | \hat{H} | \Phi_{I}^{\rm w} \rangle \right)$$

Ensemble correlation energy

Ensemble KS determinant

Exact ensemble density constraint:

$$\sum_{I\geq 0} \mathbf{w}_{I} \ n_{\Psi_{I}}(\mathbf{r}) = n^{\mathbf{w}}(\mathbf{r}) = \sum_{I\geq 0} \mathbf{w}_{I} \ n_{\Phi_{I}^{\mathbf{w}}}(\mathbf{r})$$

How can we extract E_I and n_{Ψ_I} from the KS ensemble?

Extracting individual energies

(Two-electron) Hubbard dimer model

K. Deur and E. Fromager, J. Chem. Phys. 150, 094106 (2019).

Correlation functionals for ensembles: Where to start?

Individual correlations:

$$E_{c}^{\mathbf{w}}[n^{\mathbf{w}}] = \sum_{I \ge 0} w_{I} \langle \Psi_{I} | \hat{H} | \Psi_{I} \rangle - \sum_{I \ge 0} w_{I} \langle \Phi_{I}^{\mathbf{w}} | \hat{H} | \Phi_{I}^{\mathbf{w}} \rangle$$

$$\sum_{I \ge 0} w_{I} n_{\Psi_{I}}(\mathbf{r}) = \sum_{I \ge 0} w_{I} n_{\Phi_{I}}(\mathbf{r})$$

$$\sum_{I \ge 0} w_{I} E_{c,I}^{\mathbf{w}} = \sum_{I \ge 0} w_{I} \left(\langle \Psi_{I} | \hat{T} + \hat{W}_{ee} | \Psi_{I} \rangle - \langle \Phi_{I}^{\mathbf{w}} | \hat{T} + \hat{W}_{ee} | \Phi_{I}^{\mathbf{w}} \rangle \right)$$

$$n_{\Psi_{I}}(\mathbf{r}) \neq n_{\Phi_{I}}(\mathbf{r})$$

$$I \text{ am the correlation energy of state } I$$

$$within the ensemble$$

$$E_{c,I}^{\mathbf{w}} \neq \langle \Psi_{I} | \hat{H} | \Psi_{I} \rangle - \langle \Phi_{I}^{\mathbf{w}} | \hat{H} | \Phi_{I}^{\mathbf{w}} \rangle$$

State- and density-driven correlations in ensembles

$$E_{c,I}^{\mathbf{w}} = \langle \Psi_{I} | \hat{T} + \hat{W}_{ee} | \Psi_{I} \rangle - \langle \Phi_{I}^{\mathbf{w}} | \hat{T} + \hat{W}_{ee} | \Phi_{I}^{\mathbf{w}} \rangle$$

$$= \langle \Psi_{I} | \hat{T} + \hat{W}_{ee} | \Psi_{I} \rangle - \langle \overline{\Phi}_{I} | \hat{T} + \hat{W}_{ee} | \overline{\Phi}_{I} \rangle$$

$$I \text{ an the state-driven correlation energy}$$

$$= \langle \Psi_{I} | \hat{H} | \Psi_{I} \rangle - \langle \overline{\Phi}_{I} | \hat{H} | \overline{\Phi}_{I} \rangle$$

$$+ \langle \overline{\Phi}_{I} | \hat{T} + \hat{W}_{ee} | \overline{\Phi}_{I} \rangle - \langle \Phi_{I}^{\mathbf{w}} | \hat{T} + \hat{W}_{ee} | \Phi_{I}^{\mathbf{w}} \rangle$$

$$I \text{ an the density-driven correlation energy}$$

T. Gould and S. Pittalis, Phys. Rev. Lett. **123**, 016401 (2019).

Non-uniqueness or -existence of state-driven KS states

Non-interacting Hubbard dimer

Interacting Hubbard dimer

<u>Skip to main content</u> <u>arXiv.org > physics</u> > arXiv:2001.08605 <u>Download PDF</u>

Physics > Chemical Physics

Title:Individual correlations in ensemble densityfunctional theory: State-driven/density-driven decomposition without additional Kohn-Sham systems

Authors:<u>Emmanuel Fromager</u> (Submitted on 23 Jan 2020 (<u>v1</u>), last revised 28 Jan 2020 (this version, v2))

Abstract: Gould and Pittalis [Phys. Rev. Lett. 123, 016401 (2019)] recently revealed a density-driven correlation energy in many-electron ensembles that must be accounted for by approximations. We show that referring to auxiliary state-driven Kohn-Sham (KS) systems, which was inherent to its evaluation, is in fact not needed. Instead, individual-state densities can be extracted directly from the KS ensemble. On that basis, a simpler and more general expression is derived and tested. The importance of density-driven effects is thus confirmed, and a direct route to approximations is introduced.

State-/density-driven decomposition without additional KS systems

• There is *no need* to introduce additional KS wave functions:

• *Exact expressions* for state-driven (SD) and density-driven (DD) correlation energies:

$$E_{c,I}^{SD} := E_c^{\mathbf{w}}[n^{\mathbf{w}}] + \sum_{J>0} \left(\delta_{IJ} - w_J\right) \frac{dE_c^{\mathbf{w}}[n^{\mathbf{w}}]}{dw_J} \qquad \qquad E_{c,I}^{DD} := \int d\mathbf{r} \frac{\delta E_c^{\mathbf{w}}[n^{\mathbf{w}}]}{\delta n(\mathbf{r})} \left(n_{\Phi_I^{\mathbf{w}}}(\mathbf{r}) - n_{\Psi_I}(\mathbf{r})\right)$$

Application to the Hubbard dimer

First (singlet) correlation energy per unit of $U(U\Delta v_{\text{ext}})^2/(4t^4)$

E. Fromager, arXiv:2001.08605 (2020).

Conclusions and perspectives

- *Individual* energies and densities can be extracted *exactly* from GOK-DFT.
- A general and exact *SD/DD decomposition* has been derived.
- The approach is applicable to *grand canonical* ensembles (gaps, quantum embedding,...).
- Local SD correlation functionals can be extracted from *finite* uniform electron gases: *collaboration with Pierre-François Loos (Toulouse).*
- Connections with *imaginary TD-DFT* [$t \rightarrow -i\tau$] under investigation.
- Extraction of *(non-adiabatic) couplings* from GOK-DFT under investigation.

References:

K. Deur and E. Fromager, J. Chem. Phys. 150, 094106 (2019).

- E. Fromager, arXiv:2001.08605 (2020).
- B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018).
- B. Senjean and E. Fromager, arXiv:1912.07125 (2020).

Funding and acknowledgements

LABEX, University of Strasbourg

Laurent Mazouin, E.F., Killian Deur, and Bruno Senjean (now in Leiden)

N-centered grand canonical ensembles

B. Senjean and E. Fromager, Phys. Rev. A **98**, 022513 (2018).

B. Senjean and E. Fromager, arXiv:1912.07125 (2020).