

Density-functional theory for excited states: An ensemble perspective

Emmanuel Fromager

Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg, Université de Strasbourg, Strasbourg, France.

Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, The Netherlands.

03/03/2020

Outline

- (Time-independent) DFT for excited states: why and how?
- Connecting Kohn-Sham orbital energies to real (ground- and excited-state) energies.
- Individual exchange-correlation functionals for excited states (within an ensemble).

DFT and excited states N-EL and excited states \overline{D}

Hohenberg-Kohn theorem:

Ground- and excited-state energies are in principle functionals of the ground-state density n_{Ψ_0} .

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

(Linear response) time-dependent DFT

Practical limitations:

- *Single-reference* perturbation theory (not adequate for *nearly-degenerate* situations).
- Memory effects are absent from standard functionals (*adiabatic approximation*).
- *Multiple-electron excitations* are absent from the adiabatic TD-DFT spectrum.

E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984). M. Casida and M. Huix-Rotllant, Annu. Rev. Phys. Chem. 63, 287 (2012). G. Vignale, Phys. Rev. A 77, 062511 (2008).

M. Levy and A. Nagy, Phys. Rev. Lett. 83, 4361 (1999).

In *Coulomb systems*, individual densities are sufficient, i.e. $[n_{\Psi_I}]$ $v(\mathbf{r}) = -\sum$ *A ZA* $|\mathbf{r} - \mathbf{R}_{A}|$

P. W. Ayers, M. Levy, and A. Nagy, Phys. Rev. A 85, 042518 (2012). P. W. Ayers, M. Levy, and A. Nagy, J. Chem. Phys. 143, 191101 (2015). P. W. Ayers, M. Levy, and A. Nagy, Theor. Chem. Acc. 137, 152 (2018).

DFT for (canonical) ensembles

A. K. Theophilou, J. Phys. C: Solid State Phys. 12, 5419 (1979). E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988). E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988). L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. A 37, 2821 (1988).

6

From DFT to GOK-DFT

Ensemble Kohn-Sham equations:

$$
\left[-\frac{\nabla^2}{2} + v_{\text{ext}}(\mathbf{r}) + \frac{\delta E_{\text{Hxc}}^{\mathbf{w}}[n]}{\delta n(\mathbf{r})}\right]_{n=n^{\mathbf{w}}} \left[\varphi_i(\mathbf{r}) = \varepsilon_i^{\mathbf{w}} \varphi_i(\mathbf{r})\right]
$$

$$
\text{Levy-Zahariev shift*:} \qquad \qquad \varepsilon_i^{\mathbf{w}} \to \overline{\varepsilon_i^{\mathbf{w}}} = \varepsilon_i^{\mathbf{w}} + \frac{E_{\text{Hxc}}^{\mathbf{w}}[n] - \int d\mathbf{r} \frac{\delta E_{\text{Hxc}}^{\mathbf{w}}[n]}{\delta n(\mathbf{r})} n(\mathbf{r})}{\int d\mathbf{r} \ n(\mathbf{r})}
$$

 $n=n^w$

Extracting individual energies

(Two-electron) Hubbard dimer model

K. Deur and E. Fromager, J. Chem. Phys. 150, 094106 (2019).

Modeling density-functional correlations in ensembles: Where to start?

Individual correlations:

State- and density-driven correlations in ensembles

$$
E_{c,I}^{w} = \langle \Psi_{I} | \hat{T} + \hat{W}_{ee} | \Psi_{I} \rangle - \langle \Phi_{I}^{w} | \hat{T} + \hat{W}_{ee} | \Phi_{I}^{w} \rangle
$$

\n
$$
= \langle \Psi_{I} | \hat{T} + \hat{W}_{ee} | \Psi_{I} \rangle - \langle \overline{\Phi}_{I} | \hat{T} + \hat{W}_{ee} | \overline{\Phi}_{I} \rangle
$$

\n
$$
E_{\text{N}}^{w}(r) = n_{\overline{\Phi}_{I}}(r)
$$

\n
$$
= \langle \Psi_{I} | \hat{H} | \Psi_{I} \rangle - \langle \overline{\Phi}_{I} | \hat{H} | \overline{\Phi}_{I} \rangle
$$

\n
$$
+ \langle \overline{\Phi}_{I} | \hat{T} + \hat{W}_{ee} | \overline{\Phi}_{I} \rangle - \langle \Phi_{I}^{w} | \hat{T} + \hat{W}_{ee} | \Phi_{I}^{w} \rangle
$$

\n
$$
= \langle \Psi_{I} | \hat{H} | \Psi_{I} \rangle - \langle \overline{\Phi}_{I} | \hat{H} | \overline{\Phi}_{I} \rangle
$$

\n
$$
= \langle \Psi_{I} | \hat{H} | \Psi_{I} \rangle - \langle \overline{\Phi}_{I} | \hat{H} | \overline{\Phi}_{I} \rangle
$$

\n
$$
= \langle \overline{\Phi}_{I} | \hat{T} | \Psi_{I} \rangle - \langle \Phi_{I}^{w} | \hat{T} | \Psi_{I} \rangle - \langle \overline{\Phi}_{I} | \overline{\Phi}_{I} | \overline{\Phi}_{I} \rangle
$$

Non-uniqueness or -existence of state-driven KS states

Non-interacting Hubbard dimer *Interacting* Hubbard dimer

Skip to main content $arXiv.org > physics > arXiv:2001.08605$ Download PDF

Physics > Chemical Physics

Title:Individual correlations in ensemble densityfunctional theory: State-driven/density-driven decomposition without additional Kohn-Sham systems

Authors:Emmanuel Fromager (Submitted on 23 Jan 2020 $(\underline{v1})$, last revised 28 Jan 2020 (this version, v2))

Abstract: Gould and Pittalis [Phys. Rev. Lett. 123, 016401 (2019)] recently revealed a density-driven correlation energy in many-electron ensembles that must be accounted for by approximations. We show that referring to auxiliary state-driven Kohn-Sham (KS) systems, which was inherent to its evaluation, is in fact not needed. Instead, individual-state densities can be extracted directly from the KS ensemble. On that basis, a simpler and more general expression is derived and tested. The importance of density-driven effects is thus confirmed, and a direct route to approximations is introduced.

State-/density-driven decomposition without additional KS systems

• There is *no need* to introduce additional KS wave functions:

$$
n_{\Psi_I}(\mathbf{r}) = n^{\mathbf{w}}(\mathbf{r}) + \sum_{J>0} \left(\delta_{IJ} - \mathbf{w}_J \right) \frac{\partial n^{\mathbf{w}}(\mathbf{r})}{\partial \mathbf{w}_J}
$$
\n**obtained from a static ensemble**\n
\n**coupled perturbed equation.**

• *Exact expressions* for **state-driven** (SD) and **density-driven** (DD) correlation energies:

$$
E_{c,I}^{\text{SD}} := E_{c}^{\text{w}}[n^{\text{w}}] + \sum_{J>0} \left(\delta_{IJ} - w_{J} \right) \frac{dE_{c}^{\text{w}}[n^{\text{w}}]}{dw_{J}} \qquad \qquad E_{c,I}^{\text{DD}} := \int d\mathbf{r} \frac{\delta E_{c}^{\text{w}}[n^{\text{w}}]}{\delta n(\mathbf{r})} \left(n_{\Phi_{J}^{\text{w}}}(\mathbf{r}) - n_{\Psi_{I}}(\mathbf{r}) \right)
$$

Application to the Hubbard dimer: the bi-ensemble case

First (singlet) excited-state correlation energy per unit of $U(U\Delta v_{\rm ext})^2/(4t^4)$

 $W₁$

E. Fromager, arXiv:2001.08605 (2020). 15

Conclusions and perspectives

- *Individual* energies and densities can be extracted *exactly* from GOK-DFT^{1,2}.
- A general and exact *SD/DD decomposition* has been derived².
- The approach is applicable to *grand canonical* ensembles^{3,4} (fundamental *gaps*, quantum *embedding*,…).
- Local SD correlation functionals can be extracted from *finite* uniform electron gases⁵: *collaboration with Pierre-François Loos (Toulouse).*
- Connections with *imaginary TD-DFT* $[t \rightarrow -i\tau]$ under investigation.
- Extraction of *(non-adiabatic) couplings* from GOK-DFT under investigation.

- *B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018).* 3
- ⁴B. Senjean and E. Fromager, Int. J. Quantum Chem. (2020), **DOI: 10.1002/qua.26190**
- *P. F. Loos and E. Fromager, to be submitted.* 5

¹K. Deur and E. Fromager, J. Chem. Phys. **150**, 094106 (2019).

E. Fromager, arXiv:2001.08605 (2020). 2

Funding and acknowledgements

LABEX, University of Strasbourg

Laurent Mazouin, E.F., Killian Deur, and *Bruno Senjean (now in Leiden and Amsterdam)*

N-centered grand canonical ensembles

