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approximation (LDA), could in principle be employed reliably
in this context.

In this paper, we study the exact N-centered approach:
We calculate the exact ensemble xc energy as a function of
the ensemble weight and the corresponding exact xc poten-
tials for a one-dimensional finite model system for which the
many-body Schrödinger equation can be solved exactly. We
demonstrate both numerically and analytically that, when the
exact ensemble xc potential is (arbitrarily) forced to asymp-
totically approach zero infinitely far from the center of the
system, it experiences discontinuous shifts in the region of
centralized density, just like in the PPLB approach. Impor-
tantly, we show how these shifts can be ‘relocated’ from this
central region of the system to the unimportant periphery via
the exact Levy-Zahariev (LZ) shift [65] within the N-centered
approach, even as the ensemble weight becomes infinitesimal.

Our investigation into the nature of the N-centered method
is organized as follows. For comparison, we first consider
the ubiquitous PPLB approach. In Sec. II, we present a 1D
model system which consists of two same-spin, interacting
electrons in its ground state and calculate the exact KS xc
potential upon the addition of a small fraction of an electron
in order to observe the shift in the potential by !. Next, in
Sec. III, we briefly review the established exact N-centered
formalism. We then calculate, in Sec. IV, charged excitation
energies for our model system via the N-centered approach
both exactly and employing an LDA. In Sec. IV A 1, we
calculate the IP and find the exact N-centered ensemble xc
potential as a function of the ensemble weight. Section IV A 2
then employs a standard, weight-independent LDA to the xc
energy to find the IP for the same system, which highlights
the importance of the derivative of the xc energy with respect
to the ensemble weight. In Secs. IV B 1 and IV B 2, we repeat
these calculations but now for the EA. In Sec. V, we present
an analytic proof that ! can indeed manifest within the exact
N-centered ensemble xc potential as a discontinuous shift
and thereby extend Levy’s concept for neutral excitations to
charged excitations [66,67]. We then summarize our work in
Sec. VI.

II. PERDEW, PARR, LEVY, AND BALDUZ

First let us study the PPLB approach in the absence of
approximation. For all our numerical examples, we employ
our iDEA code [68] which models electrons in 1D that in-
teract via the appropriately softened Coulomb interaction
wee(x, x′) ≡ (|x − x′| + 1)− 1 [69] [atomic units (a.u.) used
throughout this manuscript]. The external potential for our
system corresponds to a model 1D atom vext (x) = 3/(|x| + 1).
Our system consists of two same-spin electrons (N = 2) and
as such we can calculate the exact fully-correlated many-body
wave function on a real-space grid in 1D and the many-body
total energy. In order to find the exact many-body IP and EA
of this system we also calculate the exact many-body wave
function and energy of the anion (which consists of three
same-spin electrons) and the wave function and energy of
ion (i.e., the one-electron system). From these wave functions
we can calculate the exact many-body electron density—both
for the integer electron systems and as an ensemble. The
exact ensemble many-body density is given by nδ (x) = (1 −

FIG. 1. PPLB case: (top) The change in the KS potential upon
the addition of δ electrons to the system; as δ → 0+ the change tends
to a uniform shift of height ! (numerical noise on the far right).
We assume each xc potential decays ∝ − 1

|x| and we align the overall
constant shift of each potential such that vs(|x| → ∞) = 0 without
modeling an infinitely large system. (Bottom) The two-electron KS
system to which δ electrons is added.

δ)nN (x) + δnN+1(x), where ni(x) is the many-body density
of the i-electron system. From nδ (x) we “reverse-engineer”
the KS equations via the algorithm of Ref. [68] to find the
corresponding exact xc potential and KS energies for varying
values of δ.

Employing the exact KS energies of the N-electron KS
system, we calculate the exact ! via Eq. (1). Figure 1 shows
that as δ → 0+ the change in the KS potential (vN+δ

s (x) −
vN

s (x)) tends to a uniform constant of magnitude ! [53,70].
In this case, the N-electron KS potential is defined such that
vN+δ

s (|x| → ∞) = 0. vN+δ
s (x) possess a discontinuous shift

which elevates the potential in the central region of the sys-
tem. Note that as the plateau tends to a uniform constant
shift, the KS potential still asymptotically approaches zero
infinitely far from the center of the system; as discussed in
Refs. [53,70].

This discontinuous behavior is difficult to capture in an ap-
proximate density functional and hence in practice the PPLB
approach is not used.

III. N-CENTERED ENSEMBLE APPROACH

We now turn to the N-centered approach. Following
Ref. [63], we start from the general two-weight formulation
of N-centered ensemble DFT where the ensemble density is

n{ξ− ,ξ+}(x) =
[

1 − ξ−
N − 1

N
− ξ+

N + 1
N

]
nN (x)

+ ξ− nN − 1(x) + ξ+nN+1(x). (2)

By analogy with Ref. [64], we will refer to the special cases
{ξ− , 0} and {0, ξ+} as left and right N-centered ensembles,
respectively. In Sec. IV, we study in detail the left and then
the right ensemble, for which we vary the ensemble weights
as such: when ξ+ = 0, 0 ! ξ− ! N

N − 1 , and when ξ− = 0,
0 ! ξ+ ! N

N+1 .
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approximation (LDA), could in principle be employed reliably
in this context.

In this paper, we study the exact N-centered approach:
We calculate the exact ensemble xc energy as a function of
the ensemble weight and the corresponding exact xc poten-
tials for a one-dimensional finite model system for which the
many-body Schrödinger equation can be solved exactly. We
demonstrate both numerically and analytically that, when the
exact ensemble xc potential is (arbitrarily) forced to asymp-
totically approach zero infinitely far from the center of the
system, it experiences discontinuous shifts in the region of
centralized density, just like in the PPLB approach. Impor-
tantly, we show how these shifts can be ‘relocated’ from this
central region of the system to the unimportant periphery via
the exact Levy-Zahariev (LZ) shift [65] within the N-centered
approach, even as the ensemble weight becomes infinitesimal.

Our investigation into the nature of the N-centered method
is organized as follows. For comparison, we first consider
the ubiquitous PPLB approach. In Sec. II, we present a 1D
model system which consists of two same-spin, interacting
electrons in its ground state and calculate the exact KS xc
potential upon the addition of a small fraction of an electron
in order to observe the shift in the potential by !. Next, in
Sec. III, we briefly review the established exact N-centered
formalism. We then calculate, in Sec. IV, charged excitation
energies for our model system via the N-centered approach
both exactly and employing an LDA. In Sec. IV A 1, we
calculate the IP and find the exact N-centered ensemble xc
potential as a function of the ensemble weight. Section IV A 2
then employs a standard, weight-independent LDA to the xc
energy to find the IP for the same system, which highlights
the importance of the derivative of the xc energy with respect
to the ensemble weight. In Secs. IV B 1 and IV B 2, we repeat
these calculations but now for the EA. In Sec. V, we present
an analytic proof that ! can indeed manifest within the exact
N-centered ensemble xc potential as a discontinuous shift
and thereby extend Levy’s concept for neutral excitations to
charged excitations [66,67]. We then summarize our work in
Sec. VI.

II. PERDEW, PARR, LEVY, AND BALDUZ

First let us study the PPLB approach in the absence of
approximation. For all our numerical examples, we employ
our iDEA code [68] which models electrons in 1D that in-
teract via the appropriately softened Coulomb interaction
wee(x, x′) ≡ (|x − x′| + 1)− 1 [69] [atomic units (a.u.) used
throughout this manuscript]. The external potential for our
system corresponds to a model 1D atom vext (x) = 3/(|x| + 1).
Our system consists of two same-spin electrons (N = 2) and
as such we can calculate the exact fully-correlated many-body
wave function on a real-space grid in 1D and the many-body
total energy. In order to find the exact many-body IP and EA
of this system we also calculate the exact many-body wave
function and energy of the anion (which consists of three
same-spin electrons) and the wave function and energy of
ion (i.e., the one-electron system). From these wave functions
we can calculate the exact many-body electron density—both
for the integer electron systems and as an ensemble. The
exact ensemble many-body density is given by nδ (x) = (1 −

FIG. 1. PPLB case: (top) The change in the KS potential upon
the addition of δ electrons to the system; as δ → 0+ the change tends
to a uniform shift of height ! (numerical noise on the far right).
We assume each xc potential decays ∝ − 1

|x| and we align the overall
constant shift of each potential such that vs(|x| → ∞) = 0 without
modeling an infinitely large system. (Bottom) The two-electron KS
system to which δ electrons is added.

δ)nN (x) + δnN+1(x), where ni(x) is the many-body density
of the i-electron system. From nδ (x) we “reverse-engineer”
the KS equations via the algorithm of Ref. [68] to find the
corresponding exact xc potential and KS energies for varying
values of δ.

Employing the exact KS energies of the N-electron KS
system, we calculate the exact ! via Eq. (1). Figure 1 shows
that as δ → 0+ the change in the KS potential (vN+δ

s (x) −
vN

s (x)) tends to a uniform constant of magnitude ! [53,70].
In this case, the N-electron KS potential is defined such that
vN+δ

s (|x| → ∞) = 0. vN+δ
s (x) possess a discontinuous shift

which elevates the potential in the central region of the sys-
tem. Note that as the plateau tends to a uniform constant
shift, the KS potential still asymptotically approaches zero
infinitely far from the center of the system; as discussed in
Refs. [53,70].

This discontinuous behavior is difficult to capture in an ap-
proximate density functional and hence in practice the PPLB
approach is not used.

III. N-CENTERED ENSEMBLE APPROACH

We now turn to the N-centered approach. Following
Ref. [63], we start from the general two-weight formulation
of N-centered ensemble DFT where the ensemble density is

n{ξ− ,ξ+}(x) =
[

1 − ξ−
N − 1

N
− ξ+

N + 1
N

]
nN (x)

+ ξ− nN − 1(x) + ξ+nN+1(x). (2)

By analogy with Ref. [64], we will refer to the special cases
{ξ− , 0} and {0, ξ+} as left and right N-centered ensembles,
respectively. In Sec. IV, we study in detail the left and then
the right ensemble, for which we vary the ensemble weights
as such: when ξ+ = 0, 0 ! ξ− ! N

N − 1 , and when ξ− = 0,
0 ! ξ+ ! N

N+1 .
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approximation (LDA), could in principle be employed reliably
in this context.

In this paper, we study the exact N-centered approach:
We calculate the exact ensemble xc energy as a function of
the ensemble weight and the corresponding exact xc poten-
tials for a one-dimensional finite model system for which the
many-body Schrödinger equation can be solved exactly. We
demonstrate both numerically and analytically that, when the
exact ensemble xc potential is (arbitrarily) forced to asymp-
totically approach zero infinitely far from the center of the
system, it experiences discontinuous shifts in the region of
centralized density, just like in the PPLB approach. Impor-
tantly, we show how these shifts can be ‘relocated’ from this
central region of the system to the unimportant periphery via
the exact Levy-Zahariev (LZ) shift [65] within the N-centered
approach, even as the ensemble weight becomes infinitesimal.

Our investigation into the nature of the N-centered method
is organized as follows. For comparison, we first consider
the ubiquitous PPLB approach. In Sec. II, we present a 1D
model system which consists of two same-spin, interacting
electrons in its ground state and calculate the exact KS xc
potential upon the addition of a small fraction of an electron
in order to observe the shift in the potential by !. Next, in
Sec. III, we briefly review the established exact N-centered
formalism. We then calculate, in Sec. IV, charged excitation
energies for our model system via the N-centered approach
both exactly and employing an LDA. In Sec. IV A 1, we
calculate the IP and find the exact N-centered ensemble xc
potential as a function of the ensemble weight. Section IV A 2
then employs a standard, weight-independent LDA to the xc
energy to find the IP for the same system, which highlights
the importance of the derivative of the xc energy with respect
to the ensemble weight. In Secs. IV B 1 and IV B 2, we repeat
these calculations but now for the EA. In Sec. V, we present
an analytic proof that ! can indeed manifest within the exact
N-centered ensemble xc potential as a discontinuous shift
and thereby extend Levy’s concept for neutral excitations to
charged excitations [66,67]. We then summarize our work in
Sec. VI.

II. PERDEW, PARR, LEVY, AND BALDUZ

First let us study the PPLB approach in the absence of
approximation. For all our numerical examples, we employ
our iDEA code [68] which models electrons in 1D that in-
teract via the appropriately softened Coulomb interaction
wee(x, x′) ≡ (|x − x′| + 1)− 1 [69] [atomic units (a.u.) used
throughout this manuscript]. The external potential for our
system corresponds to a model 1D atom vext (x) = 3/(|x| + 1).
Our system consists of two same-spin electrons (N = 2) and
as such we can calculate the exact fully-correlated many-body
wave function on a real-space grid in 1D and the many-body
total energy. In order to find the exact many-body IP and EA
of this system we also calculate the exact many-body wave
function and energy of the anion (which consists of three
same-spin electrons) and the wave function and energy of
ion (i.e., the one-electron system). From these wave functions
we can calculate the exact many-body electron density—both
for the integer electron systems and as an ensemble. The
exact ensemble many-body density is given by nδ (x) = (1 −

FIG. 1. PPLB case: (top) The change in the KS potential upon
the addition of δ electrons to the system; as δ → 0+ the change tends
to a uniform shift of height ! (numerical noise on the far right).
We assume each xc potential decays ∝ − 1

|x| and we align the overall
constant shift of each potential such that vs(|x| → ∞) = 0 without
modeling an infinitely large system. (Bottom) The two-electron KS
system to which δ electrons is added.

δ)nN (x) + δnN+1(x), where ni(x) is the many-body density
of the i-electron system. From nδ (x) we “reverse-engineer”
the KS equations via the algorithm of Ref. [68] to find the
corresponding exact xc potential and KS energies for varying
values of δ.

Employing the exact KS energies of the N-electron KS
system, we calculate the exact ! via Eq. (1). Figure 1 shows
that as δ → 0+ the change in the KS potential (vN+δ

s (x) −
vN

s (x)) tends to a uniform constant of magnitude ! [53,70].
In this case, the N-electron KS potential is defined such that
vN+δ

s (|x| → ∞) = 0. vN+δ
s (x) possess a discontinuous shift

which elevates the potential in the central region of the sys-
tem. Note that as the plateau tends to a uniform constant
shift, the KS potential still asymptotically approaches zero
infinitely far from the center of the system; as discussed in
Refs. [53,70].

This discontinuous behavior is difficult to capture in an ap-
proximate density functional and hence in practice the PPLB
approach is not used.

III. N-CENTERED ENSEMBLE APPROACH

We now turn to the N-centered approach. Following
Ref. [63], we start from the general two-weight formulation
of N-centered ensemble DFT where the ensemble density is

n{ξ− ,ξ+}(x) =
[

1 − ξ−
N − 1

N
− ξ+

N + 1
N

]
nN (x)

+ ξ− nN − 1(x) + ξ+nN+1(x). (2)

By analogy with Ref. [64], we will refer to the special cases
{ξ− , 0} and {0, ξ+} as left and right N-centered ensembles,
respectively. In Sec. IV, we study in detail the left and then
the right ensemble, for which we vary the ensemble weights
as such: when ξ+ = 0, 0 ! ξ− ! N

N − 1 , and when ξ− = 0,
0 ! ξ+ ! N

N+1 .
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approximation (LDA), could in principle be employed reliably
in this context.

In this paper, we study the exact N-centered approach:
We calculate the exact ensemble xc energy as a function of
the ensemble weight and the corresponding exact xc poten-
tials for a one-dimensional finite model system for which the
many-body Schrödinger equation can be solved exactly. We
demonstrate both numerically and analytically that, when the
exact ensemble xc potential is (arbitrarily) forced to asymp-
totically approach zero infinitely far from the center of the
system, it experiences discontinuous shifts in the region of
centralized density, just like in the PPLB approach. Impor-
tantly, we show how these shifts can be ‘relocated’ from this
central region of the system to the unimportant periphery via
the exact Levy-Zahariev (LZ) shift [65] within the N-centered
approach, even as the ensemble weight becomes infinitesimal.

Our investigation into the nature of the N-centered method
is organized as follows. For comparison, we first consider
the ubiquitous PPLB approach. In Sec. II, we present a 1D
model system which consists of two same-spin, interacting
electrons in its ground state and calculate the exact KS xc
potential upon the addition of a small fraction of an electron
in order to observe the shift in the potential by !. Next, in
Sec. III, we briefly review the established exact N-centered
formalism. We then calculate, in Sec. IV, charged excitation
energies for our model system via the N-centered approach
both exactly and employing an LDA. In Sec. IV A 1, we
calculate the IP and find the exact N-centered ensemble xc
potential as a function of the ensemble weight. Section IV A 2
then employs a standard, weight-independent LDA to the xc
energy to find the IP for the same system, which highlights
the importance of the derivative of the xc energy with respect
to the ensemble weight. In Secs. IV B 1 and IV B 2, we repeat
these calculations but now for the EA. In Sec. V, we present
an analytic proof that ! can indeed manifest within the exact
N-centered ensemble xc potential as a discontinuous shift
and thereby extend Levy’s concept for neutral excitations to
charged excitations [66,67]. We then summarize our work in
Sec. VI.

II. PERDEW, PARR, LEVY, AND BALDUZ

First let us study the PPLB approach in the absence of
approximation. For all our numerical examples, we employ
our iDEA code [68] which models electrons in 1D that in-
teract via the appropriately softened Coulomb interaction
wee(x, x′) ≡ (|x − x′| + 1)− 1 [69] [atomic units (a.u.) used
throughout this manuscript]. The external potential for our
system corresponds to a model 1D atom vext (x) = 3/(|x| + 1).
Our system consists of two same-spin electrons (N = 2) and
as such we can calculate the exact fully-correlated many-body
wave function on a real-space grid in 1D and the many-body
total energy. In order to find the exact many-body IP and EA
of this system we also calculate the exact many-body wave
function and energy of the anion (which consists of three
same-spin electrons) and the wave function and energy of
ion (i.e., the one-electron system). From these wave functions
we can calculate the exact many-body electron density—both
for the integer electron systems and as an ensemble. The
exact ensemble many-body density is given by nδ (x) = (1 −

FIG. 1. PPLB case: (top) The change in the KS potential upon
the addition of δ electrons to the system; as δ → 0+ the change tends
to a uniform shift of height ! (numerical noise on the far right).
We assume each xc potential decays ∝ − 1

|x| and we align the overall
constant shift of each potential such that vs(|x| → ∞) = 0 without
modeling an infinitely large system. (Bottom) The two-electron KS
system to which δ electrons is added.

δ)nN (x) + δnN+1(x), where ni(x) is the many-body density
of the i-electron system. From nδ (x) we “reverse-engineer”
the KS equations via the algorithm of Ref. [68] to find the
corresponding exact xc potential and KS energies for varying
values of δ.

Employing the exact KS energies of the N-electron KS
system, we calculate the exact ! via Eq. (1). Figure 1 shows
that as δ → 0+ the change in the KS potential (vN+δ

s (x) −
vN

s (x)) tends to a uniform constant of magnitude ! [53,70].
In this case, the N-electron KS potential is defined such that
vN+δ

s (|x| → ∞) = 0. vN+δ
s (x) possess a discontinuous shift

which elevates the potential in the central region of the sys-
tem. Note that as the plateau tends to a uniform constant
shift, the KS potential still asymptotically approaches zero
infinitely far from the center of the system; as discussed in
Refs. [53,70].

This discontinuous behavior is difficult to capture in an ap-
proximate density functional and hence in practice the PPLB
approach is not used.

III. N-CENTERED ENSEMBLE APPROACH

We now turn to the N-centered approach. Following
Ref. [63], we start from the general two-weight formulation
of N-centered ensemble DFT where the ensemble density is

n{ξ− ,ξ+}(x) =
[

1 − ξ−
N − 1

N
− ξ+

N + 1
N

]
nN (x)

+ ξ− nN − 1(x) + ξ+nN+1(x). (2)

By analogy with Ref. [64], we will refer to the special cases
{ξ− , 0} and {0, ξ+} as left and right N-centered ensembles,
respectively. In Sec. IV, we study in detail the left and then
the right ensemble, for which we vary the ensemble weights
as such: when ξ+ = 0, 0 ! ξ− ! N

N − 1 , and when ξ− = 0,
0 ! ξ+ ! N

N+1 .
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approximation (LDA), could in principle be employed reliably
in this context.

In this paper, we study the exact N-centered approach:
We calculate the exact ensemble xc energy as a function of
the ensemble weight and the corresponding exact xc poten-
tials for a one-dimensional finite model system for which the
many-body Schrödinger equation can be solved exactly. We
demonstrate both numerically and analytically that, when the
exact ensemble xc potential is (arbitrarily) forced to asymp-
totically approach zero infinitely far from the center of the
system, it experiences discontinuous shifts in the region of
centralized density, just like in the PPLB approach. Impor-
tantly, we show how these shifts can be ‘relocated’ from this
central region of the system to the unimportant periphery via
the exact Levy-Zahariev (LZ) shift [65] within the N-centered
approach, even as the ensemble weight becomes infinitesimal.

Our investigation into the nature of the N-centered method
is organized as follows. For comparison, we first consider
the ubiquitous PPLB approach. In Sec. II, we present a 1D
model system which consists of two same-spin, interacting
electrons in its ground state and calculate the exact KS xc
potential upon the addition of a small fraction of an electron
in order to observe the shift in the potential by !. Next, in
Sec. III, we briefly review the established exact N-centered
formalism. We then calculate, in Sec. IV, charged excitation
energies for our model system via the N-centered approach
both exactly and employing an LDA. In Sec. IV A 1, we
calculate the IP and find the exact N-centered ensemble xc
potential as a function of the ensemble weight. Section IV A 2
then employs a standard, weight-independent LDA to the xc
energy to find the IP for the same system, which highlights
the importance of the derivative of the xc energy with respect
to the ensemble weight. In Secs. IV B 1 and IV B 2, we repeat
these calculations but now for the EA. In Sec. V, we present
an analytic proof that ! can indeed manifest within the exact
N-centered ensemble xc potential as a discontinuous shift
and thereby extend Levy’s concept for neutral excitations to
charged excitations [66,67]. We then summarize our work in
Sec. VI.

II. PERDEW, PARR, LEVY, AND BALDUZ

First let us study the PPLB approach in the absence of
approximation. For all our numerical examples, we employ
our iDEA code [68] which models electrons in 1D that in-
teract via the appropriately softened Coulomb interaction
wee(x, x′) ≡ (|x − x′| + 1)− 1 [69] [atomic units (a.u.) used
throughout this manuscript]. The external potential for our
system corresponds to a model 1D atom vext (x) = 3/(|x| + 1).
Our system consists of two same-spin electrons (N = 2) and
as such we can calculate the exact fully-correlated many-body
wave function on a real-space grid in 1D and the many-body
total energy. In order to find the exact many-body IP and EA
of this system we also calculate the exact many-body wave
function and energy of the anion (which consists of three
same-spin electrons) and the wave function and energy of
ion (i.e., the one-electron system). From these wave functions
we can calculate the exact many-body electron density—both
for the integer electron systems and as an ensemble. The
exact ensemble many-body density is given by nδ (x) = (1 −

FIG. 1. PPLB case: (top) The change in the KS potential upon
the addition of δ electrons to the system; as δ → 0+ the change tends
to a uniform shift of height ! (numerical noise on the far right).
We assume each xc potential decays ∝ − 1

|x| and we align the overall
constant shift of each potential such that vs(|x| → ∞) = 0 without
modeling an infinitely large system. (Bottom) The two-electron KS
system to which δ electrons is added.

δ)nN (x) + δnN+1(x), where ni(x) is the many-body density
of the i-electron system. From nδ (x) we “reverse-engineer”
the KS equations via the algorithm of Ref. [68] to find the
corresponding exact xc potential and KS energies for varying
values of δ.

Employing the exact KS energies of the N-electron KS
system, we calculate the exact ! via Eq. (1). Figure 1 shows
that as δ → 0+ the change in the KS potential (vN+δ

s (x) −
vN

s (x)) tends to a uniform constant of magnitude ! [53,70].
In this case, the N-electron KS potential is defined such that
vN+δ

s (|x| → ∞) = 0. vN+δ
s (x) possess a discontinuous shift

which elevates the potential in the central region of the sys-
tem. Note that as the plateau tends to a uniform constant
shift, the KS potential still asymptotically approaches zero
infinitely far from the center of the system; as discussed in
Refs. [53,70].

This discontinuous behavior is difficult to capture in an ap-
proximate density functional and hence in practice the PPLB
approach is not used.

III. N-CENTERED ENSEMBLE APPROACH

We now turn to the N-centered approach. Following
Ref. [63], we start from the general two-weight formulation
of N-centered ensemble DFT where the ensemble density is

n{ξ− ,ξ+}(x) =
[

1 − ξ−
N − 1

N
− ξ+

N + 1
N

]
nN (x)

+ ξ− nN − 1(x) + ξ+nN+1(x). (2)

By analogy with Ref. [64], we will refer to the special cases
{ξ− , 0} and {0, ξ+} as left and right N-centered ensembles,
respectively. In Sec. IV, we study in detail the left and then
the right ensemble, for which we vary the ensemble weights
as such: when ξ+ = 0, 0 ! ξ− ! N

N − 1 , and when ξ− = 0,
0 ! ξ+ ! N

N+1 .
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80– 82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80– 82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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nξ+(x) = (1 −
N + 1

N
ξ+) nN(x)+ξ+nN+1(x)

(arbitrary) constraint: 
�  vξ+

xc
|x|→+∞
⟶ 0
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80– 82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80– 82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80– 82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80– 82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80– 82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
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the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
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ensemble-weight derivative of the xc energy, in the spirit of
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approach within the LDA could yield accurate fundamental
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gap is unnecessary. Instead, one should focus on the weight
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