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Application: Two-electron spin-polarised 1D atom  

HODGSON, WETHERELL, AND FROMAGER PHYSICAL REVIEW A 103, 012806 (2021)

FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80– 82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80– 82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80– 82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+
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approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80– 82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−
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∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+
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for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80– 82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+
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approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80– 82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80– 82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80– 82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−
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N−1 , and A = −(εξ+
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for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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Take-home messages 

• Fundamental gaps can be described exactly in DFT without derivative discontinuities.


• Instead, � -centered ensemble xc density functionals must be modelled.


• Their ensemble weight dependence is the key ingredient� . 
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Alternative formulation of the IP theorem  

IN = − εξ−
i=N − [

Eξ−
Hxc [n] − ∫ dr n(r) vξ−

Hxc(r)
N

− ( ξ−

N
+ 1) ∂Eξ−xc [n]

∂ξ− ]
n=nξ−

0

Levy-Zahariev shift�*


