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Happy new year!
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Thanks a lot to Professor Naoki Nakatani for the kind invitation.
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Nagoya, February 2017.
Professor Naoki Nakatani

From left to right: L. Mazouin, E.F., M. Tsuchiizu (now in Nara), N.N., B. Senjean (now in Montpellier, France)  
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In order to follow the first part of the course you only need basic knowledge in  
first quantization.
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I will use second quantization in the second and third parts of the course.
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An introductory two-hour lecture on second quantization is available on YouTube:


https://www.youtube.com/watch?v=FQBrEI57pDA

The corresponding slides are available online:


https://quantique.u-strasbg.fr/lib/exe/fetch.php?media=en:pageperso:ef:istpc2021_second_quantization.pdf

I will use second quantization in the second and third parts of the course.
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The two main approaches to the electronic structure problem in Quantum Chemistry 

will be reviewed. 
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The two main approaches to the electronic structure problem in Quantum Chemistry 

will be reviewed. 

These approaches are wave function theory (WFT) and density-functional theory (DFT).

Limitations of DFT in the description of strong electron correlation will be highlighted.
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The two main approaches to the electronic structure problem in Quantum Chemistry 

will be reviewed. 

These approaches are wave function theory (WFT) and density-functional theory (DFT).

Limitations of DFT in the description of strong electron correlation will be highlighted.

This first part of the course aims at motivating the development of quantum embedding 

approaches based on DFT and/or WFT .
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Diversity of quantum embedding approaches in Physics and Chemistry
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Electronic Schrödinger equation 

ĤΨI = EIΨI
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Electronic Schrödinger equation 

ĤΨI = EIΨI

Electronic Hamiltonian  
operator
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Electronic Schrödinger equation 

ĤΨI = EIΨI

Electronic Hamiltonian  
operator

known!
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Electronic Schrödinger equation 

ĤΨI = EIΨI

Ground �  and excited �  
electronic energies 
(I = 0) (I > 0)
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Electronic Schrödinger equation 

ĤΨI = EIΨI

Ground �  and excited �  
electronic energies 
(I = 0) (I > 0)

unknown!
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Electronic Schrödinger equation 

ĤΨ0 = E0Ψ0

In this lecture we will focus on the ground-state problem
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Electronic Schrödinger equation 

ĤΨ0 = E0Ψ0

Ground-state electronic 
wave function
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Electronic Schrödinger equation 

ĤΨ0 = E0Ψ0

Ground-state electronic 
wave function

unknown!
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� -electron wave function N

Ψ0 ≡ Ψ0(x1, x2, …, xN)

electronic coordinates
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� -electron wave function N

xi ≡ (ri, σi)

Cartesian space 
coordinates

ri ≡ (xi, yi, zi)

Ψ0 ≡ Ψ0(x1, x2, …, xN)

electronic coordinates

Spin coordinate

σi = ↑ or ↓
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� -electron Hamiltonian operator (in atomic units)N

Ĥ ≡
N

∑
i=1

ĥ(i) +
1
2

N

∑
i≠j

̂g(i, j)

ĥ(i) ≡ −
1
2

∇2
ri

+ vext(ri) ×

One-electron part Two-electron part

̂g(i, j) ≡
1

|ri − rj |
×

Kinetic energy+nuclear attraction Electronic repulsion
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� -electron Hamiltonian (in atomic units)N

Ĥ ≡
N

∑
i=1

ĥ(i) +
1
2

N

∑
i≠j

̂g(i, j)

ĥ(i) ≡ −
1
2

∇2
ri
+vext(ri) ×

One-electron part Two-electron part

̂g(i, j) ≡
1

|ri − rj |
×

Kinetic energy+nuclear attraction Electronic repulsion

Universal one-electron  
differential operator 
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� -electron Hamiltonian (in atomic units)N

Ĥ ≡
N

∑
i=1

ĥ(i) +
1
2

N

∑
i≠j

̂g(i, j)

ĥ(i) ≡ −
1
2

∇2
ri
+vext(ri) ×

One-electron part Two-electron part

̂g(i, j) ≡
1

|ri − rj |
×

Electronic repulsion∇2
ri

≡
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i
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� -electron Hamiltonian (in atomic units)N

Ĥ ≡
N

∑
i=1

ĥ(i) +
1
2

N

∑
i≠j

̂g(i, j)

ĥ(i) ≡ −
1
2

∇2
ri
+vext(ri) ×

One-electron part Two-electron part

̂g(i, j) ≡
1

|ri − rj |
×

Kinetic energy+nuclear attraction Electronic repulsion

One-electron  
local (multiplicative)  

operator 
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� -electron Hamiltonian (in atomic units)N

Ĥ ≡
N

∑
i=1

ĥ(i) +
1
2

N

∑
i≠j

̂g(i, j)

ĥ(i) ≡ −
1
2

∇2
ri
+vext(ri) ×

One-electron part Two-electron part

̂g(i, j) ≡
1

|ri − rj |
×

Electronic repulsion
vext(ri) = −

nuclei

∑
A

ZA

|ri − RA |

not universal!

“external” potential energy
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� -electron Hamiltonian (in atomic units)N

Ĥ ≡
N

∑
i=1

ĥ(i) +
1
2

N

∑
i≠j

̂g(i, j)

ĥ(i) ≡ −
1
2

∇2
ri
+vext(ri) ×

One-electron part Two-electron part

̂g(i, j) ≡
1

|ri − rj |
×

Electronic repulsion
vext(ri) = −

nuclei

∑
A

ZA

|ri − RA |

Atomic number

Electron-nucleus distance
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� -electron Hamiltonian (in atomic units)N

Ĥ ≡
N

∑
i=1

ĥ(i) +
1
2

N

∑
i≠j

̂g(i, j)

One-electron part Two-electron part

̂g(i, j) ≡
1

|ri − rj |
×

Electronic repulsion
vext(ri) = −

nuclei

∑
A

ZA

|ri − RA |

We solve the electronic problem 

for fixed nuclei positions �  RA ≡ (xA, yA, zA)
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� -electron Hamiltonian (in atomic units)N

Ĥ ≡
N

∑
i=1

ĥ(i) +
1
2

N

∑
i≠j

̂g(i, j)

One-electron part Two-electron part

̂g(i, j) ≡
1

|ri − rj |
×

Electronic repulsion

We solve the electronic problem 

for fixed nuclei positions �  RA ≡ (xA, yA, zA)

Born-Oppenheimer  
approximation
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� -electron Hamiltonian (in atomic units)N

Ĥ ≡
N

∑
i=1

ĥ(i) +
1
2

N

∑
i≠j

̂g(i, j)

ĥ(i) ≡ −
1
2

∇2
ri

+ vext(ri) ×

One-electron part Two-electron part

̂g(i, j) ≡
1

|ri − rj |
×

Kinetic energy+nuclear attraction Electronic repulsion

Two-electron  
local (multiplicative)  

operator 
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� -electron Hamiltonian (in atomic units)N

Ĥ ≡
N

∑
i=1

ĥ(i) +
1
2

N

∑
i≠j

̂g(i, j)

ĥ(i) ≡ −
1
2

∇2
ri

+ vext(ri) ×

One-electron part Two-electron part

̂g(i, j) ≡
1

|ri − rj |
×

Kinetic energy+nuclear attraction Electronic repulsion

universal!
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� -electron ground-state Schrödinger equation N

+
N

∑
i=1

vext(ri) × Ψ0(r1, σ1, …, ri, σi, …, rN, σN)

−
1
2

N

∑
i=1

∇2
ri

Ψ0(r1, σ1, …, ri, σi, …, rN, σN)

+
1
2

N

∑
i≠j

1
|ri − rj |

× Ψ0(r1, σ1, …, ri, σi, …, rj, σj…, rN, σN)

= E0 × Ψ0(r1, σ1, …, rN, σN)

In summary, we have to solve the following differential equation… 
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� -electron ground-state Schrödinger equation N

+
N

∑
i=1

vext(ri) × Ψ0(r1, σ1, …, ri, σi, …, rN, σN)

−
1
2

N

∑
i=1

∇2
ri

Ψ0(r1, σ1, …, ri, σi, …, rN, σN)

+
1
2

N

∑
i≠j

1
|ri − rj |

× Ψ0(r1, σ1, …, ri, σi, …, rj, σj…, rN, σN)

= E0 × Ψ0(r1, σ1, …, rN, σN)

In summary, we have to solve the following differential equation… 

?

?

?

??
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� -electron ground-state Schrödinger equation N

+
N

∑
i=1

vext(ri) × Ψ0(r1, σ1, …, ri, σi, …, rN, σN)

−
1
2

N

∑
i=1

∇2
ri

Ψ0(r1, σ1, …, ri, σi, …, rN, σN)

+
1
2

N

∑
i≠j

1
|ri − rj |

× Ψ0(r1, σ1, …, ri, σi, …, rj, σj…, rN, σN)

= E0 × Ψ0(r1, σ1, …, rN, σN)
?

… and we have to find the lowest energy (!)  

In summary, we have to solve the following differential equation… 
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Rayleigh-Ritz variational principle

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩ = ⟨Ψ0 | Ĥ |Ψ0⟩
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Rayleigh-Ritz variational principle

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩ = ⟨Ψ0 | Ĥ |Ψ0⟩

Minimisation over  
trial normalised wave functions �  Ψ
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Rayleigh-Ritz variational principle

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩ = ⟨Ψ0 | Ĥ |Ψ0⟩

Minimisation over  
trial normalised wave functions �  Ψ

⟨Ψ |Ψ⟩ = ∫ dx1…∫ dxi…∫ dxN Ψ(x1, …, xi, …, xN)
2

= 1
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Rayleigh-Ritz variational principle

∫ dxi ≡ ∫ dri ∑
σi=↑,↓

≡ ∑
σi=↑,↓

∫
+∞

−∞
dxi ∫

+∞

−∞
dyi ∫

+∞

−∞
dzi

⟨Ψ |Ψ⟩ = ∫ dx1…∫ dxi…∫ dxN Ψ(x1, …, xi, …, xN)
2

= 1
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Rayleigh-Ritz variational principle

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩ = ⟨Ψ0 | Ĥ |Ψ0⟩

Energy expectation value  
for the trial wave function �  Ψ
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Rayleigh-Ritz variational principle

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩ = ⟨Ψ0 | Ĥ |Ψ0⟩

Energy expectation value  
for the trial wave function �  Ψ

⟨Ψ | �̂� |Ψ⟩ = ∫ dx1…∫ dxi…∫ dxN Ψ(x1, …, xi, …, xN) × �̂�Ψ(x1, …, xi, …, xN)

Expectation value for an observable �  described by the quantum operator �𝒪 �̂�

notation= ⟨�̂�⟩Ψ
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Hartree-Fock theory

E0 ≈ min
Φ

⟨Φ | Ĥ |Φ⟩ = ⟨ΦHF | Ĥ |ΦHF⟩ = EHF

Minimization over single Slater determinants 
(fully occupied or unoccupied spin-orbitals)
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Hartree-Fock theory

E0 ≈ min
Φ

⟨Φ | Ĥ |Φ⟩ = ⟨ΦHF | Ĥ |ΦHF⟩ = EHF

Hartree-Fock energy 
(full exact exchange 

and no correlation)

Minimization over single Slater determinants 
(fully occupied or unoccupied spin-orbitals)
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Density-functional theory (DFT)
25/11/2021 20'32The Nobel Prize in Chemistry 1998

Page 2 of 9https://www.nobelprize.org/prizes/chemistry/1998/summary/

The Nobel Prize in Chemistry
1998

Walter Kohn
John Pople

Share this

The Nobel Prize in Chemistry
1998

Photo from the Nobel
Foundation archive.

Walter Kohn
Prize share: 1/2

Photo from the Nobel
Foundation archive.

John A. Pople
Prize share: 1/2

The Nobel Prize in Chemistry 1998 was
divided equally between Walter Kohn "for his
development of the density-functional
theory" and John A. Pople "for his
development of computational methods in
quantum chemistry."

To cite this section 
MLA style: The Nobel Prize in Chemistry 1998. NobelPrize.org. Nobel Prize Outreach AB 2021. Thu. 25 Nov 2021.
<https://www.nobelprize.org/prizes/chemistry/1998/summary/>
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It is in principle unnecessary to know

 the ground-state many-electron wave function � 


 for evaluating the exact ground-state energy � .
Ψ0

E0
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Density-functional theory (DFT)
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It is in principle unnecessary to know

 the ground-state many-electron wave function � 


 for evaluating the exact ground-state energy � .
Ψ0

E0

The ground-state density �  is sufficient.n0
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Electron density

Density of the many-electron wave function �  Ψ

nΨ(r) definition= N ∑
σ1=↑,↓

∫ dx2…∫ dxi…∫ dxN Ψ(r, σ1, x2, …, xi, …, xN)
2
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Electron density

nΨ(r) definition= N ∑
σ1=↑,↓

∫ dx2…∫ dxi…∫ dxN Ψ(r, σ1, x2, …, xi, …, xN)
2

Density of the many-electron wave function �  Ψ

Function of the three cartesian space coordinates �  r ≡ (x, y, z)
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Electron density

∫ dr nΨ(r) = N⟨Ψ |Ψ⟩ = N Number of electrons 

nΨ(r) definition= N ∑
σ1=↑,↓

∫ dx2…∫ dxi…∫ dxN Ψ(r, σ1, x2, …, xi, …, xN)
2
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Electron density

Exact ground-state 
density

nΨ(r) definition= N ∑
σ1=↑,↓

∫ dx2…∫ dxi…∫ dxN Ψ(r, σ1, x2, …, xi, …, xN)
2

nΨ0
(r) = n0(r)
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Electron density

nΨ(r) definition= N ∑
σ1=↑,↓

∫ dx2…∫ dxi…∫ dxN Ψ(r, σ1, x2, …, xi, …, xN)
2

Note that the external potential energy is an explicit functional of the density 
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⟨
N

∑
i=1

vext(ri) × ⟩
Ψ

=
N

∑
i=1

(∫ dx1…∫ dxN vext(r1) × Ψ(x1, …, xN)
2)

= ∫ dr1 vext(r1) × N ∑
σ1=↑,↓

∫ dx2…∫ dxN Ψ(r1, σ1, x2, …, xN)
2

= ∫ dr1 vext(r1) × nΨ(r1)

x1 ↔ xi

=
N

∑
i=1

∫ dx1…∫ dxi…∫ dxN vext(ri) × Ψ(x1, …, xi, …, xN)
2

=
N

∑
i=1

∫ dx1…∫ dxi…∫ dxN vext(ri) × Ψ(xi, …, x1, …, xN)
2

= ∫ dx1…∫ dxN

N

∑
i=1

vext(ri) × Ψ(x1, …, xN)
2

Change of variables  
in the integrals 

x1 → xi

xi → x1

= N∫ dx1…∫ dxN vext(r1) × Ψ(x1, …, xN)
2

Proof:

Electrons are  
indistinguishable particles 
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Exact external potential energy

⟨
N

∑
i=1

vext(ri) × ⟩
Ψ0

= ∫ dr vext(r)nΨ0
(r) = ∫ dr vext(r) n0(r)

We do not need to know �  Ψ0
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Exact external potential energy

⟨
N

∑
i=1

vext(ri) × ⟩
Ψ0

= ∫ dr vext(r)nΨ0
(r) = ∫ dr vext(r) n0(r)

We do not need to know �  Ψ0

We just need to know �  n0
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Exact external potential energy

⟨
N

∑
i=1

vext(ri) × ⟩
Ψ0

= ∫ dr vext(r)nΨ0
(r) = ∫ dr vext(r) n0(r)

We do not need to know �  Ψ0

We just need to know �  n0

The exact kinetic and two-electron repulsion energies are implicit functionals of � .   n0
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Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩
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Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

Pre-minimisation over wave functions � 

that have the same density �  


Ψ
nΨ(r) = n(r)

Levy M (1979) Proc Natl Acad Sci USA 76(12):6062
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Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

Minimisation over densities �  
n

Levy M (1979) Proc Natl Acad Sci USA 76(12):6062
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Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5

Ψ′�1Ψ′�2

Ψ′�3

Ψ′�′�1
Ψ′�′�2

Ψ′�′�3

Ψ′�′�4Space of � -electron wave functionsN
Levy M (1979) Proc Natl Acad Sci USA 76(12):6062
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Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

Ψ1
Ψ2

Ψ3Ψ4

Ψ5

n

Ψ′�1

Ψ′�2

Ψ′�3

n′�

Ψ′�′�1

Ψ′�′�2

Ψ′�′�3

Ψ′�′�4

n′�′�

Levy M (1979) Proc Natl Acad Sci USA 76(12):6062



!61

Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

= min
n {min

Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩ + ∫ dr vext(r)nΨ(r)}}
Ĥ = ̂T + Ŵee +

N

∑
i=1

vext(ri) ×

̂T ≡
N

∑
i=1

−
1
2

∇2
ri

Ŵee ≡
1
2

N

∑
i≠j

1
|ri − rj |

×
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Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

= min
n

min
Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩ + ∫ dr vext(r)nΨ(r)}

= min
n

min
Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩}+∫ dr vext(r)n(r)
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Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

= min
n {min

Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩ + ∫ dr vext(r)nΨ(r)}}
= min

n {min
Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩} + ∫ dr vext(r)n(r)}

= min
n {F[n] + ∫ dr vext(r)n(r)}
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Levy’s constrained search formalism

E0 = min
n {F[n] + ∫ dr vext(r)n(r)}

We recover the Hohenberg-Kohn variational principle of DFT!

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)
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Kohn-Sham DFT formalism

F[n] = min
Ψ→n

⟨Ψ | ̂T+Ŵee |Ψ⟩

Interacting universal functional Non-interacting  
(kinetic energy) functional

Ts[n] = min
Ψ→n

⟨Ψ | ̂T |Ψ⟩
Kohn-Sham

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
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Kohn-Sham DFT formalism

F[n] = min
Ψ→n

⟨Ψ | ̂T + Ŵee |Ψ⟩

Interacting universal functional Non-interacting  
(kinetic energy) functional

Ts[n] = min
Ψ→n

⟨Ψ | ̂T |Ψ⟩
Kohn-Sham

F[n] − Ts[n] = EHxc[n]

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
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Kohn-Sham DFT formalism

F[n] = min
Ψ→n

⟨Ψ | ̂T + Ŵee |Ψ⟩

Interacting universal functional Non-interacting  
(kinetic energy) functional

Ts[n] = min
Ψ→n

⟨Ψ | ̂T |Ψ⟩
Kohn-Sham

F[n] − Ts[n] = EHxc[n]

= EH[n] + Exc[n]
W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
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Kohn-Sham DFT formalism

EH[n] =
1
2 ∫ dr1 ∫ dr2

n(r1)n(r2)
|r1 − r2 |

Electrostatics  
(evaluated with quantum 

electron densities)

Hartree density functional

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
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Kohn-Sham DFT formalism

Exc[n] = F[n] − Ts[n]−EH[n]

EH[n] =
1
2 ∫ dr1 ∫ dr2

n(r1)n(r2)
|r1 − r2 |

Electrostatics  
(evaluated with quantum 

electron densities)

Hartree density functional

Exchange-correlation (xc) density functional

Quantum 
many-electron effects 

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
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Kohn-Sham DFT formalism

Exc[n] ≈ ???

EH[n] =
1
2 ∫ dr1 ∫ dr2

n(r1)n(r2)
|r1 − r2 |

Electrostatics  
(evaluated with quantum 

electron densities)

Hartree density functional

Exchange-correlation (xc) density functional

Quantum 
many-electron effects 

The exact xc functional is uniquely defined but  
many (many) approximations  

can be found in the literature (LDA, PBE, B3LYP, SCAN, …). 
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Variational principle  
in Kohn-Sham DFT

= min
n {min

Ψ→n {⟨Ψ | ̂T |Ψ⟩} + EHxc[n]+∫ dr vext(r)n(r)}
= min

n
min
Ψ→n {⟨Ψ | ̂T |Ψ⟩+EHxc[nΨ]+∫ dr vext(r)nΨ(r)}

E0 = min
n {F[n] + ∫ dr vext(r)n(r)}

= min
n {Ts[n]+EHxc[n]+∫ dr vext(r)n(r)}

= min
n

min
Ψ→n {⟨Ψ | Ĥ−Ŵee |Ψ⟩+EHxc[nΨ]}

= min
Ψ {⟨Ψ | Ĥ−Ŵee |Ψ⟩+EHxc[nΨ]}
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Comparing variational principles

E0 = min
Ψ {⟨Ψ | Ĥ |Ψ⟩} = min

Ψ {⟨Ψ | Ĥ−Ŵee |Ψ⟩+EHxc[nΨ]}
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Comparing variational principles

E0 = min
Ψ {⟨Ψ | Ĥ |Ψ⟩} = min

Ψ {⟨Ψ | Ĥ−Ŵee |Ψ⟩+EHxc[nΨ]}

Pure wave function theory (WFT)
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Comparing variational principles

E0 = min
Ψ {⟨Ψ | Ĥ |Ψ⟩} = min

Ψ {⟨Ψ | Ĥ−Ŵee |Ψ⟩+EHxc[nΨ]}

Kohn-Sham DFT
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Comparing variational principles

E0 = min
Ψ {⟨Ψ | Ĥ |Ψ⟩} = min

Ψ {⟨Ψ | Ĥ−Ŵee |Ψ⟩+EHxc[nΨ]}

Explicit two-electron repulsions  
are removed from the Hamiltonian…
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Comparing variational principles

E0 = min
Ψ {⟨Ψ | Ĥ |Ψ⟩} = min

Ψ {⟨Ψ | Ĥ−Ŵee |Ψ⟩+EHxc[nΨ]}

… and treated implicitly as functionals  
of the density.

Explicit two-electron repulsions  
are removed from the Hamiltonian…
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Comparing variational principles

E0 = min
Ψ {⟨Ψ | Ĥ |Ψ⟩} = min

Ψ {⟨Ψ | Ĥ−Ŵee |Ψ⟩+EHxc[nΨ]}

Explicit two-electron repulsions  
are removed from the Hamiltonian…

The one-electron picture is made exact in KS-DFT!



DFT for � -electron ground states  N
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[−
∇2

r

2
+ vext(r) + vHxc(r)] φi(r) = εiφi(r)

i = N−1
i = N

i = N+1LUMO

HOMO

i = N−2

i = 2
i = 1

i = N+2

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).



DFT for � -electron ground states  N

!79

[−
∇2

r

2
+ vext(r) + vHxc(r)] φi(r) = εiφi(r)

n0(r) =
N

∑
i=1

|φi(r) |2

exact ground-state 
density

i = N−1
i = N

i = N+1LUMO

HOMO

i = N−2

i = 2
i = 1

i = N+2

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).



DFT for � -electron ground states  N
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[−
∇2

r

2
+ vext(r) + vHxc(r)] φi(r) = εiφi(r)

vHxc(r) =
δEHxc [n]

δn(r)
n=n0

Hartree-exchange-correlation  
local (multiplicative) potential

n0(r) =
N

∑
i=1

|φi(r) |2

exact ground-state 
density

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).



Success and failures of density-functional approximations 
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En
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gy
 [E

h]

Interatomic distance [units of a0]

H2 [11Σg
+, aug−cc−pVQZ]

FCI
HF

LDA
PBE

B3LYP
CAM−B3LYP

Full Configuration  
Interaction 
(accurate)

Hartree-Fock  
(no correlation)

Density-functional  
approximations



Prototypical hydrogen molecule 
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H H
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H H

RA ≡ (xA, yA, zA)

RB ≡ (xB, yB, zB)
z

O

x

y

Prototypical hydrogen molecule 
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H H

RA

RB

χsA
(r) =

1

π
e−|r−RA|

χsB
(r) =

1

π
e−|r−RB|

z

O

x

y

Prototypical hydrogen molecule 
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H H

RA

RB

χsA
(r) =

1

π
e−|r−RA|

χsB
(r) =

1

π
e−|r−RB|

z

O

x

y

�  and �  are localised orbitalsχsA
χsB

Prototypical hydrogen molecule 



!86

φ1σu H H

φ1σg H H

φ1σu
(r) =

1

2 (χsA
(r) − χsB

(r))
Anti-bonding orbital

φ1σg
(r) =

1

2 (χsA
(r) + χsB

(r))

Bonding orbital

Prototypical hydrogen molecule 
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φ1σu H H

φ1σg H H

φ1σu
(r) =

1

2 (χsA
(r) − χsB

(r))
Anti-bonding orbital

φ1σg
(r) =

1

2 (χsA
(r) + χsB

(r))

Bonding orbital

�  and �  are delocalised orbitalsφ1σg
φ1σu

Prototypical hydrogen molecule 



Single-configuration ground-state two-electron wave function 
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⇔φ1σg φ1σg
(r1)φ1σg

(r2)



Single-configuration ground-state two-electron wave function 
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⇔φ1σg φ1σg
(r1)φ1σg

(r2)

φ1σg
(r) =

1

2 (χsA
(r) + χsB

(r))



Single-configuration ground-state two-electron wave function 
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⇔

1
2 (χsA

(r1)χsB
(r2) + χsA

(r2)χsB
(r1) + χsA

(r1)χsA
(r2) + χsB

(r1)χsB
(r2))

H H H�− H�+

φ1σg φ1σg
(r1)φ1σg

(r2)

H H H�+ H�−



Single-configuration ground-state two-electron wave function 
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⇔

1
2 (χsA

(r1)χsB
(r2) + χsA

(r2)χsB
(r1) + χsA

(r1)χsA
(r2) + χsB

(r1)χsB
(r2))

H H H�− H�+

φ1σg φ1σg
(r1)φ1σg

(r2)

H H H�+ H�−

Ionic configurations



Single-configuration ground-state two-electron wave function 
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⇔

1
2 (χsA

(r1)χsB
(r2) + χsA

(r2)χsB
(r1) + χsA

(r1)χsA
(r2) + χsB

(r1)χsB
(r2))

H H H�− H�+

φ1σg φ1σg
(r1)φ1σg

(r2)

H H H�+ H�−

Ionic configurations

Unphysical in the dissociation limit!
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HF
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Full Configuration  
Interaction 
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Hartree-Fock  
(no correlation)

φ1σg



Single-configuration ground-state two-electron wave function 
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⇔

1
2 (χsA

(r1)χsB
(r2) + χsA

(r2)χsB
(r1) + χsA

(r1)χsA
(r2) + χsB

(r1)χsB
(r2))

H H H�− H�+

φ1σg φ1σg
(r1)φ1σg

(r2)

H H H�+ H�−

2 φ1σg
(r)

2
= 2φ1σg

(r)φ1σg
(r) = χsA

(r)
2

+ χsB
(r)

2
+2 χsA

(r)χsB
(r)

Electron density in the dissociation limit



Single-configuration ground-state two-electron wave function 
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⇔φ1σg φ1σg
(r1)φ1σg

(r2)

2 φ1σg
(r)

2
= 2φ1σg

(r)φ1σg
(r) = χsA

(r)
2

+ χsB
(r)

2
+2 χsA

(r)χsB
(r)

Electron density in the dissociation limit ≈ 0



Single-configuration ground-state two-electron wave function 
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⇔φ1σg φ1σg
(r1)φ1σg

(r2)

2 φ1σg
(r)

2
= 2φ1σg

(r)φ1σg
(r) ≈ χsA

(r)
2

+ χsB
(r)

2

density of the  
first hydrogen atom

density of the second  
hydrogen atom
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HF
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Full Configuration  
Interaction 
(accurate)

φ1σg

errors in xc  
density functionals



!98

φ1σg

φ1σu

φ1σg

φ1σu

φ1σg

φ1σu

or

Multi-configurational wave function 
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φ1σg

φ1σu

φ1σg

φ1σu

φ1σg

φ1σu

or

Multi-configurational wave function 

≡
1

2 (φ1σg
(r1)φ1σg

(r2)−φ1σu
(r1)φ1σu

(r2))
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φ1σg

φ1σu

φ1σg

φ1σu

φ1σg

φ1σu

or

Multi-configurational wave function 

≡
1

2 (φ1σg
(r1)φ1σg

(r2) − φ1σu
(r1)φ1σu

(r2))

minus combination
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φ1σg

φ1σu

φ1σg

φ1σu

φ1σg

φ1σu

or

Multi-configurational wave function 

≡
1

2 (φ1σg
(r1)φ1σg

(r2)−φ1σu
(r1)φ1σu

(r2))

φ1σg
(r) =

1

2 (χsA
(r) + χsB

(r))

φ1σu
(r) =

1

2 (χsA
(r) − χsB

(r))
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φ1σg

φ1σu

φ1σg

φ1σu

φ1σg

φ1σu

or

Multi-configurational wave function 

≡
1

2 (φ1σg
(r1)φ1σg

(r2)−φ1σu
(r1)φ1σu

(r2))

=
1

2 (χsA
(r1)χsB

(r2) + χsA
(r2)χsB

(r1))
H H H H
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φ1σg

φ1σu

φ1σg

φ1σu

φ1σg

φ1σu

or

Multi-configurational wave function 

≡
1

2 (φ1σg
(r1)φ1σg

(r2) − φ1σu
(r1)φ1σu

(r2))

=
1

2 (χsA
(r1)χsB

(r2) + χsA
(r2)χsB

(r1))
H H H H

Localised picture
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φ1σg

φ1σu

φ1σg

φ1σu

φ1σg

φ1σu

or

Multi-configurational wave function 

≡
1

2 (φ1σg
(r1)φ1σg

(r2) − φ1σu
(r1)φ1σu

(r2))

=
1

2 (χsA
(r1)χsB

(r2) + χsA
(r2)χsB

(r1))
H H H H

Localised picture

Strong electron correlation
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φ1σg

φ1σu

φ1σg

φ1σu

φ1σg

φ1σu

or

Multi-configurational wave function 

≡
1

2 (φ1σg
(r1)φ1σg

(r2) − φ1σu
(r1)φ1σu

(r2))

=
1

2 (χsA
(r1)χsB

(r2) + χsA
(r2)χsB

(r1))
H H H H

Delocalised picture
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φ1σg

φ1σu

φ1σg

φ1σu

φ1σg

φ1σu

or

Multi-configurational wave function 

≡
1

2 (φ1σg
(r1)φ1σg

(r2) − φ1σu
(r1)φ1σu

(r2))

=
1

2 (χsA
(r1)χsB

(r2) + χsA
(r2)χsB

(r1))
H H H H

Delocalised picture

Strong multi-configurational 
character of the electronic structure
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φ1σg

φ1σu

φ1σg

φ1σu

φ1σg

φ1σu

or

Multi-configurational wave function 

≡
1

2 (φ1σg
(r1)φ1σg

(r2) − φ1σu
(r1)φ1σu

(r2))

=
1

2 (χsA
(r1)χsB

(r2) + χsA
(r2)χsB

(r1))
H H H H

Delocalised picture

Strong multi-configurational 
character of the electronic structure

correlation effect
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Strong  
correlation


