

Quantum embedding in electronic structure theory

Part 1: The electronic structure problem in Chemistry

Emmanuel Fromager

Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg, Université de Strasbourg, Strasbourg, France.

Online intensive course at Tokyo Metropolitan University, Tokyo, Japan

January 2022

Happy new year!

Thanks a lot to Professor Naoki Nakatani for the kind invitation.

Professor Naoki Nakatani

Nagoya, February 2017.

From left to right: L. Mazouin, E.F., M. Tsuchiizu (now in Nara), N.N., B. Senjean (now in Montpellier, France)

In order to follow the *first part* of the course you only need basic knowledge in *first quantization.*

I will use **second quantization** in the second and third parts of the course.

I will use **second quantization** in the second and third parts of the course.

An *introductory two-hour lecture* on second quantization is available on YouTube:

https://www.youtube.com/watch?v=FQBrEI57pDA

The corresponding slides are available online:

https://quantique.u-strasbg.fr/lib/exe/fetch.php?media=en:pageperso:ef:istpc2021_second_quantization.pdf

The two main approaches to the *electronic structure problem* in Quantum Chemistry will be reviewed.

The two main approaches to the *electronic structure problem* in Quantum Chemistry will be reviewed.

These approaches are *wave function theory* (WFT) and *density-functional theory* (DFT).

The two main approaches to the *electronic structure problem* in Quantum Chemistry will be reviewed.

These approaches are *wave function theory* (WFT) and *density-functional theory* (DFT).

Limitations of DFT in the description of *strong electron correlation* will be highlighted.

The two main approaches to the *electronic structure problem* in Quantum Chemistry will be reviewed.

These approaches are *wave function theory* (WFT) and *density-functional theory* (DFT).

Limitations of DFT in the description of *strong electron correlation* will be highlighted.

This first part of the course aims at *motivating* the development of *quantum embedding* approaches based on DFT and/or WFT .

Diversity of quantum (

Volume 120, Issue 21

Special Issue: Quantum Embedding Electronic Structure Methods

November 1, 2020 Issue Edited by: Adam Wasserman, Michele Pavanello

Previous Issue | Next Issue > https://onlinelibrary.wiley.com/toc/1097461x/2020/120/21

Editorial: https://doi.org/10.1002/qua.26495

$\hat{H}\Psi_I = E_I\Psi_I$

$$\hat{H}\Psi_I = E_I\Psi_I$$

Electronic Hamiltonian **operator**

$$\hat{H}\Psi_I = E_I\Psi_I$$

Electronic Hamiltonian **operator**

known!

$$\hat{H}\Psi_I = E_I \Psi_I$$

Ground (I = 0) and excited (I > 0)electronic energies

Ground (I = 0) and excited (I > 0)electronic energies

unknown!

$\hat{H}\Psi_{0} = E_{0}\Psi_{0}$

In this lecture we will focus on the ground-state problem

Ground-state electronic wave function

Ground-state electronic wave function

unknown!

N-electron wave function

 $\Psi_0 \equiv \Psi_0(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$

electronic coordinates

N-electron wave function

electronic coordinates

N-electron Hamiltonian operator (in atomic units)

Kinetic energy+nuclear attraction

Electronic repulsion

Kinetic energy+nuclear attraction

Electronic repulsion

Kinetic energy+**nuclear attraction**

Electronic repulsion

"external" potential energy

$$v_{\text{ext}}(\mathbf{r}_i) = -\sum_{A}^{nuclei} \frac{Z_A}{|\mathbf{r}_i - \mathbf{R}_A|}$$

Electronic repulsion

Kinetic energy+nuclear attraction

Electronic repulsion

Kinetic energy+nuclear attraction

Electronic repulsion

N-electron ground-state Schrödinger equation

In summary, we have to solve the following *differential equation*...

$$-\frac{1}{2}\sum_{i=1}^{N}\nabla_{\mathbf{r}_{i}}^{2}\Psi_{0}(\mathbf{r}_{1},\sigma_{1},\ldots,\mathbf{r}_{i},\sigma_{i},\ldots,\mathbf{r}_{N},\sigma_{N})$$

+
$$\sum_{i=1}^{N} v_{\text{ext}}(\mathbf{r}_i) \times \Psi_0(\mathbf{r}_1, \sigma_1, \dots, \mathbf{r}_i, \sigma_i, \dots, \mathbf{r}_N, \sigma_N)$$

$$+\frac{1}{2}\sum_{i\neq j}^{N}\frac{1}{|\mathbf{r}_{i}-\mathbf{r}_{j}|} \times \Psi_{0}(\mathbf{r}_{1},\sigma_{1},\ldots,\mathbf{r}_{i},\sigma_{i},\ldots,\mathbf{r}_{j},\sigma_{j}\ldots,\mathbf{r}_{N},\sigma_{N})$$

$$= E_0 \times \Psi_0(\mathbf{r}_1, \sigma_1, \dots, \mathbf{r}_N, \sigma_N)$$

N-electron ground-state Schrödinger equation

In summary, we have to solve the following *differential equation*...

$$-\frac{1}{2}\sum_{i=1}^{N} \nabla_{\mathbf{r}_{i}}^{2} \Psi_{0}(\mathbf{r}_{1}, \sigma_{1}, \dots, \mathbf{r}_{i}, \sigma_{i}, \dots, \mathbf{r}_{N}, \sigma_{N})$$
$$+ \sum_{i=1}^{N} v_{\text{ext}}(\mathbf{r}_{i}) \times \Psi_{0}(\mathbf{r}_{1}, \sigma_{1}, \dots, \mathbf{r}_{i}, \sigma_{i}, \dots, \mathbf{r}_{N}, \sigma_{N})$$

$$+\frac{1}{2}\sum_{i\neq j}^{N}\frac{1}{|\mathbf{r}_{i}-\mathbf{r}_{j}|} \times \Psi_{0}(\mathbf{r}_{1},\sigma_{1},\ldots,\mathbf{r}_{i},\sigma_{i},\ldots,\mathbf{r}_{j},\sigma_{j}\ldots,\mathbf{r}_{N},\sigma_{N})$$

$$? ? ? = E_0 \times \Psi_0(\mathbf{r}_1, \sigma_1, \dots, \mathbf{r}_N, \sigma_N)$$

N-electron ground-state Schrödinger equation

In summary, we have to solve the following *differential equation*...

$$-\frac{1}{2}\sum_{i=1}^{N}\nabla_{\mathbf{r}_{i}}^{2}\Psi_{0}(\mathbf{r}_{1},\sigma_{1},\ldots,\mathbf{r}_{i},\sigma_{i},\ldots,\mathbf{r}_{N},\sigma_{N})$$

+
$$\sum_{i=1}^{N} v_{\text{ext}}(\mathbf{r}_i) \times \Psi_0(\mathbf{r}_1, \sigma_1, \dots, \mathbf{r}_i, \sigma_i, \dots, \mathbf{r}_N, \sigma_N)$$

$$+\frac{1}{2}\sum_{i\neq j}^{N}\frac{1}{|\mathbf{r}_{i}-\mathbf{r}_{j}|} \times \Psi_{0}(\mathbf{r}_{1},\sigma_{1},\ldots,\mathbf{r}_{i},\sigma_{i},\ldots,\mathbf{r}_{j},\sigma_{j}\ldots,\mathbf{r}_{N},\sigma_{N})$$
... and we have to find the *lowest energy (!)*
?

 $= E_0 \times \Psi_0(\mathbf{r}_1, \sigma_1, \dots, \mathbf{r}_N, \sigma_N)$
$$E_0 = \min_{\Psi} \langle \Psi | \hat{H} | \Psi \rangle = \langle \Psi_0 | \hat{H} | \Psi_0 \rangle$$

$$E_{0} = \min_{\Psi} \langle \Psi | \hat{H} | \Psi \rangle = \langle \Psi_{0} | \hat{H} | \Psi_{0} \rangle$$

$$Minimisation over$$

$$trial normalised wave functions \Psi$$

$$\langle \Psi | \Psi \rangle = \int d\mathbf{x}_{1} \dots \int d\mathbf{x}_{i} \dots \int d\mathbf{x}_{N} \left| \Psi(\mathbf{x}_{1}, \dots, \mathbf{x}_{i}, \dots, \mathbf{x}_{N}) \right|^{2} = 1$$

$$\int d\mathbf{x}_{i} \equiv \int d\mathbf{r}_{i} \sum_{\sigma_{i}=\uparrow,\downarrow} \equiv \sum_{\sigma_{i}=\uparrow,\downarrow} \int_{-\infty}^{+\infty} dx_{i} \int_{-\infty}^{+\infty} dy_{i} \int_{-\infty}^{+\infty} dz_{i}$$
$$\langle \Psi | \Psi \rangle = \int d\mathbf{x}_{1} \dots \int d\mathbf{x}_{i} \dots \int d\mathbf{x}_{N} \left| \Psi(\mathbf{x}_{1}, \dots, \mathbf{x}_{i}, \dots, \mathbf{x}_{N}) \right|^{2} = 1$$

$$E_{0} = \min_{\Psi} \langle \Psi | \hat{H} | \Psi \rangle = \langle \Psi_{0} | \hat{H} | \Psi_{0} \rangle$$

$$Finergy expectation value$$

for the trial wave function Ψ

41

Energy expectation value for the trial wave function Ψ

Expectation value for an observable \mathcal{O} described by the **quantum operator** \mathcal{O}

$$\langle \Psi | \hat{\mathcal{O}} | \Psi \rangle = \int d\mathbf{x}_1 \dots \int d\mathbf{x}_i \dots \int d\mathbf{x}_N \,\Psi(\mathbf{x}_1, \dots, \mathbf{x}_i, \dots, \mathbf{x}_N) \times \hat{\mathcal{O}} \Psi(\mathbf{x}_1, \dots, \mathbf{x}_i, \dots, \mathbf{x}_N)$$

$$\stackrel{notation}{=} \langle \hat{\mathcal{O}} \rangle_{\Psi}$$

42

Hartree-Fock theory

$$E_0 \approx \min_{\Phi} \langle \Phi | \hat{H} | \Phi \rangle = \langle \Phi_{HF} | \hat{H} | \Phi_{HF} \rangle = E_{HF}$$

Minimization over single Slater determinants (fully occupied or unoccupied spin-orbitals)

Hartree-Fock theory

$$E_0 \approx \min_{\Phi} \langle \Phi | \hat{H} | \Phi \rangle = \langle \Phi_{HF} | \hat{H} | \Phi_{HF} \rangle = E_{HF}$$

Minimization over single Slater determinants (fully occupied or unoccupied spin-orbitals)

Hartree-Fock energy (full exact exchange and no correlation)

Density-functional theory (DFT)

25/11/2021 20:32

The Nobel Prize in Chemistry 1998

Photo from the Nobel Foundation archive. Walter Kohn Prize share: 1/2

Photo from the Nobel Foundation archive. John A. Pople Prize share: 1/2

It is *in principle unnecessary to know* the ground-state many-electron *wave function* Ψ_0 for evaluating the exact ground-state energy E_0 .

The Nobel Prize in Chemistry 1998 was divided equally between Walter Kohn "for his development of the density-functional theory" and John A. Pople "for his development of computational methods in quantum chemistry."

stry 1998

Density-functional theory (DFT)

25/11/2021 20:32

The Nobel Prize in Chemistry 1998

Photo from the Nobel Foundation archive. Walter Kohn Prize share: 1/2

It is *in principle unnecessary to know*

the ground-state many-electron wave function Ψ_0 for evaluating the exact ground-state energy E_0 .

The ground-state *density* n_0 is *sufficient*.

The Nobel Prize in Chemistry 1998 was divided equally between Walter Kohn "for his development of the density-functional theory" and John A. Pople "for his development of computational methods in quantum chemistry."

$$n_{\Psi}(\mathbf{r}) \stackrel{definition}{=} N \sum_{\sigma_1=\uparrow,\downarrow} \int d\mathbf{x}_2 \dots \int d\mathbf{x}_i \dots \int d\mathbf{x}_N \left| \Psi(\mathbf{r}, \sigma_1, \mathbf{x}_2, \dots, \mathbf{x}_i, \dots, \mathbf{x}_N) \right|^2$$

Density of the many-electron wave function Ψ

$$n_{\Psi}(\mathbf{r}) \stackrel{definition}{=} N \sum_{\sigma_1 = \uparrow,\downarrow} \int d\mathbf{x}_2 \dots \int d\mathbf{x}_i \dots \int d\mathbf{x}_N \left| \Psi(\mathbf{r}, \sigma_1, \mathbf{x}_2, \dots, \mathbf{x}_i, \dots, \mathbf{x}_N) \right|^2$$

Density of the many-electron wave function Ψ

Function of the **three** cartesian **space coordinates** $\mathbf{r} \equiv (x, y, z)$

$$n_{\Psi}(\mathbf{r}) \stackrel{definition}{=} N \sum_{\sigma_1=\uparrow,\downarrow} \int d\mathbf{x}_2 \dots \int d\mathbf{x}_i \dots \int d\mathbf{x}_N \left| \Psi(\mathbf{r}, \sigma_1, \mathbf{x}_2, \dots, \mathbf{x}_i, \dots, \mathbf{x}_N) \right|^2$$

$$\int d\mathbf{r} \, n_{\Psi}(\mathbf{r}) = N \langle \Psi \, | \, \Psi \rangle = N \quad \longleftarrow \quad \text{Number of electrons}$$

$$n_{\Psi}(\mathbf{r}) \stackrel{definition}{=} N \sum_{\sigma_1=\uparrow,\downarrow} \int d\mathbf{x}_2 \dots \int d\mathbf{x}_i \dots \int d\mathbf{x}_N \left| \Psi(\mathbf{r}, \sigma_1, \mathbf{x}_2, \dots, \mathbf{x}_i, \dots, \mathbf{x}_N) \right|^2$$

$$n_{\Psi_0}(\mathbf{r}) = n_0(\mathbf{r})$$
 \leftarrow Exact ground-state density

$$n_{\Psi}(\mathbf{r}) \stackrel{definition}{=} N \sum_{\sigma_1=\uparrow,\downarrow} \int d\mathbf{x}_2 \dots \int d\mathbf{x}_i \dots \int d\mathbf{x}_N \left| \Psi(\mathbf{r}, \sigma_1, \mathbf{x}_2, \dots, \mathbf{x}_i, \dots, \mathbf{x}_N) \right|^2$$

Note that the **external potential energy** is an **explicit** functional of the **density**

Proof:

$$\begin{split} \left\langle \sum_{i=1}^{N} v_{ext}(\mathbf{r}_{i}) \times \right\rangle_{\Psi} &= \int d\mathbf{x}_{1} \dots \int d\mathbf{x}_{N} \sum_{i=1}^{N} v_{ext}(\mathbf{r}_{i}) \times \left| \Psi(\mathbf{x}_{1}, \dots, \mathbf{x}_{N}) \right|^{2} \\ &= \sum_{i=1}^{N} \int d\mathbf{x}_{1} \dots \int d\mathbf{x}_{i} \dots \int d\mathbf{x}_{N} v_{ext}(\mathbf{r}_{i}) \times \left| \Psi(\mathbf{x}_{1}, \dots, \mathbf{x}_{i}, \dots, \mathbf{x}_{N}) \right|^{2} \\ &= \sum_{i=1}^{N} \int d\mathbf{x}_{1} \dots \int d\mathbf{x}_{i} \dots \int d\mathbf{x}_{N} v_{ext}(\mathbf{r}_{i}) \times \left| \Psi(\mathbf{x}_{1}, \dots, \mathbf{x}_{i}, \dots, \mathbf{x}_{N}) \right|^{2} \\ &= \sum_{i=1}^{N} \int d\mathbf{x}_{1} \dots \int d\mathbf{x}_{N} v_{ext}(\mathbf{r}_{1}) \times \left| \Psi(\mathbf{x}_{1}, \dots, \mathbf{x}_{N}) \right|^{2} \\ &= N \int d\mathbf{x}_{1} \dots \int d\mathbf{x}_{N} v_{ext}(\mathbf{r}_{1}) \times \left| \Psi(\mathbf{x}_{1}, \dots, \mathbf{x}_{N}) \right|^{2} \\ &= \int d\mathbf{r}_{1} v_{ext}(\mathbf{r}_{1}) \times N \sum_{\sigma_{i} = \uparrow,\downarrow} \int d\mathbf{x}_{2} \dots \int d\mathbf{x}_{N} \left| \Psi(\mathbf{r}_{1}, \sigma_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{N}) \right|^{2} \\ &= \int d\mathbf{r}_{1} v_{ext}(\mathbf{r}_{1}) \times n_{\Psi}(\mathbf{r}_{1}) \end{split}$$

Exact external potential energy

$$\left\langle \sum_{i=1}^{N} v_{\text{ext}}(\mathbf{r}_{i}) \times \right\rangle_{\Psi_{0}} = \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{\Psi_{0}}(\mathbf{r}) = \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{0}(\mathbf{r})$$

We do not need to know Ψ_0

Exact external potential energy

$$\left\langle \sum_{i=1}^{N} v_{\text{ext}}(\mathbf{r}_{i}) \times \right\rangle_{\Psi_{0}} = \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{\Psi_{0}}(\mathbf{r}) = \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{0}(\mathbf{r})$$

We do not need to know Ψ_0

We just need to know n_0

Exact external potential energy

$$\left\langle \sum_{i=1}^{N} v_{\text{ext}}(\mathbf{r}_{i}) \times \right\rangle_{\Psi_{0}} = \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{\Psi_{0}}(\mathbf{r}) = \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{0}(\mathbf{r})$$

We do not need to know Ψ_0

We just need to know n_0

The exact kinetic and two-electron repulsion energies are implicit functionals of n_0 .

$$E_0 = \min_{\Psi} \langle \Psi | \hat{H} | \Psi \rangle$$

Minimisation over *densities n*

$$E_{0} = \min_{\Psi} \langle \Psi | \hat{H} | \Psi \rangle$$
$$= \min_{n} \left\{ \min_{\Psi \to n} \langle \Psi | \hat{H} | \Psi \rangle \right\}$$

Levy M (1979) Proc Natl Acad Sci USA 76(12):6062

$$E_{0} = \min_{\Psi} \langle \Psi | \hat{H} | \Psi \rangle$$
$$= \min_{n} \left\{ \min_{\Psi \to n} \langle \Psi | \hat{H} | \Psi \rangle \right\}$$

$$\hat{T} \equiv \sum_{i=1}^{N} -\frac{1}{2} \nabla_{\mathbf{r}_{i}}^{2}$$
$$\hat{W}_{ee} \equiv \frac{1}{2} \sum_{i \neq j}^{N} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} \times$$

$$E_{0} = \min_{\Psi} \langle \Psi | \hat{H} | \Psi \rangle$$

= $\min_{n} \left\{ \min_{\Psi \to n} \langle \Psi | \hat{H} | \Psi \rangle \right\}$
= $\min_{n} \left\{ \min_{\Psi \to n} \left\{ \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle + \int d\mathbf{r} \, v_{ext}(\mathbf{r}) n_{\Psi}(\mathbf{r}) \right\} \right\}$
= $\min_{n} \left\{ \min_{\Psi \to n} \left\{ \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle \right\} + \int d\mathbf{r} \, v_{ext}(\mathbf{r}) n(\mathbf{r}) \right\}$

$$E_{0} = \min_{\Psi} \langle \Psi | \hat{H} | \Psi \rangle$$

$$= \min_{n} \left\{ \min_{\Psi \to n} \langle \Psi | \hat{H} | \Psi \rangle \right\}$$

$$= \min_{n} \left\{ \min_{\Psi \to n} \left\{ \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle + \int d\mathbf{r} \, v_{ext}(\mathbf{r}) n_{\Psi}(\mathbf{r}) \right\} \right\}$$

$$= \min_{n} \left\{ \min_{\Psi \to n} \left\{ \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle \right\} + \int d\mathbf{r} \, v_{ext}(\mathbf{r}) n(\mathbf{r}) \right\}$$

$$= \min_{n} \left\{ V_{ext}(\mathbf{r}) n(\mathbf{r}) \right\}$$

$$E_0 = \min_n \left\{ F[n] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n(\mathbf{r}) \right\}$$

We recover the Hohenberg-Kohn variational principle of DFT!

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)

Interacting universal functional

Non-interacting (kinetic energy) functional

$$Kohn-Sham$$

$$F[n] = \min_{\Psi \to n} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle \longrightarrow T_{s}[n] = \min_{\Psi \to n} \langle \Psi | \hat{T} | \Psi \rangle$$

Interacting universal functional

Non-interacting (kinetic energy) functional

$$F[n] - T_{\rm s}[n] = E_{\rm Hxc}[n]$$

$$Kohn-Sham$$

$$F[n] = \min_{\Psi \to n} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle \longrightarrow T_{s}[n] = \min_{\Psi \to n} \langle \Psi | \hat{T} | \Psi \rangle$$

Interacting universal functional

Non-interacting (kinetic energy) functional

$$F[n] - T_{s}[n] = E_{Hxc}[n]$$
$$= E_{H}[n] + E_{xc}[n]$$

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

Hartree density functional

Hartree density functional

Exchange-correlation (xc) density functional

$$E_{\rm xc}[n] = F[n] - T_{\rm s}[n] - E_{\rm H}[n] \qquad \Leftarrow$$

- Quantum many-electron effects

Hartree density functional

Exchange-correlation (xc) density functional

$$E_{\rm xc}[n] \approx ???$$

Quantum many-electron effects

The **exact** xc functional is **uniquely defined** but **many** (many) **approximations** can be found in the literature (LDA, PBE, B3LYP, SCAN, ...).

$$E_{0} = \min_{n} \left\{ F[n] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n(\mathbf{r}) \right\} \qquad \text{Variational principle} \\ = \min_{n} \left\{ T_{\text{s}}[n] + E_{\text{Hxc}}[n] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n(\mathbf{r}) \right\} \\ = \min_{n} \left\{ \min_{\Psi \to n} \left\{ \langle \Psi | \hat{T} | \Psi \rangle \right\} + E_{\text{Hxc}}[n] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n(\mathbf{r}) \right\} \\ = \min_{n} \left\{ \min_{\Psi \to n} \left\{ \langle \Psi | \hat{T} | \Psi \rangle + E_{\text{Hxc}}[n\Psi] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n\Psi(\mathbf{r}) \right\} \right\} \\ = \min_{n} \left\{ \min_{\Psi \to n} \left\{ \langle \Psi | \hat{H} - \hat{W}_{\text{ee}} | \Psi \rangle + E_{\text{Hxc}}[n\Psi] \right\} \right\}$$

Comparing variational principles

$$E_{0} = \min_{\Psi} \left\{ \langle \Psi | \hat{H} | \Psi \rangle \right\} = \min_{\Psi} \left\{ \langle \Psi | \hat{H} - \hat{W}_{ee} | \Psi \rangle + E_{Hxc}[n_{\Psi}] \right\}$$
$$E_{0} = \left[\min_{\Psi} \left\{ \langle \Psi | \hat{H} | \Psi \rangle \right\} \right] = \min_{\Psi} \left\{ \langle \Psi | \hat{H} - \hat{W}_{ee} | \Psi \rangle + E_{Hxc}[n_{\Psi}] \right\}$$

Pure wave function theory (WFT)

$$E_{0} = \min_{\Psi} \left\{ \langle \Psi | \hat{H} | \Psi \rangle \right\} = \min_{\Psi} \left\{ \langle \Psi | \hat{H} - \hat{W}_{ee} | \Psi \rangle + E_{Hxc}[n_{\Psi}] \right\}$$

Kohn-Sham DFT

$$E_{0} = \min_{\Psi} \left\{ \langle \Psi | \hat{H} | \Psi \rangle \right\} = \left\{ \sup_{\Psi} \left\{ \langle \Psi | \hat{H} - \hat{W}_{ee} | \Psi \rangle + E_{Hxc}[n_{\Psi}] \right\}$$

Explicit two-electron repulsions are **removed** from the Hamiltonian...

$$E_{0} = \min_{\Psi} \left\{ \langle \Psi | \hat{H} | \Psi \rangle \right\} = \min_{\Psi} \left\{ \langle \Psi | \hat{H} - \hat{W}_{ee} | \Psi \rangle + E_{Hxc}[n_{\Psi}] \right\}$$

Explicit two-electron repulsions are **removed** from the Hamiltonian...

... and treated **implicitly** as functionals of the density.

$$E_{0} = \min_{\Psi} \left\{ \langle \Psi | \hat{H} | \Psi \rangle \right\} = \min_{\Psi} \left\{ \langle \Psi | \hat{H} - \hat{W}_{ee} | \Psi \rangle + E_{Hxc}[n_{\Psi}] \right\}$$

Explicit two-electron repulsions are **removed** from the Hamiltonian...

DFT for *N*-electron ground states

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

DFT for *N*-electron ground states

$$\left[-\frac{\nabla_{\mathbf{r}}^2}{2} + v_{\text{ext}}(\mathbf{r}) + v_{\text{Hxc}}(\mathbf{r})\right]\varphi_i(\mathbf{r}) = \varepsilon_i\varphi_i(\mathbf{r})$$

$$n_0(\mathbf{r}) = \sum_{i=1}^N |\varphi_i(\mathbf{r})|^2$$

exact ground-state density

DFT for *N*-electron ground states

$$\begin{bmatrix} -\frac{\nabla_{\mathbf{r}}^{2}}{2} + v_{\text{ext}}(\mathbf{r}) + v_{\text{Hxc}}(\mathbf{r}) \\ \uparrow \\ v_{\text{Hxc}}(\mathbf{r}) = \frac{\delta E_{\text{Hxc}}[n]}{\delta n(\mathbf{r})} \\ \end{bmatrix}_{n=n_{0}}$$

Hartree-exchange-correlation local (multiplicative) **potential**

$$n_0(\mathbf{r}) = \sum_{i=1}^N |\varphi_i(\mathbf{r})|^2$$

exact ground-state density

Success and failures of density-functional approximations

ΗΗ

$$\mathbf{R}_{B} \equiv (x_{B}, y_{B}, z_{B})$$

$$\mathbf{H} \qquad \mathbf{H}$$

$$\mathbf{R}_{A} \equiv (x_{A}, y_{A}, z_{A})$$

 χ_{s_A} and χ_{s_B} are **localised orbitals**

$$\varphi_{1\sigma_u}(\mathbf{r}) = \frac{1}{\sqrt{2}} \left(\chi_{s_A}(\mathbf{r}) - \chi_{s_B}(\mathbf{r}) \right)$$

Anti-bonding orbital

$$\varphi_{1\sigma_g}(\mathbf{r}) = \frac{1}{\sqrt{2}} \left(\chi_{s_A}(\mathbf{r}) + \chi_{s_B}(\mathbf{r}) \right)$$

Bonding orbital

$$\varphi_{1\sigma_u}(\mathbf{r}) = \frac{1}{\sqrt{2}} \left(\chi_{s_A}(\mathbf{r}) - \chi_{s_B}(\mathbf{r}) \right)$$

Anti-bonding orbital

$$\varphi_{1\sigma_g}(\mathbf{r}) = \frac{1}{\sqrt{2}} \left(\chi_{s_A}(\mathbf{r}) + \chi_{s_B}(\mathbf{r}) \right)$$

Bonding orbital

 $arphi_{1\sigma_{g}}$ and $arphi_{1\sigma_{u}}$ are delocalised orbitals

$$\begin{array}{c} & & & & & & & \\ & & & & & \\ \hline \end{array} & & & & & \\ & & & & \\ \hline \end{array} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

Ionic configurations

$$\frac{1}{2} \left(\chi_{s_A}(\mathbf{r}_1) \chi_{s_B}(\mathbf{r}_2) + \chi_{s_A}(\mathbf{r}_2) \chi_{s_B}(\mathbf{r}_1) + \chi_{s_A}(\mathbf{r}_1) \chi_{s_A}(\mathbf{r}_2) + \chi_{s_B}(\mathbf{r}_1) \chi_{s_B}(\mathbf{r}_2) \right)$$

$$\mathbf{H} \dots \mathbf{H} \qquad \mathbf{H} \dots \mathbf{H} \qquad \mathbf{H}^{-} \dots \mathbf{H}^{+} \qquad \mathbf{H}^{+} \dots \mathbf{H}^{-}$$

Ionic configurations

Unphysical in the dissociation limit!

$$\begin{array}{c} & & & & & & \\ & & & & & \\ \hline \end{array} & & & & & \\ & & & & \\ \hline \end{array} & \begin{pmatrix} \chi_{s_A}(\mathbf{r}_1)\chi_{s_B}(\mathbf{r}_2) + \chi_{s_A}(\mathbf{r}_2)\chi_{s_B}(\mathbf{r}_1) + \chi_{s_A}(\mathbf{r}_1)\chi_{s_A}(\mathbf{r}_2) + \chi_{s_B}(\mathbf{r}_1)\chi_{s_B}(\mathbf{r}_2) \end{pmatrix} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} & \begin{array}{c} & & \\ &$$

Electron density in the dissociation limit

$$2\left|\varphi_{1\sigma_{g}}(\mathbf{r})\right|^{2} = 2\varphi_{1\sigma_{g}}(\mathbf{r})\varphi_{1\sigma_{g}}(\mathbf{r}) = \left|\chi_{s_{A}}(\mathbf{r})\right|^{2} + \left|\chi_{s_{B}}(\mathbf{r})\right|^{2} + 2\chi_{s_{A}}(\mathbf{r})\chi_{s_{B}}(\mathbf{r})$$

Electron density in the dissociation limit

pprox 0

$$2\left|\varphi_{1\sigma_{g}}(\mathbf{r})\right|^{2} = 2\varphi_{1\sigma_{g}}(\mathbf{r})\varphi_{1\sigma_{g}}(\mathbf{r}) = \left|\chi_{s_{A}}(\mathbf{r})\right|^{2} + \left|\chi_{s_{B}}(\mathbf{r})\right|^{2} + 2\chi_{s_{A}}(\mathbf{r})\chi_{s_{B}}(\mathbf{r})$$

$$\frac{density}{first hydrogen atom} first hydrogen atom} \frac{density}{hydrogen atom} first hydrogen atom} 2 \left| \varphi_{1\sigma_g}(\mathbf{r}) \right|^2 = 2\varphi_{1\sigma_g}(\mathbf{r})\varphi_{1\sigma_g}(\mathbf{r}) \approx \left| \chi_{s_A}(\mathbf{r}) \right|^2 + \left| \chi_{s_B}(\mathbf{r}) \right|^2$$

