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• Unified description of charged and neutral electronic excitations within ensemble DFT 

• Equivalence between xc ensemble weight derivatives and xc derivative discontinuities  

Part 1: Exact theory

Part 2: Weight-dependent density-functional approximations (DFAs) 

• The exact Hartree-exchange dilemma in ensemble DFT  

• Recycling ground-state correlation DFAs: What about state- and density-driven correlations?
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Abstract
Recent progress in the field of (time-independent) ensemble density-functional the-
ory (DFT) for excited states are reviewed. Both Gross–Oliveira–Kohn (GOK) and 
N-centered ensemble formalisms, which are mathematically very similar and allow 
for an in-principle-exact description of neutral and charged electronic excitations, 
respectively, are discussed. Key exact results, for example, the equivalence between 
the infamous derivative discontinuity problem and the description of weight depend-
encies in the ensemble exchange-correlation density functional, are highlighted. The 
variational evaluation of orbital-dependent ensemble Hartree-exchange (Hx) ener-
gies is discussed in detail. We show in passing that state-averaging individual exact 
Hx energies can lead to severe (although solvable) v-representability issues. Finally, 
we explore the possibility of using the concept of density-driven correlation, which 
has been introduced recently and does not exist in regular ground-state DFT, for 
improving state-of-the-art correlation density-functional approximations for ensem-
bles. The present review reflects the efforts of a growing community to turn ensem-
ble DFT into a rigorous and reliable low-cost computational method for excited 
states. We hope that, in the near future, this contribution will stimulate new formal 
and practical developments in the field.
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DFT for -electron ground states  N
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Hartree-exchange-correlation potential



From the -electron ground state to the excited states N
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Ionisation
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Reference -electron Kohn-Sham system   N

Affinity
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Reference -electron Kohn-Sham system   N

Neutral excitation



From the -electron ground state to the excited states N

10

i = N−1
i = N

i = N+1LUMO

HOMO

i = N−2

i = 2
i = 1

i = N+2

i = N−1
i = N

i = N+1

i = N−2

i = 2
i = 1
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Simple connection to the  
real (interacting) excited states?
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i = N−1
i = N
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i = N−2

i = 2
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Continuous affinity process

J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz Jr, Phys. Rev. Lett. 49, 1691 (1982).
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i = N−1
i = N

i = N+1

i = N−2

i = 2
i = 1

i = N+2

Continuous affinity process

Fractional occupation

J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz Jr, Phys. Rev. Lett. 49, 1691 (1982). 
J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
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i = N

i = N+1

i = N−2

i = 2
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DFT for fractional electron numbers 

n(r) ≡ (1−α)nN
0 (r)+αnN+1

0 (r)

0 < α ≤ 1

“Grand canonical” ensemble weight

E. Kraisler, L. Kronik, Phys. Rev. Lett. 110, 126403 (2013).

Continuous affinity process
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i = N−1
i = N

i = N+1

i = N−2

i = 2
i = 1

i = N+2

DFT for fractional electron numbers 

n(r) ≡ (1−α)nN
0 (r)+αnN+1

0 (r)

0 < α ≤ 1

E. Kraisler, L. Kronik, Phys. Rev. Lett. 110, 126403 (2013).

We "just" need to extend  
to densities  integrating to  
fractional electron numbers

Exc[n]
n

Continuous affinity process
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DFT for fractional electron numbers 

IN+1
0 = − εN+1

Janak’s theorem

J. F. Janak, Phys. Rev. B 18, 7165 (1978).

Continuous affinity process
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DFT for fractional electron numbers 

IN+1
0 = − εN+1

vHxc[n](r) =
δEHxc [n]

δn(r)

J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).

exhibits discontinuities when crossing 

an integer electron number 

Continuous affinity process
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DFT for fractional electron numbers 

IN+1
0 = − εN+1

vHxc[n](r) =
δEHxc [n]

δn(r)
exhibits discontinuities when crossing 


an integer electron number 

Continuous affinity process
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i = N−1
i = N

i = N+1

i = N−2

i = 2
i = 1

i = N+2

DFT for fractional electron numbers 

n(r) ≡ (1−α)nN
0 (r)+αnN+1

0 (r)

∫ dr n(r) = N + α

E. Kraisler, L. Kronik, Phys. Rev. Lett. 110, 126403 (2013). 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

Continuous affinity process
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i = N−1
i = N

i = N+1

i = N−2

i = 2
i = 1

i = N+2

DFT for fractional electron numbers 

n(r) ≡ (1−α)nN
0 (r)+αnN+1

0 (r)

∫ dr n(r) = N + α

α ≡ α[n]

E. Kraisler, L. Kronik, Phys. Rev. Lett. 110, 126403 (2013). 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

Continuous affinity process
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i = N−1
i = N

i = N+1

i = N−2

i = 2
i = 1

i = N+2

DFT for fractional electron numbers 

n(r) ≡ (1−α)nN
0 (r)+αnN+1

0 (r)

The ensemble weight and the density are 

not independent variables 

E. Kraisler, L. Kronik, Phys. Rev. Lett. 110, 126403 (2013). 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

Continuous affinity process
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-centered ensemble density  N

n(r) ≡ (1−α)nN
0 (r)+αnN+1

0 (r) Traditional approach

n(r) ≡ (1 −
N + 1

N
ξ+) nN

0 (r)+ξ+nN+1
0 (r) -centered approachN

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190
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-centered ensemble density  N

n(r) ≡ (1−α)nN
0 (r)+αnN+1

0 (r) Traditional approach

n(r) ≡ (1 −
N + 1

N
ξ+) nN

0 (r)+ξ+nN+1
0 (r) -centered approachN

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190
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-centered ensemble density  N

n(r) ≡ (1 −
N + 1

N
ξ+) nN

0 (r)+ξ+nN+1
0 (r) -centered approachN

∫ dr n(r) = N

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190
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-centered ensemble density  N

n(r) ≡ (1 −
N + 1

N
ξ+) nN

0 (r)+ξ+nN+1
0 (r) -centered approachN

∫ dr n(r) = N

The ensemble weight  and the density    
are now independent variables 

ξ+ n

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190
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-centered ensemble DFT  N

Eξ+
xc[n]

The xc functional has become ensemble weight-dependent 

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190
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n(r) ≡ (1 −
excited states

∑
ν>0

Nν

N
ξν) n0(r) +

excited states

∑
ν>0

ξνnν(r)

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190
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A. K. Theophilou, J. Phys. C: Solid State Phys. 12, 5419 (1979). 
A. K. Theophilou, in The Single Particle Density in Physics and Chemistry, edited by N. H. March and B. M. Deb (Academic Press, 1987), pp. 210–212. 
E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988). 
E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988). 
L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. A 37, 2821 (1988). 
C. Marut, F. Cernatic, B. Senjean, P.-F. Loos, and E. Fromager, in preparation (2022).

n(r) ≡ (1 −
excited states

∑
ν>0

Nν

N
ξν) n0(r) +

excited states

∑
ν>0

ξνnν(r)

Charged  
or neutral!
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n(r) ≡ (1 −
excited states

∑
ν>0

Nν

N
ξν) n0(r) +

excited states

∑
ν>0

ξνnν(r)

Reference -electron 

ground-state density

N

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190
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n(r) ≡ (1 −
excited states

∑
ν>0

Nν

N
ξν) n0(r) +

excited states

∑
ν>0

ξνnν(r)

∫ dr n(r) = N

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190
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E{ξν} = (1 − ∑
ν>0

Nν

N
ξν) E0 + ∑

ν>0

ξνEν

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190

Reference -electron 

ground-state energy

N
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E{ξν} = (1 − ∑
ν>0

Nν

N
ξν) E0 + ∑

ν>0

ξνEν

Functional of the -centered 

ensemble density

N

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190
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E{ξν} = (1 − ∑
ν>0

Nν

N
ξν) E0 + ∑

ν>0

ξνEν

Functional of the -centered ensemble densityN

n(r) ≡ ∑
i

∑
ν≥0

ni,νξν φ{ξν}
i (r)

2

Fractionally occupied KS orbitals

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190
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E{ξν} = (1 − ∑
ν>0

Nν

N
ξν) E0 + ∑

ν>0

ξνEν

Functional of the -centered ensemble densityN

n(r) ≡ ∑
i

∑
ν≥0

ni,νξν φ{ξν}
i (r)

2

E{ξν}
Hxc [n] = EH[n] + E{ξν}

xc [n] key ingredient

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190



-centered ensemble energy N
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E{ξν} = (1 − ∑
ν>0

Nν

N
ξν) E0 + ∑

ν>0

ξνEν

Auxiliary quantity (not an observable) …

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190
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E{ξν} = (1 − ∑
ν>0

Nν

N
ξν) E0 + ∑

ν>0

ξνEν

Auxiliary quantity (not observable) …

… that varies linearly with the ensemble weights!

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190
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E{ξν} = (1 − ∑
ν>0

Nν

N
ξν) E0 + ∑

ν>0

ξνEν

Eμ − E0 =
(Nμ − N)

N
E0 +

∂E{ξν}
∂ξμ

{ξν}=0

Excitation  
energy

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190

Extraction procedure



-centered ensemble energy N

37

E{ξν} = (1 − ∑
ν>0

Nν

N
ξν) E0 + ∑

ν>0

ξνEν

Eμ − E0 =
(Nμ − N)

N
E0 +

∂E{ξν}
∂ξμ

{ξν}=0

Infinitesimal occupation  
of the targeted excited state , 

 i.e.,   
μ

ξμ → 0+

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190



Physical meaning of the KS orbital energies 
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Eμ − E0 = ℰKS
μ − ℰKS

0

M. J. P. Hodgson, J. Wetherell, and E. Fromager, Phys. Rev. A 103, 012806 (2021). 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

+
∂E{ξν}

xc [n0]
∂ξμ

{ξν}=0

+
(N − Nμ)

N (∫ dr vξμ→0+

Hxc (r)n0(r) − EHxc[n0])

KS excitation energy



Physical meaning of the KS orbital energies 
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Eμ − E0 = ℰKS
μ − ℰKS

0

M. J. P. Hodgson, J. Wetherell, and E. Fromager, Phys. Rev. A 103, 012806 (2021). 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

+
∂E{ξν}

xc [n0]
∂ξμ

{ξν}=0

+
(N − Nμ)

N (∫ dr vξμ→0+

Hxc (r)n0(r) − EHxc[n0])

xc ensemble weight derivative



Physical meaning of the KS orbital energies 
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Eμ − E0 = ℰKS
μ − ℰKS

0

M. J. P. Hodgson, J. Wetherell, and E. Fromager, Phys. Rev. A 103, 012806 (2021). 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

+
∂E{ξν}

xc [n0]
∂ξμ

{ξν}=0

+
(N − Nμ)

N (∫ dr vξμ→0+

Hxc (r)n0(r) − EHxc[n0])

does not exist in regular DFT



Physical meaning of the KS orbital energies 
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Eμ − E0 = ℰKS
μ − ℰKS

0

M. J. P. Hodgson, J. Wetherell, and E. Fromager, Phys. Rev. A 103, 012806 (2021). 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

+
∂E{ξν}

xc [n0]
∂ξμ

{ξν}=0

+
(N − Nμ)

N (∫ dr vξμ→0+

Hxc (r)n0(r) − EHxc[n0])

-centered ensemble Hxc potential N



Physical meaning of the KS orbital energies 
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Eμ − E0 = ℰKS
μ − ℰKS

0

M. J. P. Hodgson, J. Wetherell, and E. Fromager, Phys. Rev. A 103, 012806 (2021). 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

+
∂E{ξν}

xc [n0]
∂ξμ

{ξν}=0

+
(N − Nμ)

N (∫ dr vξμ→0+

Hxc (r)n0(r) − EHxc[n0])

-centered ensemble Hxc potential 
unique up to a constant

N



Physical meaning of the KS orbital energies 
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Eμ − E0 = ℰKS
μ − ℰKS

0

M. J. P. Hodgson, J. Wetherell, and E. Fromager, Phys. Rev. A 103, 012806 (2021). 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

+
∂E{ξν}

xc [n0]
∂ξμ

{ξν}=0

+
(N − Nμ)

N (∫ dr vξμ→0+

Hxc (r)n0(r) − EHxc[n0])

Even for charged excitations!

-centered ensemble Hxc potential 
unique up to a constant

N



Let’s make the charged KS excitation energies match the true ones! 
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Eμ − E0 = ℰKS
μ − ℰKS

0

M. J. P. Hodgson, J. Wetherell, and E. Fromager, Phys. Rev. A 103, 012806 (2021). 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

+
∂E{ξν}

xc [n0]
∂ξμ

{ξν}=0

+
(N − Nμ)

N (∫ dr vξμ→0+

Hxc (r)n0(r) − EHxc[n0])

= 0

Janak’s theorem⇔
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M. J. P. Hodgson, J. Wetherell, and E. Fromager, Phys. Rev. A 103, 012806 (2021). 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

∂E{ξν}
xc [n0]
∂ξμ

{ξν}=0

+
(N − Nμ)

N (∫ dr vξμ→0+

Hxc (r)n0(r) − EHxc[n0]) = 0

Let’s make the charged KS excitation energies match the true ones! 

-centered excitation energy matching constraint  
for the (charged) excited state   

N
μ
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M. J. P. Hodgson, J. Wetherell, and E. Fromager, Phys. Rev. A 103, 012806 (2021). 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

∂E{ξν}
xc [n0]
∂ξμ

{ξν}=0

+
(N − Nμ)

N (∫ dr vξμ→0+

Hxc (r) n0(r) − EHxc[n0]) = 0

Let’s make the charged KS excitation energies match the true ones! 

Uniquely defined! 
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M. J. P. Hodgson, J. Wetherell, and E. Fromager, Phys. Rev. A 103, 012806 (2021). 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

∂E{ξν}
xc [n0]
∂ξμ

{ξν}=0

+
(N − Nμ)

N (∫ dr vξμ→0+

Hxc (r)n0(r) − EHxc[n0]) = 0

vξμ→0+

Hxc (r) ⟶
|r|→+∞

0

⇔
for a molecule

Let’s make the charged KS excitation energies match the true ones! 
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∂E{ξν}
xc [n0]
∂ξμ

{ξν}=0

+
(N − Nμ)

N (∫ dr vξμ→0+

Hxc (r)n0(r) − EHxc[n0]) = 0

Holds also, in principle, for an extended system or a lattice model!

C. Marut, F. Cernatic, B. Senjean, P.-F. Loos, and E. Fromager, in preparation (2022).

Let’s make the charged KS excitation energies match the true ones! 
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∂E{ξν}
xc [n0]
∂ξμ

{ξν}=0

+
(N − Nμ)

N (∫ dr vξμ→0+

Hxc (r)n0(r) − EHxc[n0]) = 0

ξμ ≡ ξ+ Nμ ≡ N+1 Affinity

ξμ ≡ ξ− Nμ ≡ N−1 Ionization

M. J. P. Hodgson, J. Wetherell, and E. Fromager, Phys. Rev. A 103, 012806 (2021). 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

Let’s make the charged KS excitation energies match the true ones! 
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∫
dr
N (vξ+→0+

xc (r) − vξ−→0+

xc (r)) n0(r) =
∂Eξ+xc[n0]

∂ξ+
ξ+=0

+
∂Eξ−xc[n0]

∂ξ−
ξ−=0

M. J. P. Hodgson, J. Wetherell, and E. Fromager, Phys. Rev. A 103, 012806 (2021). 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

Let’s make the charged KS excitation energies match the true ones! 
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ξ+ > 0
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Eg = εN+1 − εN+ΔxcExact fundamental gap

Derivative discontinuity

Let’s make the charged KS excitation energies match the true ones! 



52
M. J. P. Hodgson, J. Wetherell, and E. Fromager, Phys. Rev. A 103, 012806 (2021). 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

Eg = εN+1 − εN+ΔxcExact fundamental gap
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ξ+=0
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∂ξ−
ξ−=0

Now obtained from the  
 xc weight derivatives! 

Let’s make the charged KS excitation energies match the true ones! 
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Suppression of the derivative discontinuity 

∫
dr
N [(vξ+→0+

xc (r)−Δxc) − vξ−→0+

xc (r)] n0(r) = 0

⇔
Shifted -centered  

ensemble xc potential
N
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80–82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80–82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80–82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80–82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80–82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80–82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
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xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80–82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
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∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.
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tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80–82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.
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a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80–82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−
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tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,
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xc (|x| → ∞) = vξ+
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80–82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80–82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 ! ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ ! N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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If we can describe the weight dependence of ensemble density-functional xc energies, 

 there is no need for modelling derivative discontinuities.  
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Designing weight-dependent ensemble density-functional approximations: 

How to?  
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Designing weight-dependent ensemble density-functional approximations: 

How to?  

We will focus on the computation of ensemble Hartree-exchange energies.  
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We will consider canonical (sometimes called GOK) ensembles in the following:

A. K. Theophilou, J. Phys. C: Solid State Phys. 12, 5419 (1979). 
A. K. Theophilou, in The Single Particle Density in Physics and Chemistry, edited by N. H. March and B. M. Deb (Academic Press, 1987), pp. 210–212. 
E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988). 
E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988). 
L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. A 37, 2821 (1988).
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The ensemble energy     is a functional of the ensemble density   . Ew := ∑
I≥0

𝚠IEI nw(r) := ∑
I≥0

𝚠InΨI
(r)

-electron statesN

A. K. Theophilou, J. Phys. C: Solid State Phys. 12, 5419 (1979). 
A. K. Theophilou, in The Single Particle Density in Physics and Chemistry, edited by N. H. March and B. M. Deb (Academic Press, 1987), pp. 210–212. 
E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988). 
E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988). 
L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. A 37, 2821 (1988).

We will consider canonical (sometimes called GOK) ensembles in the following:
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Independent excited-state  
ensemble weights

w ≡ (𝚠1, 𝚠2, …)

K. Deur and E. Fromager, J. Chem. Phys. 150, 094106 (2019).

We will consider canonical (sometimes called GOK) ensembles in the following:
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Context



67

Ew
Hxc[n] = EH[n] + Ew

x [n] + Ew
c [n]

Original decomposition of the ensemble Hxc energy

E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988). 
L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. A 37, 2821 (1988).
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Ew
Hxc[n] = EH[n] + Ew

x [n] + Ew
c [n]

Original decomposition of the ensemble Hxc energy

E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988). 
L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. A 37, 2821 (1988).

Regular weight-independent 

ground-state Hartree functional
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Ew
Hxc[n] = EH[n] + Ew

x [n] + Ew
c [n]

Original decomposition of the ensemble Hxc energy

Ground-state density-functional approximation

Ew
Hxc[n] ≈ EH[n] + Ex[n] + Ec[n]
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Ew
Hxc[n] = EH[n] + Ew

x [n] + Ew
c [n]

Original decomposition of the ensemble Hxc energy

Ground-state density-functional approximation

Ew
Hxc[n] ≈ EH[n] + Ex[n] + Ec[n]

Excitation energies are evaluated from the bare 

(although weight-dependent) KS orbital energies.

∂Ew
Hxc[n]
∂𝚠I

≈ 0
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Ew
Hxc[n] = EH[n] + Ew

x [n] + Ew
c [n]

Original decomposition of the ensemble Hxc energy

EH[nw] =
1
2 ∫ dr∫ dr′￼

nw(r)nw(r′￼)
|r − r′￼|

n = nw
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Ew
Hxc[n] = EH[n] + Ew

x [n] + Ew
c [n]

Original decomposition of the ensemble Hxc energy

EH[nw] =
1
2 ∫ dr∫ dr′￼

nw(r)nw(r′￼)
|r − r′￼|

= ∑
I≥0

𝚠2
I EH[nΦI

] + ∑
I<J

𝚠I𝚠J ∫ dr∫ dr′￼

nΦI
(r)nΦJ

(r′￼)
|r − r′￼|

Ghost interaction*

Ith KS wave function

E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988). 
*N. I. Gidopoulos, P. G. Papaconstantinou, and E. K. U. Gross, Phys. Rev. Lett. 88, 033003 (2002). 
B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, Phys. Rev. A 92, 012518 (2015).1

n = nw

Curvature1
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Ew
Hxc[n] = EH[n] + Ew

x [n] + Ew
c [n]

Original decomposition of the ensemble Hxc energy

is in charge of removing all those errors…
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Until now we have used the regular non-interacting Kohn-Sham (KS) ensemble formalism:



The exact Hartree-exchange dilemma in ensemble DFT
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Ew
KS[v] = min

{ΦI} ∑
I≥0

𝚠I (⟨ΦI | ̂T |ΦI⟩ + ∫ dr v(r)nΦI
(r))

Until now we have used the regular non-interacting Kohn-Sham (KS) ensemble formalism:

v w⟷ n

Non-interacting potential-ensemble-density map
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v w⟷ n

Ew
eDMHF[v] = min

{ΦI} ∑
I≥0

𝚠I (⟨ΦI | ̂T |ΦI⟩ + ∫ dr v(r)nΦI
(r)) + WHF ∑

I≥0

𝚠IγΦI

We could map the density onto an ensemble one-electron reduced density matrix  
evaluated at the Hartree-Fock level (eDMHF) instead: 

Gould T, Kronik L (2021) J Chem Phys 154(9):094125. 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).
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Ew
eDMHF[v] = min

{ΦI} ∑
I≥0

𝚠I (⟨ΦI | ̂T |ΦI⟩ + ∫ dr v(r)nΦI
(r)) + WHF ∑

I≥0

𝚠IγΦI

WHF[γ] =
1
2 ∫ dr∫ dr′￼

γ(r, r)γ(r′￼, r′￼) − 1
2 γ2(r, r′￼)

|r − r′￼|

Regular HF density-matrix-functional interaction energy

We could map the density onto an ensemble one-electron reduced density matrix  
evaluated at the Hartree-Fock level (eDMHF) instead: 

Gould T, Kronik L (2021) J Chem Phys 154(9):094125. 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).
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Ew
eDMHF[v] = min

{ΦI} ∑
I≥0

𝚠I (⟨ΦI | ̂T |ΦI⟩ + ∫ dr v(r)nΦI
(r)) + WHF ∑

I≥0

𝚠IγΦI

Ensemble density matrix

We could map the density onto an ensemble one-electron reduced density matrix  
evaluated at the Hartree-Fock level (eDMHF) instead: 

Gould T, Kronik L (2021) J Chem Phys 154(9):094125. 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).
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Ew
eDMHF[v] = min

{ΦI} ∑
I≥0

𝚠I (⟨ΦI | ̂T |ΦI⟩ + ∫ dr v(r)nΦI
(r)) + WHF ∑

I≥0

𝚠IγΦI

WHF[γ] =
1
2 ∫ dr∫ dr′￼

γ(r, r)γ(r′￼, r′￼) − 1
2 γ2(r, r′￼)

|r − r′￼|

Does not remove  
ghost interaction errors

We could map the density onto an ensemble one-electron reduced density matrix  
evaluated at the Hartree-Fock level (eDMHF) instead: 

Gould T, Kronik L (2021) J Chem Phys 154(9):094125. 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).
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Ew
eDMHF[v] = min

{ΦI} ∑
I≥0

𝚠I (⟨ΦI | ̂T |ΦI⟩ + ∫ dr v(r)nΦI
(r)) + WHF ∑

I≥0

𝚠IγΦI

Ensemble density matrix

We could map the density onto an ensemble one-electron reduced density matrix  
evaluated at the Hartree-Fock level (eDMHF) instead: 

Single to-be-diagonalized  
ensemble Fock operator 

(simple to implement)

Gould T, Kronik L (2021) J Chem Phys 154(9):094125. 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).
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Ew
eDMHF[v] = min

{ΦI} ∑
I≥0

𝚠I (⟨ΦI | ̂T |ΦI⟩ + ∫ dr v(r)nΦI
(r)) + WHF ∑

I≥0

𝚠IγΦI

We could map the density onto an ensemble one-electron reduced density matrix  
evaluated at the Hartree-Fock level (eDMHF) instead: 

Single to-be-diagonalized  
ensemble Fock operator 

(simple to implement)
Standard approach

Gould T, Kronik L (2021) J Chem Phys 154(9):094125. 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).
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Alternatively, we could extract the density from a  
State-Averaged Hartree-Fock (SAHF) calculation: 

Ew
SAHF[v] = min

{ΦI} ∑
I≥0

𝚠I (⟨ΦI | ̂T |ΦI⟩ + ⟨ΦI |Ŵee |ΦI⟩ + ∫ dr v(r)nΦI
(r))

M. Filatov, WIREs Comput. Mol. Sci. 5, 146 (2015).

v w⟷ n



The exact Hartree-exchange dilemma in ensemble DFT

83

Ew
SAHF[v] = min

{ΦI} ∑
I≥0

𝚠I (⟨ΦI | ̂T |ΦI⟩ + ⟨ΦI |Ŵee |ΦI⟩ + ∫ dr v(r)nΦI
(r))

EH[nΦI
] + Ex[ΦI]

M. Filatov, WIREs Comput. Mol. Sci. 5, 146 (2015).

Alternatively, we could extract the density from a  
State-Averaged Hartree-Fock (SAHF) calculation: 
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Ew
SAHF[v] = min

{ΦI} ∑
I≥0

𝚠I (⟨ΦI | ̂T |ΦI⟩ + ⟨ΦI |Ŵee |ΦI⟩ + ∫ dr v(r)nΦI
(r))

EH[nΦI
] + Ex[ΦI]

Ghost-interaction-free

Alternatively, we could extract the density from a  
State-Averaged Hartree-Fock (SAHF) calculation: 
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Ew
SAHF[v] = min

{ΦI} ∑
I≥0

𝚠I (⟨ΦI | ̂T |ΦI⟩ + ⟨ΦI |Ŵee |ΦI⟩ + ∫ dr v(r)nΦI
(r))

EH[nΦI
] + Ex[ΦI]

Each orbital has its own Fock operator 
(computational implementation more involved)

Gould T, Kronik L (2021) J Chem Phys 154(9):094125. 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

Alternatively, we could extract the density from a  
State-Averaged Hartree-Fock (SAHF) calculation: 
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Ew
SAHF[v] = min

{ΦI} ∑
I≥0

𝚠I (⟨ΦI | ̂T |ΦI⟩ + ⟨ΦI |Ŵee |ΦI⟩ + ∫ dr v(r)nΦI
(r))

EH[nΦI
] + Ex[ΦI]

(Maybe less known) -representability issuesv

F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

Alternatively, we could extract the density from a  
State-Averaged Hartree-Fock (SAHF) calculation: 
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of Fig. 1 (see the “ !v = +0.15 ” curve, which exhibits, in the equiensemble case, a 
single absolute minimum in the vicinity of !+ ). Note that, in eDMHF, the minimiz-
ing angle simply passes through ! = 0 when the potential changes from !v = 0− to 
!v = 0+ [see the “ !v = +0.15 ” curve in the bottom panel of Fig. 1], and no disconti-
nuity is observed in the density profile. The step in density observed in SAHF covers 
the density range n− ≤ n ≤ n+ , where

In the equiensemble case ( ! = 0.5 ), we have n± = 1.0 ± 0.410326 , as readily seen 
from the top panel of Fig. 2. We keep many digits for analysis purposes (see the 
bottom panel of Fig.  3). It is important to stress that none of the densities in the 
range n− < n < n+ , which includes the a priori simple symmetric n = 1 case, can be 
represented by a single SAHF ensemble. This severe v-representability issue, which 

(207)n± ≡ 1 + (1 − !) sin(2!±) = 1 ± (1 − !)
√

1 − "2
0
.

Fig. 2  Potential-ensemble-density maps generated for the Hubbard dimer at the SAHF (top panel) and 
eDMHF (bottom panel) levels of approximation for various ensemble weight values and U∕t = 3.5 . See 
text for further details

F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).
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of Fig. 1 (see the “ !v = +0.15 ” curve, which exhibits, in the equiensemble case, a 
single absolute minimum in the vicinity of !+ ). Note that, in eDMHF, the minimiz-
ing angle simply passes through ! = 0 when the potential changes from !v = 0− to 
!v = 0+ [see the “ !v = +0.15 ” curve in the bottom panel of Fig. 1], and no disconti-
nuity is observed in the density profile. The step in density observed in SAHF covers 
the density range n− ≤ n ≤ n+ , where

In the equiensemble case ( ! = 0.5 ), we have n± = 1.0 ± 0.410326 , as readily seen 
from the top panel of Fig. 2. We keep many digits for analysis purposes (see the 
bottom panel of Fig.  3). It is important to stress that none of the densities in the 
range n− < n < n+ , which includes the a priori simple symmetric n = 1 case, can be 
represented by a single SAHF ensemble. This severe v-representability issue, which 

(207)n± ≡ 1 + (1 − !) sin(2!±) = 1 ± (1 − !)
√

1 − "2
0
.

Fig. 2  Potential-ensemble-density maps generated for the Hubbard dimer at the SAHF (top panel) and 
eDMHF (bottom panel) levels of approximation for various ensemble weight values and U∕t = 3.5 . See 
text for further details

F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

potential
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of Fig. 1 (see the “ !v = +0.15 ” curve, which exhibits, in the equiensemble case, a 
single absolute minimum in the vicinity of !+ ). Note that, in eDMHF, the minimiz-
ing angle simply passes through ! = 0 when the potential changes from !v = 0− to 
!v = 0+ [see the “ !v = +0.15 ” curve in the bottom panel of Fig. 1], and no disconti-
nuity is observed in the density profile. The step in density observed in SAHF covers 
the density range n− ≤ n ≤ n+ , where

In the equiensemble case ( ! = 0.5 ), we have n± = 1.0 ± 0.410326 , as readily seen 
from the top panel of Fig. 2. We keep many digits for analysis purposes (see the 
bottom panel of Fig.  3). It is important to stress that none of the densities in the 
range n− < n < n+ , which includes the a priori simple symmetric n = 1 case, can be 
represented by a single SAHF ensemble. This severe v-representability issue, which 

(207)n± ≡ 1 + (1 − !) sin(2!±) = 1 ± (1 − !)
√

1 − "2
0
.

Fig. 2  Potential-ensemble-density maps generated for the Hubbard dimer at the SAHF (top panel) and 
eDMHF (bottom panel) levels of approximation for various ensemble weight values and U∕t = 3.5 . See 
text for further details

F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

First-excited-state 
ensemble weight 

values



Application to the Hubbard dimer: The singlet bi-ensemble case

tU U

−
Δv
2

+
Δv
2

 electronsn  electrons2−n

90

 Topics in Current Chemistry           (2022) 380:4 

1 3

    4  Page 46 of 80

of Fig. 1 (see the “ !v = +0.15 ” curve, which exhibits, in the equiensemble case, a 
single absolute minimum in the vicinity of !+ ). Note that, in eDMHF, the minimiz-
ing angle simply passes through ! = 0 when the potential changes from !v = 0− to 
!v = 0+ [see the “ !v = +0.15 ” curve in the bottom panel of Fig. 1], and no disconti-
nuity is observed in the density profile. The step in density observed in SAHF covers 
the density range n− ≤ n ≤ n+ , where

In the equiensemble case ( ! = 0.5 ), we have n± = 1.0 ± 0.410326 , as readily seen 
from the top panel of Fig. 2. We keep many digits for analysis purposes (see the 
bottom panel of Fig.  3). It is important to stress that none of the densities in the 
range n− < n < n+ , which includes the a priori simple symmetric n = 1 case, can be 
represented by a single SAHF ensemble. This severe v-representability issue, which 

(207)n± ≡ 1 + (1 − !) sin(2!±) = 1 ± (1 − !)
√

1 − "2
0
.

Fig. 2  Potential-ensemble-density maps generated for the Hubbard dimer at the SAHF (top panel) and 
eDMHF (bottom panel) levels of approximation for various ensemble weight values and U∕t = 3.5 . See 
text for further details

F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).
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of Fig. 1 (see the “ !v = +0.15 ” curve, which exhibits, in the equiensemble case, a 
single absolute minimum in the vicinity of !+ ). Note that, in eDMHF, the minimiz-
ing angle simply passes through ! = 0 when the potential changes from !v = 0− to 
!v = 0+ [see the “ !v = +0.15 ” curve in the bottom panel of Fig. 1], and no disconti-
nuity is observed in the density profile. The step in density observed in SAHF covers 
the density range n− ≤ n ≤ n+ , where

In the equiensemble case ( ! = 0.5 ), we have n± = 1.0 ± 0.410326 , as readily seen 
from the top panel of Fig. 2. We keep many digits for analysis purposes (see the 
bottom panel of Fig.  3). It is important to stress that none of the densities in the 
range n− < n < n+ , which includes the a priori simple symmetric n = 1 case, can be 
represented by a single SAHF ensemble. This severe v-representability issue, which 

(207)n± ≡ 1 + (1 − !) sin(2!±) = 1 ± (1 − !)
√

1 − "2
0
.

Fig. 2  Potential-ensemble-density maps generated for the Hubbard dimer at the SAHF (top panel) and 
eDMHF (bottom panel) levels of approximation for various ensemble weight values and U∕t = 3.5 . See 
text for further details

F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).
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of Fig. 1 (see the “ !v = +0.15 ” curve, which exhibits, in the equiensemble case, a 
single absolute minimum in the vicinity of !+ ). Note that, in eDMHF, the minimiz-
ing angle simply passes through ! = 0 when the potential changes from !v = 0− to 
!v = 0+ [see the “ !v = +0.15 ” curve in the bottom panel of Fig. 1], and no disconti-
nuity is observed in the density profile. The step in density observed in SAHF covers 
the density range n− ≤ n ≤ n+ , where

In the equiensemble case ( ! = 0.5 ), we have n± = 1.0 ± 0.410326 , as readily seen 
from the top panel of Fig. 2. We keep many digits for analysis purposes (see the 
bottom panel of Fig.  3). It is important to stress that none of the densities in the 
range n− < n < n+ , which includes the a priori simple symmetric n = 1 case, can be 
represented by a single SAHF ensemble. This severe v-representability issue, which 

(207)n± ≡ 1 + (1 − !) sin(2!±) = 1 ± (1 − !)
√

1 − "2
0
.

Fig. 2  Potential-ensemble-density maps generated for the Hubbard dimer at the SAHF (top panel) and 
eDMHF (bottom panel) levels of approximation for various ensemble weight values and U∕t = 3.5 . See 
text for further details
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In cases where ! ≤ 1∕3 , or ! > 1∕3 and 2(1 − !)∕(3! − 1) > U∕t , both approxima-
tions give smooth density profiles. We note in passing the one-to-one correspond-
ence between potentials and ensemble densities, as expected from the concavity 
of the eDMHF and SAHF energies (see “Concavity of Approximate Energies and 
Lieb Maximization”). However, when ! > 1∕3 and 2(1 − !)∕(3! − 1) < U∕t , the 
SAHF density profile exhibits a discontinuity at !v = 0 , unlike the eDMHF one. 
This step in density can be interpreted as follows. If ! > 1∕3 and the constraint of 
Eq.  (203) is fulfilled, as !v → 0± , we will recover the SAHF biensemble solution 
"̂± ≡ (1 − !)|#±

0
⟩⟨#±

0
| + !|#±

1
⟩⟨#±

1
| , where !±

I
≡ !I("±) and !± are the minimizing 

angles associated to the broken-symmetry orbitals. Any slight deviation from !v = 0 
will favor one of these solutions, depending on its sign, as illustrated in the top panel 

Fig. 1  Trial state-averaged Hartree–Fock (HF) (SAHF) (top panel) and ensemble density matrix HF 
(eDMHF) (bottom panel) energies of the symmetric Hubbard dimer plotted as functions of the orbital 
rotation angle ! for U∕t = 3.5 and various ensemble weight values. In the equiensemble ( ! = 0.5 ) case, 
results are also shown for a slightly asymmetric ( !v∕t = +0.15 ) dimer, for analysis purposes. In the latter 
case, a non-degenerate (positive) minimizing angle is recovered at the SAHF level (red dashed curve in 
the top panel), unlike in the strictly symmetric !v = 0 case. See text for further details

Orbital rotation angle
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In cases where ! ≤ 1∕3 , or ! > 1∕3 and 2(1 − !)∕(3! − 1) > U∕t , both approxima-
tions give smooth density profiles. We note in passing the one-to-one correspond-
ence between potentials and ensemble densities, as expected from the concavity 
of the eDMHF and SAHF energies (see “Concavity of Approximate Energies and 
Lieb Maximization”). However, when ! > 1∕3 and 2(1 − !)∕(3! − 1) < U∕t , the 
SAHF density profile exhibits a discontinuity at !v = 0 , unlike the eDMHF one. 
This step in density can be interpreted as follows. If ! > 1∕3 and the constraint of 
Eq.  (203) is fulfilled, as !v → 0± , we will recover the SAHF biensemble solution 
"̂± ≡ (1 − !)|#±

0
⟩⟨#±

0
| + !|#±

1
⟩⟨#±

1
| , where !±

I
≡ !I("±) and !± are the minimizing 

angles associated to the broken-symmetry orbitals. Any slight deviation from !v = 0 
will favor one of these solutions, depending on its sign, as illustrated in the top panel 

Fig. 1  Trial state-averaged Hartree–Fock (HF) (SAHF) (top panel) and ensemble density matrix HF 
(eDMHF) (bottom panel) energies of the symmetric Hubbard dimer plotted as functions of the orbital 
rotation angle ! for U∕t = 3.5 and various ensemble weight values. In the equiensemble ( ! = 0.5 ) case, 
results are also shown for a slightly asymmetric ( !v∕t = +0.15 ) dimer, for analysis purposes. In the latter 
case, a non-degenerate (positive) minimizing angle is recovered at the SAHF level (red dashed curve in 
the top panel), unlike in the strictly symmetric !v = 0 case. See text for further details

Symmetric/antisymmetric  
orbitals



Application to the Hubbard dimer: The singlet bi-ensemble case

tU U

−
Δv
2

+
Δv
2

 electronsn  electrons2−n

95
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

1 3

Topics in Current Chemistry           (2022) 380:4  Page 45 of 80     4 

In cases where ! ≤ 1∕3 , or ! > 1∕3 and 2(1 − !)∕(3! − 1) > U∕t , both approxima-
tions give smooth density profiles. We note in passing the one-to-one correspond-
ence between potentials and ensemble densities, as expected from the concavity 
of the eDMHF and SAHF energies (see “Concavity of Approximate Energies and 
Lieb Maximization”). However, when ! > 1∕3 and 2(1 − !)∕(3! − 1) < U∕t , the 
SAHF density profile exhibits a discontinuity at !v = 0 , unlike the eDMHF one. 
This step in density can be interpreted as follows. If ! > 1∕3 and the constraint of 
Eq.  (203) is fulfilled, as !v → 0± , we will recover the SAHF biensemble solution 
"̂± ≡ (1 − !)|#±

0
⟩⟨#±

0
| + !|#±

1
⟩⟨#±

1
| , where !±

I
≡ !I("±) and !± are the minimizing 

angles associated to the broken-symmetry orbitals. Any slight deviation from !v = 0 
will favor one of these solutions, depending on its sign, as illustrated in the top panel 

Fig. 1  Trial state-averaged Hartree–Fock (HF) (SAHF) (top panel) and ensemble density matrix HF 
(eDMHF) (bottom panel) energies of the symmetric Hubbard dimer plotted as functions of the orbital 
rotation angle ! for U∕t = 3.5 and various ensemble weight values. In the equiensemble ( ! = 0.5 ) case, 
results are also shown for a slightly asymmetric ( !v∕t = +0.15 ) dimer, for analysis purposes. In the latter 
case, a non-degenerate (positive) minimizing angle is recovered at the SAHF level (red dashed curve in 
the top panel), unlike in the strictly symmetric !v = 0 case. See text for further details
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In cases where ! ≤ 1∕3 , or ! > 1∕3 and 2(1 − !)∕(3! − 1) > U∕t , both approxima-
tions give smooth density profiles. We note in passing the one-to-one correspond-
ence between potentials and ensemble densities, as expected from the concavity 
of the eDMHF and SAHF energies (see “Concavity of Approximate Energies and 
Lieb Maximization”). However, when ! > 1∕3 and 2(1 − !)∕(3! − 1) < U∕t , the 
SAHF density profile exhibits a discontinuity at !v = 0 , unlike the eDMHF one. 
This step in density can be interpreted as follows. If ! > 1∕3 and the constraint of 
Eq.  (203) is fulfilled, as !v → 0± , we will recover the SAHF biensemble solution 
"̂± ≡ (1 − !)|#±

0
⟩⟨#±

0
| + !|#±

1
⟩⟨#±

1
| , where !±

I
≡ !I("±) and !± are the minimizing 

angles associated to the broken-symmetry orbitals. Any slight deviation from !v = 0 
will favor one of these solutions, depending on its sign, as illustrated in the top panel 

Fig. 1  Trial state-averaged Hartree–Fock (HF) (SAHF) (top panel) and ensemble density matrix HF 
(eDMHF) (bottom panel) energies of the symmetric Hubbard dimer plotted as functions of the orbital 
rotation angle ! for U∕t = 3.5 and various ensemble weight values. In the equiensemble ( ! = 0.5 ) case, 
results are also shown for a slightly asymmetric ( !v∕t = +0.15 ) dimer, for analysis purposes. In the latter 
case, a non-degenerate (positive) minimizing angle is recovered at the SAHF level (red dashed curve in 
the top panel), unlike in the strictly symmetric !v = 0 case. See text for further details

Degenerate minimising bi-ensembles
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In cases where ! ≤ 1∕3 , or ! > 1∕3 and 2(1 − !)∕(3! − 1) > U∕t , both approxima-
tions give smooth density profiles. We note in passing the one-to-one correspond-
ence between potentials and ensemble densities, as expected from the concavity 
of the eDMHF and SAHF energies (see “Concavity of Approximate Energies and 
Lieb Maximization”). However, when ! > 1∕3 and 2(1 − !)∕(3! − 1) < U∕t , the 
SAHF density profile exhibits a discontinuity at !v = 0 , unlike the eDMHF one. 
This step in density can be interpreted as follows. If ! > 1∕3 and the constraint of 
Eq.  (203) is fulfilled, as !v → 0± , we will recover the SAHF biensemble solution 
"̂± ≡ (1 − !)|#±

0
⟩⟨#±

0
| + !|#±

1
⟩⟨#±

1
| , where !±

I
≡ !I("±) and !± are the minimizing 

angles associated to the broken-symmetry orbitals. Any slight deviation from !v = 0 
will favor one of these solutions, depending on its sign, as illustrated in the top panel 

Fig. 1  Trial state-averaged Hartree–Fock (HF) (SAHF) (top panel) and ensemble density matrix HF 
(eDMHF) (bottom panel) energies of the symmetric Hubbard dimer plotted as functions of the orbital 
rotation angle ! for U∕t = 3.5 and various ensemble weight values. In the equiensemble ( ! = 0.5 ) case, 
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of Fig. 1 (see the “ !v = +0.15 ” curve, which exhibits, in the equiensemble case, a 
single absolute minimum in the vicinity of !+ ). Note that, in eDMHF, the minimiz-
ing angle simply passes through ! = 0 when the potential changes from !v = 0− to 
!v = 0+ [see the “ !v = +0.15 ” curve in the bottom panel of Fig. 1], and no disconti-
nuity is observed in the density profile. The step in density observed in SAHF covers 
the density range n− ≤ n ≤ n+ , where

In the equiensemble case ( ! = 0.5 ), we have n± = 1.0 ± 0.410326 , as readily seen 
from the top panel of Fig. 2. We keep many digits for analysis purposes (see the 
bottom panel of Fig.  3). It is important to stress that none of the densities in the 
range n− < n < n+ , which includes the a priori simple symmetric n = 1 case, can be 
represented by a single SAHF ensemble. This severe v-representability issue, which 

(207)n± ≡ 1 + (1 − !) sin(2!±) = 1 ± (1 − !)
√

1 − "2
0
.

Fig. 2  Potential-ensemble-density maps generated for the Hubbard dimer at the SAHF (top panel) and 
eDMHF (bottom panel) levels of approximation for various ensemble weight values and U∕t = 3.5 . See 
text for further details
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Solution to the -representability problem: 
Combine the two degenerate bi-ensembles!

v
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• Unified description of charged and neutral electronic excitations within ensemble DFT 

• Equivalence between xc ensemble weight derivatives and xc derivative discontinuities  

Part 1: Exact theory

Part 2: Weight-dependent density-functional approximations (DFAs) 

• The exact Hartree-exchange dilemma in ensemble DFT  

• Recycling ground-state correlation DFAs: What about state- and density-driven correlations?
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M. Filatov, WIREs Comput. Mol. Sci. 5, 146 (2015).
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𝚠I Ec[nΦI
]

This is a ground-state correlation energy, not an excited-state one
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Abstract: Quantum embedding is a divide and conquer strategy that aims at solving the electronic
Schrödinger equation of sizeable molecules or extended systems. We establish in the present work
a clearer and in-principle-exact connection between density matrix embedding theory (DMET)
and density-functional theory (DFT) within the simple but nontrivial one-dimensional Hubbard
model. For that purpose, we use our recent reformulation of single-impurity DMET as a Householder
transformed density-matrix functional embedding theory (Ht-DMFET). On the basis of well-identified
density-functional approximations, a self-consistent local potential functional embedding theory
(LPFET) is formulated and implemented. Combining both LPFET and DMET numerical results with
our formally exact density-functional embedding theory reveals that a single statically embedded
impurity can in principle describe the density-driven Mott–Hubbard transition, provided that a
complementary density-functional correlation potential (which is neglected in both DMET and
LPFET) exhibits a derivative discontinuity (DD) at half filling. The extension of LPFET to multiple
impurities (which would enable to circumvent the modeling of DDs) and its generalization to
quantum chemical Hamiltonians are left for future work.

Keywords: density matrix functional embedding; density-functional theory; householder
transformation

1. Introduction

Kohn–Sham density-functional theory (KS-DFT) [1] has become over the last two
decades the method of choice for computational chemistry and physics studies, essentially
because it often provides a relatively accurate description of the electronic structure of large
molecular or extended systems at a low computational cost. The major simplification of
the electronic structure problem in KS-DFT lies in the fact that the ground-state energy is
evaluated, in principle exactly, from a non-interacting single-configuration wave function,
which is simply referred to as the KS determinant. The latter is obviously not the exact
solution to the Schrödinger equation. However, its density matches the exact interacting
ground-state density, so that the Hartree-exchange-correlation (Hxc) energy of the physical
system, which is induced by the electronic repulsion, can be recovered from an appropriate
(in principle exact and universal) Hxc density functional. Despite the success of KS-DFT,
standard density-functional approximations still fail in describing strongly correlated
electrons. To overcome this issue, various strategies have been explored and improved over
the years, both in condensed matter physics [2–7] and quantum chemistry [8]. Note that,
in the latter case, in-principle-exact multi-determinantal extensions of DFT based on the
adiabatic connection formalism have been developed [9–12]. In these approaches, the KS
system is only referred to in the design of density-functional approximations. In practice,

Computation 2022, 10, 45. https://doi.org/10.3390/computation10030045 https://www.mdpi.com/journal/computation
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