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General principles of quantum mechanics  
for the electronic structure problem
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An introduction to density-functional theory

Schrödinger equation for the ground state
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N -electron Schrödinger equation for the ground state

Ĥ 0 = E0 0
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where  0 ⌘  0(x1,x2, . . . ,xN ), xi ⌘ (ri, �i) ⌘ (xi, yi, zi, �i = ± 1
2
) for i = 1, 2, . . . , N,

and Ĥ = T̂ + Ŵee + V̂ .

T̂ ⌘ �
1

2

NX

i=1

r2
ri

= �
1

2

NX

i=1

✓
@

2

@x
2
i

+
@

2

@y
2
i

+
@

2

@z
2
i

◆
�! universal kinetic energy operator
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⇥ �! universal two-electron repulsion
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|r � RA|
�! local nuclear potential operator
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An introduction to density-functional theory

N -electron Schrödinger equation for the ground state
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Rayleigh-Ritz variational principle 

E0 ≤
⟨Ψ | Ĥ |Ψ⟩

⟨Ψ |Ψ⟩

Expectation value of the energy  
for the (arbitrary) trial -electron wave function  N Ψ

5

See Appendix A 

for th
e proof



Rayleigh-Ritz variational principle 

E0 ≤
⟨Ψ | Ĥ |Ψ⟩

⟨Ψ |Ψ⟩

⟨Ψ | �̂� |Ψ⟩ ≡ ⟨Ψ | �̂�Ψ⟩

= ∫ dx1 ∫ dx2…∫ dxN Ψ*(x1, x2, …, xN) × �̂�Ψ(x1, x2, …, xN)

Quantum operator
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Rayleigh-Ritz variational principle 

E0 ≤
⟨Ψ | Ĥ |Ψ⟩

⟨Ψ |Ψ⟩

⟨Ψ |Ψ⟩ = 1 Usual 
normalisation condition

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩
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An introduction to density-functional theory

(Fictitious) non-interacting electrons
• Solving the Schrödinger equation for non-interacting electrons is easy.

• You “just" have to solve the Schrödinger equation for a single electron.

⇣
T̂ +

NX
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v(ri)⇥
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�0 = E0�0 ,
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r + v(r)⇥
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'i(x) = "i'i(x), i = 1, 2, . . . , N, . . .

Proof: a simple solution to the N -electron non-interacting Schrödinger equation is

�0 ⌘ '1(x1)⇥ '2(x2)⇥ . . .⇥ 'N (xN ) =
NY

j=1

'j(xj)  Hartree product!

since
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The one-electron picture 

[−
∇2

r

2
+ v(r)] φi(x) = εiφi(x)

i = N−1
i = N

i = N+1LUMO

HOMO

i = N−2

i = 2
i = 1

i = N+2
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An introduction to density-functional theory

(Real) interacting many-electron problem

• Before addressing the true (interacting) problem we should keep in mind that electrons are fermions.

• Consequently, they should be described by Slater determinants instead of Hartree products.

• Therefore, in the particular case of two electrons, we have

'1(x1)'2(x2) �! �0 ⌘
1

p
2

������
'1(x1) '1(x2)

'2(x1) '2(x2)

������
=

1
p

2

h
'1(x1)'2(x2) � '1(x2)'2(x1)

i
.

• When computing the two-electron repulsion energy
D
�0

���Ŵee

����0

E
we describe the so-called Hartree

(i.e. electrostatic) and exchange energies.

• Finally, �0 cannot be the exact solution to the interacting Schrödinger equation [whatever choice is
made for the spin-orbitals {'i(x)}i=1,2,...].

• The energy contribution that is missing is referred to as correlation energy.
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Hartree-Fock (HF) approximation 

EHF
0 = min

Φ≡|φ1φ2…φN|
⟨Φ | Ĥ |Φ⟩

Slater determinant
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Two-electron repulsion energy of an -electron Slater determinant N

⟨Φ |Ŵee |Φ⟩ =
1
2 ∫ dx∫ dx′ 

(∑N
i=1 |φi(x) |2 ) (∑N

j=1 |φj(x′ ) |2 )
|r − r′ |

+ …
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Two-electron repulsion energy of an -electron Slater determinant N

⟨Φ |Ŵee |Φ⟩ =
1
2 ∫ dx∫ dx′ 

(∑N
i=1 |φi(x) |2 ) (∑N

j=1 |φj(x′ ) |2 )
|r − r′ |

+ …

=
1
2 ∫ dr∫ dr′ 

nΦ(r)nΦ(r′ )
|r − r′ |

Electron density (local)

Hartree (or Coulomb) energy
14



Two-electron repulsion energy of an -electron Slater determinant N

⟨Φ |Ŵee |Φ⟩ =
1
2 ∫ dx∫ dx′ 

(∑N
i=1 |φi(x) |2 ) (∑N

j=1 |φj(x′ ) |2 )
|r − r′ |

−
1
2 ∫ dx∫ dx′ 

(∑N
i=1 φ*i (x)φi(x′ )) (∑N

j=1 φj(x)φ*j (x′ ))
|r − r′ |
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Two-electron repulsion energy of an -electron Slater determinant N

−
1
2 ∫ dx∫ dx′ 

(∑N
i=1 φ*i (x)φi(x′ )) (∑N

j=1 φj(x)φ*j (x′ ))
|r − r′ |

Exchange energy

⟨Φ |Ŵee |Φ⟩ =
1
2 ∫ dx∫ dx′ 

(∑N
i=1 |φi(x) |2 ) (∑N

j=1 |φj(x′ ) |2 )
|r − r′ |
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Two-electron repulsion energy of an -electron Slater determinant N

−
1
2 ∫ dx∫ dx′ 

(∑N
i=1 φ*i (x)φi(x′ )) (∑N

j=1 φj(x)φ*j (x′ ))
|r − r′ |

One-electron reduced  
density matrix (nonlocal)

⟨Φ |Ŵee |Φ⟩ =
1
2 ∫ dx∫ dx′ 

(∑N
i=1 |φi(x) |2 ) (∑N

j=1 |φj(x′ ) |2 )
|r − r′ |
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An introduction to density-functional theory

(Real) interacting many-electron problem
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Key idea of regular (Kohn-Sham) density-functional theory 
before we discuss technicalities 
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An introduction to density-functional theory

Mapping the interacting problem onto a non-interacting one
• Is it possible to extract the exact (interacting) ground-state energy E0 from a non-interacting system?

• If yes, then it would lead to a huge simplification of the problem.

• Nevertheless, the question sounds a bit weird since the two-electron repulsion is completely ignored
in a non-interacting system.

• One way to establish a connection between interacting and non-interacting worlds is to use the
electron density as basic variable (instead of the wavefunction).

• Electron density for a non-interacting system: n�0 (r) =
X

�=± 1
2

NX

i=1

|'i(r, �)|2

• Electron density for an interacting system:

n 0 (r) = N

X

�=± 1
2

Z
dx2 . . .

Z
dxN | 0(r, �,x2, . . . ,xN )|2

• The so-called Kohn–Sham non-interacting system (from which E0 can be determined) is such that
n�0 (r) = n 0 (r) .
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̂T + Ŵee +
N

∑
i=1

v(ri) ×True Hamiltonian True density 

True density? 

Exactification of the one-electron picture in density-functional theory 

̂T +
N

∑
i=1

v(ri) ×

Obviously no!

Bare noninteracting  
Hamiltonian 

21



̂T + Ŵee +
N

∑
i=1

v(ri) ×True Hamiltonian True density 

̂T +
N

∑
i=1

(v(ri)+vHxc(ri)) × True density? 

Exactification of the one-electron picture in density-functional theory 

Yes!

Kohn-Sham Hamiltonian 

Kohn-Sham potential
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̂T + Ŵee +
N

∑
i=1

v(ri) ×True Hamiltonian True density 

̂T +
N

∑
i=1

(v(ri)+vHxc(ri)) × True density? 

Exactification of the one-electron picture in density-functional theory 

Yes!

Kohn-Sham Hamiltonian 

(A priori unknown) Hartree-exchange-correlation (Hxc)  
local potential

23
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Density-functional theory (DFT)
25/11/2021 20'32The Nobel Prize in Chemistry 1998

Page 2 of 9https://www.nobelprize.org/prizes/chemistry/1998/summary/

The Nobel Prize in Chemistry
1998

Walter Kohn
John Pople

Share this

The Nobel Prize in Chemistry
1998

Photo from the Nobel
Foundation archive.

Walter Kohn
Prize share: 1/2

Photo from the Nobel
Foundation archive.

John A. Pople
Prize share: 1/2

The Nobel Prize in Chemistry 1998 was
divided equally between Walter Kohn "for his
development of the density-functional
theory" and John A. Pople "for his
development of computational methods in
quantum chemistry."

To cite this section 
MLA style: The Nobel Prize in Chemistry 1998. NobelPrize.org. Nobel Prize Outreach AB 2021. Thu. 25 Nov 2021.
<https://www.nobelprize.org/prizes/chemistry/1998/summary/>

Back to top

It is in principle unnecessary to know

 the ground-state many-electron wave function 


 for evaluating the exact ground-state energy .
Ψ0

E0

24
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It is in principle unnecessary to know

 the ground-state many-electron wave function 


 for evaluating the exact ground-state energy .
Ψ0

E0

The ground-state density  is sufficient.n0

25



Interlude on the electron density 
and its evaluation from the total energy  
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An introduction to density-functional theory

An important observation to make before we continue...

The one-electron potential energy is an explicit functional of the density:

*
 

�����

NX

i=1

v(ri)⇥

����� 
+

=

Z

R3
dr v(r)n (r)
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See Appendix C 

for th
e proof



Potential-density relation 

Ĥ ≡ Ĥ[v] = ̂T + Ŵee +
N

∑
i=1

v(ri) ×

28



Potential-density relation 

E0 ≡ E0[v] = min
Ψ

⟨Ψ | Ĥ[v] |Ψ⟩
⟨Ψ |Ψ⟩

= ⟨Ψ0[v] | Ĥ[v] |Ψ0[v]⟩

Ĥ ≡ Ĥ[v] = ̂T + Ŵee +
N

∑
i=1

v(ri) ×

29



Potential-density relation 

E0 ≡ E0[v] = min
Ψ

⟨Ψ | Ĥ[v] |Ψ⟩
⟨Ψ |Ψ⟩

= ⟨Ψ0[v] | Ĥ[v] |Ψ0[v]⟩

Ĥ ≡ Ĥ[v] = ̂T + Ŵee +
N

∑
i=1

v(ri) ×

v(r) → v(r) + δv(r)

δE0[v] = ⟨Ψ0[v] |δĤ[v] |Ψ0[v]⟩

Hellmann-Feynman 
 theorem

30



Potential-density relation 

E0 ≡ E0[v] = min
Ψ

⟨Ψ | Ĥ[v] |Ψ⟩
⟨Ψ |Ψ⟩

= ⟨Ψ0[v] | Ĥ[v] |Ψ0[v]⟩

Ĥ ≡ Ĥ[v] = ̂T + Ŵee +
N

∑
i=1

v(ri) ×

v(r) → v(r) + δv(r)

δE0[v] = ⟨Ψ0[v] |δĤ[v] |Ψ0[v]⟩

Hellmann-Feynman 
 theorem

= ⟨Ψ0[v]
N

∑
i=1

δv(ri) × Ψ0[v]⟩
31



Potential-density relation 

E0 ≡ E0[v] = min
Ψ

⟨Ψ | Ĥ[v] |Ψ⟩
⟨Ψ |Ψ⟩

= ⟨Ψ0[v] | Ĥ[v] |Ψ0[v]⟩

Ĥ ≡ Ĥ[v] = ̂T + Ŵee +
N

∑
i=1

v(ri) ×

v(r) → v(r) + δv(r)

δE0[v] = ⟨Ψ0[v] |δĤ[v] |Ψ0[v]⟩

Hellmann-Feynman 
 theorem

= ⟨Ψ0[v]
N

∑
i=1

δv(ri) × Ψ0[v]⟩
= ∫ dr δv(r) nΨ0[v](r)
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Potential-density relation 

δE0[v]
δv(r)

= nΨ0[v](r)
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Potential-density relation 

δℰ0[v]
δv(r)

= nΦ0[v](r)

δE0[v]
δv(r)

= nΨ0[v](r)Interacting case

Noninteracting  
case

34



Same potential-density relation in the noninteracting case 

δℰ0[v]
δv(r)

= nΦ0[v](r)

Ground-state energy of  ̂T +
N

∑
i=1

v(ri) ×

Ground-state wave function of  ̂T +
N

∑
i=1

v(ri) ×
35



Variational principle of DFT  

36



Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

37



Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

Pre-minimisation over wave functions 

that have the same density  


Ψ
nΨ(r) = n(r)

Levy M (1979) Proc Natl Acad Sci USA 76(12):6062 38



Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

Minimisation over densities  
n

Levy M (1979) Proc Natl Acad Sci USA 76(12):6062 39



Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5

Ψ′ 1Ψ′ 2

Ψ′ 3

Ψ′ ′ 1
Ψ′ ′ 2

Ψ′ ′ 3

Ψ′ ′ 4Space of -electron wave functionsN
Levy M (1979) Proc Natl Acad Sci USA 76(12):6062 40



Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

Ψ1
Ψ2

Ψ3Ψ4

Ψ5

n

Ψ′ 1

Ψ′ 2

Ψ′ 3

n′ 

Ψ′ ′ 1

Ψ′ ′ 2

Ψ′ ′ 3

Ψ′ ′ 4

n′ ′ 

Levy M (1979) Proc Natl Acad Sci USA 76(12):6062 41



Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

= min
n {min

Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩ + ∫ dr v(r)nΨ(r)}}
Ĥ = ̂T + Ŵee +

N

∑
i=1

v(ri) ×

̂T ≡
N

∑
i=1

−
1
2

∇2
ri

Ŵee ≡
1
2

N

∑
i≠j

1
|ri − rj |

×
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Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

= min
n

min
Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩ + ∫ dr v(r)nΨ(r)}

= min
n

min
Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩}+∫ dr v(r)n(r)
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Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

= min
n {min

Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩ + ∫ dr v(r)nΨ(r)}}
= min

n {min
Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩} + ∫ dr v(r)n(r)}

= min
n {F[n] + ∫ dr v(r)n(r)}
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Levy’s constrained search formalism

E0 = min
n {F[n] + ∫ dr v(r)n(r)}

We recover the Hohenberg-Kohn variational principle of DFT!

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 45



Kohn-Sham DFT formalism

F[n] = min
Ψ→n

⟨Ψ | ̂T+Ŵee |Ψ⟩

Interacting universal functional Non-interacting  
(kinetic energy) functional

Ts[n] = min
Ψ→n

⟨Ψ | ̂T |Ψ⟩
Kohn-Sham

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965). 46



Kohn-Sham DFT formalism

F[n] = min
Ψ→n

⟨Ψ | ̂T + Ŵee |Ψ⟩

Interacting universal functional Non-interacting  
(kinetic energy) functional

Ts[n] = min
Ψ→n

⟨Ψ | ̂T |Ψ⟩
Kohn-Sham

F[n] − Ts[n] = EHxc[n]

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965). 47



Kohn-Sham DFT formalism

F[n] = min
Ψ→n

⟨Ψ | ̂T + Ŵee |Ψ⟩

Interacting universal functional Non-interacting  
(kinetic energy) functional

Ts[n] = min
Ψ→n

⟨Ψ | ̂T |Ψ⟩
Kohn-Sham

F[n] − Ts[n] = EHxc[n]

= EH[n] + Exc[n]
W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965). 48



Kohn-Sham DFT formalism

EH[n] =
1
2 ∫ dr1 ∫ dr2

n(r1)n(r2)
|r1 − r2 |

Electrostatics  
(evaluated with quantum 

electron densities)

Hartree density functional

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965). 49



Kohn-Sham DFT formalism

Exc[n] = F[n] − Ts[n]−EH[n]

EH[n] =
1
2 ∫ dr1 ∫ dr2

n(r1)n(r2)
|r1 − r2 |

Electrostatics  
(evaluated with quantum 

electron densities)

Hartree density functional

Exchange-correlation (xc) density functional

Quantum 
many-electron effects 

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965). 50



Kohn-Sham DFT formalism

Exc[n] = F[n] − Ts[n]−EH[n]

EH[n] =
1
2 ∫ dr1 ∫ dr2

n(r1)n(r2)
|r1 − r2 |

Hartree density functional

Exchange-correlation (xc) density functional

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965). 51

Holy grail of DFT!



Kohn-Sham DFT formalism

Exc[n] = ???

EH[n] =
1
2 ∫ dr1 ∫ dr2

n(r1)n(r2)
|r1 − r2 |

Electrostatics  
(evaluated with quantum 

electron densities)

Hartree density functional

Exchange-correlation (xc) density functional

Quantum 
many-electron effects 

The exact xc functional is uniquely defined but  
many (many) approximations  

can be found in the literature (LDA, PBE, B3LYP, SCAN, …). 
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Let us find out what the exact density-functional KS potential is  
and deduce the working equations of KS-DFT 
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Hohenberg-Kohn variational principles 

ℰ0[v] = min
n {Ts[n] + ∫ dr v(r) n(r)}

E0[v] = min
n {F[n] + ∫ dr v(r) n(r)}Interacting case

Noninteracting  
case
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Lieb maximization (for interacting electrons)  

E0[v] ≤ F[n] + ∫ dr v(r) n(r)

E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983). 55



Lieb maximization (for interacting electrons)  

E0[v] ≤ F[n] + ∫ dr v(r) n(r)

E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).

E0[v] − ∫ dr v(r) n(r) ≤ F[n]
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Lieb maximization (for interacting electrons)  

E0[v] ≤ F[n] + ∫ dr v(r) n(r)

E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).

E0[v] − ∫ dr v(r) n(r) ≤ F[n]

F[n] = max
v {E0[v] − ∫ dr v(r) n(r)}
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Lieb maximization (for interacting electrons)  

E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).

F[n] = max
v {E0[v] − ∫ dr v(r) n(r)}

58

Makes sense because the Rayleigh-Ritz variational principle 
implies the concavity in  of !v E0[v]See Appendix D 

for th
e proof



Lieb maximization (for interacting electrons)  

E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).

F[n] = max
v {E0[v] − ∫ dr v(r) n(r)}

Maximizing  
potential

δE0[v]
δv(r)

v=v[n]

= n(r)
δ

δv(r) {E0[v] − ∫ dr v(r) n(r)}
v=v[n]

= 0 ⇔

Ground-state density
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Lieb maximization (for interacting electrons)  

F[n] = max
v {E0[v] − ∫ dr v(r) n(r)}

Maximizing  
potential

δE0[v]
δv(r)

v=v[n]

= n(r)

60P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).*

This is a (more mathematical) reinterpretation of the original Hohenberg-Kohn theorem !   *



F[n] = max
v {E0[v] − ∫ dr v(r) n(r)}

δF[n]
δn(r)

= −v[n](r) Maximising  
interacting potential

Lieb maximization (for interacting electrons)  
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Lieb maximization for both interacting and noninteracting electrons  

F[n] = max
v {E0[v] − ∫ dr v(r) n(r)}

δF[n]
δn(r)

= −v[n](r) Maximising  
interacting potential

Ts[n] = max
v {ℰ0[v] − ∫ dr v(r) n(r)}

δTs[n]
δn(r)

= −vKS[n](r)
Maximising  

noninteracting (KS) potential
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Application to the system under study 
with nuclear potential  vne(r)

δF[n]
δn(r)

n=n0

= −v[n0](r) = −vne(r)

Known

Unknown

63



Application to the system under study 
with nuclear potential  vne(r)

δTs[n]
δn(r)

n=n0

= −vKS[n0](r)

δF[n]
δn(r)

n=n0

= −v[n0](r) = −vne(r)

Our target
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Application to the system under study 
with nuclear potential  vne(r)

δTs[n]
δn(r)

n=n0

= −vKS[n0](r)

δF[n]
δn(r)

n=n0

= −v[n0](r) = −vne(r)

vKS[n0](r) =
δ

δn(r) ( − F[n] + F[n] − Ts[n])
n=n0
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Application to the system under study 
with nuclear potential  vne(r)

δTs[n]
δn(r)

n=n0

= −vKS[n0](r)

δF[n]
δn(r)

n=n0

= −v[n0](r) = −vne(r)

vKS[n0](r) =
δ

δn(r) ( − F[n] + F[n] − Ts[n])
n=n0

vKS[n0](r) = vne(r) +
δEHxc[n]

δn(r)
n=n0 66
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Kohn–Sham density-functional theory

Self-consistent KS equations

✓
�
1

2
r2

r + vne(r) +
�EHxc [n0]

�n(r)

◆
'
KS

i (x) = "
KS

i '
KS

i (x)

where n0(r) =
X

�=± 1
2

NX

i=1

���'KS

i (r,�)
���
2

.

Important conclusion: if we know the xc functional Exc[n], we can determine the ground-state density
self-consistently (and therefore the ground-state energy), in principle exactly.

In KS-DFT, the physical ground-state energy reads

E0 = Ts[n0] + EHxc[n0] +

Z

R3
dr vne(r)n0(r),

where Ts[n0] =
D
�KS

0

���T̂
����KS

0

E
= �

1

2

NX

i=1

Z
dx '

⇤
i (x)r2

r'i(x).

Institut de Chimie, Strasbourg, France Page 33

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).



Brief interlude on exact extensions of KS-DFT 
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F[n] = max
v {E0[v] − ∫ dr v(r) n(r)}

Exact extensions of DFT from the Lieb maximization 
 Example 1: Hybrid DFT

FHF[n] = max
v {EHF

0 [v] − ∫ dr v(r) n(r)}
Density-functional exactification of the Hartree-Fock approximation 

(Rigorous foundation for the so-called hybrid functionals)

= FHF[n] + Ec[n]

Alternative to the usual KS decomposition
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E0[v] ≡ EN
0 [v] ⟶ EN,ξ

0 [v] = (1 − 2ξ) EN
0 [v]+ξEN+1

0 [v]+ξEN−1
0 [v]

Ensemble energy

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

Exact extensions of DFT from the Lieb maximization 
Example 2: Ensemble DFT of charged electronic excitations
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E0[v] ≡ EN
0 [v] ⟶ EN,ξ

0 [v] = (1 − 2ξ) EN
0 [v]+ξEN+1

0 [v]+ξEN−1
0 [v]

Ensemble energy

∂EN,ξ
0 [v]
∂ξ

= (EN+1
0 [v] − EN

0 [v]) + (EN−1
0 [v] − EN

0 [v])

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

Exact extensions of DFT from the Lieb maximization 
Example 2: Ensemble DFT of charged electronic excitations

71



E0[v] ≡ EN
0 [v] ⟶ EN,ξ

0 [v] = (1 − 2ξ) EN
0 [v]+ξEN+1

0 [v]+ξEN−1
0 [v]

Ensemble energy

∂EN,ξ
0 [v]
∂ξ

= (EN+1
0 [v] − EN

0 [v]) + (EN−1
0 [v] − EN

0 [v])

ionizationAffinity

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

Exact extensions of DFT from the Lieb maximization 
Example 2: Ensemble DFT of charged electronic excitations
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E0[v] ≡ EN
0 [v] ⟶ EN,ξ

0 [v] = (1 − 2ξ) EN
0 [v]+ξEN+1

0 [v]+ξEN−1
0 [v]

Ensemble energy

∂EN,ξ
0 [v]
∂ξ

= (EN+1
0 [v] − EN

0 [v]) + (EN−1
0 [v] − EN

0 [v])

Fundamental gap

ionizationAffinity

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

Exact extensions of DFT from the Lieb maximization 
Example 2: Ensemble DFT of charged electronic excitations
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E0[v] ≡ EN
0 [v] ⟶ EN,ξ

0 [v] = (1 − 2ξ) EN
0 [v]+ξEN+1

0 [v]+ξEN−1
0 [v]

Ensemble energy

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

Exact extensions of DFT from the Lieb maximization 
Example 2: Ensemble DFT of charged electronic excitations

F[n] ⟶ Fξ[n] = max
v {EN,ξ

0 [v] − ∫ dr v(r) n(r)}

74

DFT of charged excitations!



E0[v] ≡ EN
0 [v] ⟶ EN,ξ

0 [v] = (1 − 2ξ) EN
0 [v]+ξEN+1

0 [v]+ξEN−1
0 [v]

Ensemble energy

B. Senjean and E. Fromager, Phys. Rev. A 98, 022513 (2018). 
B. Senjean and E. Fromager, Int. J. Quantum Chem. 2020; 120:e26190 
F. Cernatic, B. Senjean, V. Robert, and E. Fromager, Top Curr Chem (Z) 380, 4 (2022).

Exact extensions of DFT from the Lieb maximization 
Example 2: Ensemble DFT of charged electronic excitations

F[n] ⟶ Fξ[n] = max
v {EN,ξ

0 [v] − ∫ dr v(r) n(r)}
= Tξ

s [n] + Eξ
Hxc[n]Exact connection between  

KS and true fundamental gaps! 
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Brief review of standard density-functional approximations
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Standard density-functional approximations (DFAs)


Exc[n] ≈ ∫ dr εxc(n(r)) × n(r)

Local and semi-local functionals

LDA (uniform electron gas)
S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58 (8): 1200–1211 (1980).
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Standard density-functional approximations (DFAs)


…
Exc[n] ≈ ∫ dr εxc(n(r)) × n(r)

Exc[n] ≈ ∫ dr εxc(n(r), |∇n(r) |) × n(r) Generalized gradient approximations (GGAs):

Local and semi-local functionals

LDA (uniform electron gas)
S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58 (8): 1200–1211 (1980).

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).
C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 57:785, (1988).

LYP, PBE, …
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Standard density-functional approximations (DFAs)


…
Exc[n] ≈ ∫ dr εxc(n(r)) × n(r)

Exc[n] ≈ ∫ dr εxc(n(r), |∇n(r) |) × n(r) Generalized gradient approximations (GGAs):

Local and semi-local functionals

LDA (uniform electron gas)
S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58 (8): 1200–1211 (1980).

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).
C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 57:785, (1988).

LYP, PBE, …

Exc[n] ≈ αEHF
x [Φ] + (1−α)EDFA

x [nΦ] + EDFA
c [nΦ]

Hybrid functionals

B3LYP

Hartree-Fock-like 

exchange energy (evaluated with generalised KS orbitals)

A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
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Standard density-functional approximations (DFAs)


…
Exc[n] ≈ ∫ dr εxc(n(r)) × n(r)

Exc[n] ≈ ∫ dr εxc(n(r), |∇n(r) |) × n(r) Generalized gradient approximations (GGAs):

Local and semi-local functionals

LDA (uniform electron gas)
S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58 (8): 1200–1211 (1980).

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).
C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 57:785, (1988).

LYP, PBE, …

Exc[n] ≈ αEHF
x [Φ] + (1−α)EDFA

x [nΦ] + EDFA
c [nΦ]

Exc[n] ≈ Elr,HF
x [Φ] + Esr,DFA

x [nΦ] + EDFA
c [nΦ]

…

Hybrid functionals

B3LYP

Range-separated hybrids

Hartree-Fock-like 

exchange energy (evaluated with generalised KS orbitals)

Ŵee = Ŵlr
ee + Ŵsr

ee

Long-range short-range

CAM-B3LYP

A. D. Becke, J. Chem. Phys. 98, 1372 (1993).

Yanai, T.; Tew, D. P.; Handy, N. C., Chem. Phys. Lett., 393, 51-57 (2004).
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(arbitrary) range separation of the electronic repulsion

full interaction: 1/|ri � rj |
long-range part of the interaction

short-range part of the interaction

1

long-range
short-range

Exc[n] ≈ Elr,HF
x [Φ] + Esr,DFA

x [nΦ] + EDFA
c [nΦ]

Ŵee = Ŵlr
ee + Ŵsr

ee

Long-range short-range
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An introduction to density-functional theory
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An introduction to density-functional theory
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An introduction to density-functional theory

Rayleigh–Ritz variational principle
• Theorem: The exact ground-state energy is a lower bound for the expectation value of the energy.

The minimum is reached when the trial quantum state | i equals the ground state | 0i:

E0 = min
 

h |Ĥ| i
h | i

=
h 0|Ĥ| 0i
h 0| 0i

.

Proof: 8 , | i =
X

I�0

CI | Ii and h |Ĥ| i � E0h | i =
X

I>0

|CI |2
⇣
EI � E0

⌘
� 0,

where | i has been expanded in the orthonormal basis of the eigenvectors of Ĥ , i.e.,
Ĥ| Ii =

I�0

EI | Ii.

• The ground state is usually normalized
⇣
h 0| 0i = 1

⌘
so that the variational principle can be

rewritten as follows,

E0 = min
 ,h | i=1

h |Ĥ| i = h 0|Ĥ| 0i

• Comment: If | 0i is not degenerate, any normalized state | i that is not equal to | 0i is such that
h |Ĥ| i>E0.

DFTK school 2022, Paris, France. Page 43

Appendix A

88



An introduction to density-functional theory

The true interacting many-electron problem

• Describing interacting electrons (Ŵee 6⌘ 0) is not straightforward. Indeed, the exact two-electron
solution  0(r1, r2) to the interacting Schrödinger equation cannot be written as '(r1)'(r2):

 0(r1, r2) 6= '(r1)'(r2).

Proof : Let us assume that we can find an orbital '(r) such that Ĥ

⇣
'(r1)'(r2)

⌘
= E0'(r1)'(r2)

for any r1 and r2 values. Consequently,

Ŵee

⇣
'(r1)'(r2)

⌘
= E0'(r1)'(r2) �

⇣
T̂ + V̂

⌘
'(r1)'(r2).

Using the definition of the operators and dividing by '(r1)'(r2) leads to

1

|r1 � r2|
= E0 +

1

2

r2
r1'(r1)

'(r1)
+

1

2

r2
r2'(r2)

'(r2)
� v(r1) � v(r2).

In the limit r2 ! r1 = r, it comes 8 r, E0 +
r2

r'(r)

'(r)
� 2v(r) ! +1 absurd!

DFTK school 2022, Paris, France. Page 42
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⟨Ψ
N

∑
i=1

v(ri) × Ψ⟩

=
N

∑
i=1

(∫ dx1…∫ dxN v(r1) × Ψ(x1, …, xN)
2)

= ∫ dr1 v(r1) × N ∑
σ1=↑,↓

∫ dx2…∫ dxN Ψ(r1, σ1, x2, …, xN)
2

= ∫ dr1 v(r1) × nΨ(r1)

x1 ↔ xi

=
N

∑
i=1

∫ dx1…∫ dxi…∫ dxN v(ri) × Ψ(x1, …, xi, …, xN)
2

=
N

∑
i=1

∫ dx1…∫ dxi…∫ dxN v(ri) × Ψ(xi, …, x1, …, xN)
2

= ∫ dx1…∫ dxN

N

∑
i=1

v(ri) × Ψ(x1, …, xN)
2

Change of variables  
in the integrals 

x1 → xi

xi → x1

= N∫ dx1…∫ dxN v(r1) × Ψ(x1, …, xN)
2

Proof of the nuclear potential energy simplification:

Electrons are  
indistinguishable particles 
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Concavity in potential 

! "

1 − % ! + %"

E0[u]

E0[v]

(1−α)E0[u] + αE0[v]

E0[(1−α)u + αv]
0 ≤ α ≤ 1

Potential

G
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d-
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e 
en
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gy

E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983). 
S. Kvaal, U. Ekström, A. M. Teale, and T. Helgaker, J. Chem. Phys. 140, 18A518 (2014). 
M. Penz, A. Laestadius, E. I. Tellgren, and M. Ruggenthaler, Phys. Rev. Lett. 123, 037401 (2019).
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Concavity in potential 

⟨Ψ | ̂T + Ŵee + (1−α) ̂u + α ̂v |Ψ⟩

! "

1 − % ! + %"

E0[u]

E0[v]

(1−α)E0[u] + αE0[v]

E0[(1−α)u + αv]
0 ≤ α ≤ 1
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Concavity in potential 

⟨Ψ | ̂T + Ŵee + (1−α) ̂u + α ̂v |Ψ⟩

! "

1 − % ! + %"

E0[u]

E0[v]

(1−α)E0[u] + αE0[v]

E0[(1−α)u + αv]
0 ≤ α ≤ 1

̂u ≡
N

∑
i=1

u(ri) ×

̂v ≡
N

∑
i=1

v(ri) ×
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Concavity in potential 

⟨Ψ | ̂T + Ŵee + (1−α) ̂u + α ̂v |Ψ⟩

= (1−α)⟨Ψ | ̂T + Ŵee+ ̂u |Ψ⟩

+ α⟨Ψ | ̂T + Ŵee+ ̂v |Ψ⟩

! "

1 − % ! + %"

E0[u]

E0[v]

(1−α)E0[u] + αE0[v]

E0[(1−α)u + αv]
0 ≤ α ≤ 1
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Concavity in potential 

⟨Ψ | ̂T + Ŵee + (1−α) ̂u + α ̂v |Ψ⟩

= (1−α)⟨Ψ | ̂T + Ŵee+ ̂u |Ψ⟩

+ α⟨Ψ | ̂T + Ŵee+ ̂v |Ψ⟩

≥ (1−α)E0[u] + αE0[v]

! "

1 − % ! + %"

E0[u]

E0[v]

(1−α)E0[u] + αE0[v]

E0[(1−α)u + αv]
0 ≤ α ≤ 1

≥ E0[u]

≥ E0[v]

Rayleigh-Ritz variational principle
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Concavity in potential 

⟨Ψ | ̂T + Ŵee + (1−α) ̂u + α ̂v |Ψ⟩

! "

1 − % ! + %"

E0[u]

E0[v]

(1−α)E0[u] + αE0[v]

E0[(1−α)u + αv]
0 ≤ α ≤ 1

E0[(1−α)u + αv] ≥ (1−α)E0[u] + αE0[v]

≥ (1−α)E0[u] + αE0[v]

min
Ψ

Concave!
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