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General principles of quantum mechanics  
for the electronic structure problem
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ĤΨI = EIΨI
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Electronic Schrödinger equation 

ĤΨI = EIΨI

Ground  and excited  
electronic energies 
(I = 0) (I > 0)

unknown!
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Electronic Schrödinger equation 

ĤΨI = EIΨI

Corresponding electronic wave function

unknown!
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Electronic Schrödinger equation 

ΨI ≡ ΨI(x1, x2, …, xN)

electronic coordinates
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Electronic Schrödinger equation 

ΨI ≡ ΨI(x1, x2, …, xN)

electronic coordinates

xi ≡ (ri, σi)

Cartesian space coordinates 
of the ith electron

ri ≡ (xi, yi, zi)

Spin coordinate 
of the ith electron

σi = ↑ or ↓
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Electronic Schrödinger equation 

ĤΨI = EIΨI

Electronic Hamiltonian  
operator
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Electronic Schrödinger equation 

ĤΨI = EIΨI

Electronic Hamiltonian  
operator

known!
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Electronic Schrödinger equation 

ĤΨI = EIΨI

Electronic Hamiltonian  
operator
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Kinetic energy 
of the ith electron 
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Electronic Schrödinger equation 
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Electronic Schrödinger equation 

ĤΨI = EIΨI

Electronic Hamiltonian  
operator

Ĥ =
N

∑
i=1
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+
∂2

∂z2
i

ith electron - nuclei 
attraction energy 

ith electron - jth electron 
repulsion energy 
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Dirac notation and scalar product

{Ψ(x1, x2, …, xN)} ≡ ⃗Ψ notation= |Ψ⟩
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Dirac notation and scalar product

{Ψ(x1, x2, …, xN)} ≡ ⃗Ψ notation= |Ψ⟩

{Φ(x1, x2, …, xN)} ≡ ⃗Φ notation= |Φ⟩

“Ket ”Φ
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Scalar product in real space

⃗Φ . ⃗Ψ = ΦxΨx + ΦyΨy + ΦzΨz

z

⃗Ψ

x

y

⃗Φ
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Scalar product of two wave functions

{Ψ(x1, x2, …, xN)} ≡ ⃗Ψ notation= |Ψ⟩

⃗Φ . ⃗Ψ notation= ⟨Φ |Ψ⟩

{Φ(x1, x2, …, xN)} ≡ ⃗Φ notation= |Φ⟩

= ∫ dx1 ∫ dx2…∫ dxN Φ(x1, x2, …, xN) × Ψ(x1, x2, …, xN)
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{Ψ(x1, x2, …, xN)} ≡ ⃗Ψ notation= |Ψ⟩

⃗Φ . ⃗Ψ notation= ⟨Φ |Ψ⟩ = ∫ dx1 ∫ dx2…∫ dxN Φ(x1, x2, …, xN) × Ψ(x1, x2, …, xN)

{Φ(x1, x2, …, xN)} ≡ ⃗Φ notation= |Φ⟩

The square norm of  is therefore denoted as   |Ψ⟩ ⃗Ψ . ⃗Ψ notation= ⟨Ψ |Ψ⟩

Scalar product of two wave functions
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Schrödinger equation in Dirac notations

{Ψ(x1, x2, …, xN)} ≡ |Ψ⟩

{ĤΨ(x1, x2, …, xN)} ≡ Ĥ |Ψ⟩
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Schrödinger equation in Dirac notations

Ĥ |ΨI⟩ = EI |ΨI⟩

{Ψ(x1, x2, …, xN)} ≡ |Ψ⟩

{ĤΨ(x1, x2, …, xN)} ≡ Ĥ |Ψ⟩
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Energy evaluation via a scalar product

Ĥ |ΨI⟩ = EI |ΨI⟩

⟨ΨI | Ĥ |ΨI⟩ = EI⟨ΨI |ΨI⟩
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Energy evaluation via a scalar product

Ĥ |ΨI⟩ = EI |ΨI⟩

⟨ΨI | Ĥ |ΨI⟩ = EI⟨ΨI |ΨI⟩
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Energy evaluation via a scalar product

Ĥ |ΨI⟩ = EI |ΨI⟩

⟨ΨI | Ĥ |ΨI⟩ = EI⟨ΨI |ΨI⟩

EI =
⟨ΨI | Ĥ |ΨI⟩

⟨ΨI |ΨI⟩
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An introduction to density-functional theory

Schrödinger equation for the ground state
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Rayleigh-Ritz variational principle 

E0 ≤
⟨Ψ | Ĥ |Ψ⟩

⟨Ψ |Ψ⟩

Expectation value of the energy 

26

Theorem: For any trial wave function , we have Ψ



Rayleigh-Ritz variational principle 

E0 ≤
⟨Ψ | Ĥ |Ψ⟩

⟨Ψ |Ψ⟩

Expectation value of the energy 
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⇔
E0 = min

Ψ { ⟨Ψ | Ĥ |Ψ⟩
⟨Ψ |Ψ⟩ }

Theorem: For any trial wave function , we have Ψ



Theophilou-Gross-Oliveira-Kohn (TGOK) variational principle

28

A. K. Theophilou, J. Phys. C: Solid State Phys. 12, 5419 (1979). 
A. K. Theophilou, in The Single Particle Density in Physics and Chemistry, edited by N. H. March and B. M. Deb (Academic Press, 1987), pp. 210–212. 
E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988). 
E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988). 
L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. A 37, 2821 (1988).
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⟨Ψ̃M | Ĥ |Ψ̃M⟩

⟨Ψ̃M |Ψ̃M⟩
≥ 𝚠0E0+𝚠1E1 + …+𝚠MEM



Theophilou-Gross-Oliveira-Kohn (TGOK) variational principle

29

Ψ0

Ψ1

Ψ2

Ψ3

Ψ4

E0

E1

E2

E3

E4

𝚠0

𝚠1

𝚠2

𝚠3

De
cr

ea
sin

g 
w

ei
gh

t  
𝚠

𝚠0
⟨Ψ̃0 | Ĥ |Ψ̃0⟩
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Theophilou-Gross-Oliveira-Kohn (TGOK) variational principle
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Theophilou-Gross-Oliveira-Kohn (TGOK) variational principle
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Density-functional theory (DFT)  
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n



Density-functional theory (DFT)
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It is in principle unnecessary to know

 the ground-state many-electron wave function 


 for evaluating the exact ground-state energy .
Ψ0

E0

33



Density-functional theory (DFT)
25/11/2021 20'32The Nobel Prize in Chemistry 1998

Page 2 of 9https://www.nobelprize.org/prizes/chemistry/1998/summary/

The Nobel Prize in Chemistry
1998

Walter Kohn
John Pople

Share this

The Nobel Prize in Chemistry
1998

Photo from the Nobel
Foundation archive.

Walter Kohn
Prize share: 1/2

Photo from the Nobel
Foundation archive.

John A. Pople
Prize share: 1/2

The Nobel Prize in Chemistry 1998 was
divided equally between Walter Kohn "for his
development of the density-functional
theory" and John A. Pople "for his
development of computational methods in
quantum chemistry."

To cite this section 
MLA style: The Nobel Prize in Chemistry 1998. NobelPrize.org. Nobel Prize Outreach AB 2021. Thu. 25 Nov 2021.
<https://www.nobelprize.org/prizes/chemistry/1998/summary/>

Back to top

It is in principle unnecessary to know

 the ground-state many-electron wave function 


 for evaluating the exact ground-state energy .
Ψ0

E0

The ground-state density  is sufficient.n0

34



Density-functional theory (DFT)

It is in principle unnecessary to know

 the ground-state many-electron wave function 


 for evaluating the exact ground-state energy .
Ψ0

E0

The ground-state density  is sufficient.n0
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nΨ(x) = N∫ dx2…∫ dxN |Ψ(x, x2, …, xN) |2 nΨ0
(x)Ψ = Ψ0



Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩
⟨Ψ |Ψ⟩
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Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

37

We use normalized wave functions 

for convenience, i.e., .⟨Ψ |Ψ⟩ = 1



Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

Pre-minimisation over wave functions 

that have the same density  


Ψ
nΨ(r) = n(r)

Levy M (1979) Proc Natl Acad Sci USA 76(12):6062 38



Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

Minimisation over densities  
n

Levy M (1979) Proc Natl Acad Sci USA 76(12):6062 39



Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}
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Ψ′ ′ 4Space of -electron wave functionsN
Levy M (1979) Proc Natl Acad Sci USA 76(12):6062 40



Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
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Levy M (1979) Proc Natl Acad Sci USA 76(12):6062 41



Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩} Ĥ = ̂T + Ŵee +
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1
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×
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= min
n {min

Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩ + ∫ dr vne(r)nΨ(r)}}



Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

= min
n {min

Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩ + ∫ dr vne(r)nΨ(r)}}
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Electrons-nuclei attraction energy



Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min
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⟨Ψ | Ĥ |Ψ⟩}

= min
n

min
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= min
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Levy’s constrained search formalism

E0 = min
Ψ

⟨Ψ | Ĥ |Ψ⟩

= min
n {min

Ψ→n
⟨Ψ | Ĥ |Ψ⟩}

= min
n {min

Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩ + ∫ dr vne(r)nΨ(r)}}
= min

n {min
Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩} + ∫ dr vne(r)n(r)}

= min
n {F[n]+∫ dr vne(r)n(r)}
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Levy’s constrained search formalism

We recover the Hohenberg-Kohn variational principle of DFT!

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 46

E0 = min
n {F[n] + ∫ dr vne(r)n(r)}



Levy’s constrained search formalism

E0 = min
n {F[n] + ∫ dr vne(r)n(r)}

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 47

Universal Hohenberg-Kohn density functional

F[n] = min
Ψ→n {⟨Ψ | ̂T + Ŵee |Ψ⟩}



Kohn-Sham DFT formalism

F[n] = min
Ψ→n

⟨Ψ | ̂T+Ŵee |Ψ⟩

Interacting universal functional Non-interacting  
(kinetic energy) functional

Ts[n] = min
Ψ→n

⟨Ψ | ̂T |Ψ⟩
Kohn-Sham

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965). 48
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Kohn-Sham DFT formalism

F[n] = min
Ψ→n

⟨Ψ | ̂T + Ŵee |Ψ⟩

Interacting universal functional Non-interacting  
(kinetic energy) functional

Ts[n] = min
Ψ→n

⟨Ψ | ̂T |Ψ⟩
Kohn-Sham

F[n] − Ts[n] = EHxc[n]

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965). 50

Universal many-electron  
Hartree-exchange-correlation functional



Kohn-Sham DFT formalism

F[n] − Ts[n] = EHxc[n]

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965). 51

Universal many-electron  
Hartree-exchange-correlation functional

Holy grail of DFT



Kohn-Sham DFT formalism

F[n] − Ts[n] = EHxc[n]

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965). 52

Universal many-electron  
Hartree-exchange-correlation functional

The exact xc functional is uniquely defined but  
many (many) approximations  

can be found in the literature (LDA, PBE, B3LYP, SCAN, …) 



One-electron Kohn-Sham DFT equations  
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2
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W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
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One-electron Kohn-Sham DFT equations  
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One-electron Kohn-Sham DFT equations  
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Exactification of the 


one-electron picture 



One-electron Kohn-Sham DFT equations  
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W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

One-electron energy levels
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electron correlation
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Construction of Kohn-Sham DFT molecular orbitals 
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notation≡
ℳ

∑
μ=1

Cμp χμ(r)
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Construction of Kohn-Sham DFT molecular orbitals 
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notation≡
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To-be-optimized 
molecular orbital coefficients

Construction of Kohn-Sham DFT molecular orbitals 
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Success and failures of density-functional approximations 
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Ψ
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Explicit description of electron correlation

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

Reference ground-state configuration 
(the one used in KS-DFT)

Virtual orbitals
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Explicit description of electron correlation

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

Virtual orbitals

|Φ0⟩ ≡ ̂a†
1 ̂a†

2… ̂a†
N |vac⟩

Second-quantized notation

Creation operators
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Explicit description of electron correlation

φ2
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φN

φN+1

φN+2
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φℳ

Virtual orbitals

|Φ0⟩ ≡ ̂a†
1 ̂a†

2… ̂a†
N |vac⟩
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Explicit description of electron correlation

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

Virtual orbitals

|Φ0⟩ ≡ ̂a†
1 ̂a†

2… ̂a†
N |vac⟩

Reference Slater determinant
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φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

Single-electron  
excitation

Explicit description of electron correlation
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φN

φN+1
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φN+3
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φℳ−1

φℳ

|Φ0⟩



70

φ2
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φN+1

φN+2
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φN+4

φℳ−1

φℳ

̂a†
N+2 ̂aN |Φ0⟩

Explicit description of electron correlation
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φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

|Φ0⟩
Second-quantized notation

Annihilation operator
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φN+2
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φN+4

φℳ−1

φℳ

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

φNφNφN

|Φ0⟩

φN−1 φN−1

Double-electron  
excitation

̂a†
N+4 ̂a†

N+1 ̂aN−1 ̂aN |Φ0⟩

Explicit description of electron correlation
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φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

Triples, quadruples, …, -tuplesN

Explicit description of electron correlation
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Configuration Interaction (CI) method

|Ψ0⟩ ≈ Ĉ |Φ0⟩

Excitation operator
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Configuration Interaction (CI) method

|Ψ0⟩ ≈ Ĉ |Φ0⟩

Ĉ = C0+
ℳ

∑
a=N+1

N

∑
i=1

Ca
i ̂a†

a ̂ai +
ℳ

∑
a,b=N+1

N

∑
i, j=1

Cab
ij ̂a†

a ̂a†
b ̂ai ̂aj +

ℳ

∑
a,b,c=N+1

N

∑
i, j,k=1

Cabc
ijk ̂a†

a ̂a†
b ̂a†

c ̂ai ̂aj ̂ak + …

TriplesDoublesSingles
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Configuration Interaction (CI) method

|Ψ0⟩ ≈ Ĉ |Φ0⟩

Ĉ = C0+
ℳ

∑
a=N+1

N

∑
i=1

Ca
i ̂a†

a ̂ai +
ℳ

∑
a,b=N+1

N

∑
i, j=1

Cab
ij ̂a†

a ̂a†
b ̂ai ̂aj +

ℳ

∑
a,b,c=N+1

N

∑
i, j,k=1

Cabc
ijk ̂a†

a ̂a†
b ̂a†

c ̂ai ̂aj ̂ak + …

To-be-optimized CI coefficients
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Configuration Interaction (CI) method

Ĉ = C0+
ℳ

∑
a=N+1

N

∑
i=1

Ca
i ̂a†

a ̂ai +
ℳ

∑
a,b=N+1

N

∑
i, j=1

Cab
ij ̂a†

a ̂a†
b ̂ai ̂aj +

ℳ

∑
a,b,c=N+1

N

∑
i, j,k=1

Cabc
ijk ̂a†

a ̂a†
b ̂a†

c ̂ai ̂aj ̂ak + …

To-be-optimized CI coefficients

|Ψ0⟩ ≈ Ĉ |Φ0⟩ = ∑
ξ

Cξ |detξ⟩ = |Ψ(C)⟩
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Configuration Interaction (CI) method

ECI = min
C

⟨Ψ(C) | Ĥ |Ψ(C)⟩
⟨Ψ(C) |Ψ(C)⟩

|Ψ(C)⟩ = ∑
ξ

Cξ |detξ⟩
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Configuration Interaction (CI) method

⇔

ECI = min
C

⟨Ψ(C) | Ĥ |Ψ(C)⟩
⟨Ψ(C) |Ψ(C)⟩

Matrix diagonalization 
problem

C0

C1
⋮
Cξ

⋮

= ECI

C0

C1
⋮
Cξ

⋮

H00 H01
… H0ξ′ 

…

⋮
H10

Hξ0⋮
Hξξ′ 

⋮ ⋮

⋮

|Ψ(C)⟩ = ∑
ξ

Cξ |detξ⟩
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Configuration Interaction (CI) method

CI Hamiltonian matrix 

C0

C1
⋮
Cξ

⋮

= ECI

C0

C1
⋮
Cξ

⋮

H00 H01
… H0ξ′ 

…

⋮
H10

Hξ0⋮
Hξξ′ 

⋮ ⋮

⋮

Hξξ′ = ⟨detξ | Ĥ |detξ′ ⟩
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How many determinants in total 
for a full CI (FCI) calculation?

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

We have  (spin-) orbitals  
available for  electrons 

 

ℳ
N
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How many determinants in total?

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

Ndet. = (ℳ
N ) =

ℳ!
N!(ℳ−N)!

We have  (spin-) orbitals  
available for  electrons 

 

ℳ
N
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H

HH

H
H

H

H

H
HH

H

H

H

H
H

H

How many determinants in total?

ℳ = 2 × N

Spin
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How many determinants in total?

Ndet. =
ℳ!

N!(ℳ−N)!
=

(2N)!
(N!)2

ℳ = 2 × N
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How many determinants in total?

Ndet. =
ℳ!

N!(ℳ−N)!
=

(2N)!
(N!)2

ℳ = 2 × N

≈
22N

πN
=

e2N ln 2

πN

N! ≈ 2πN ( N
e )

N
Stirling formula for large  valuesN
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How many determinants in total?

Ndet. ≈
e2N ln 2

πN
“Exponential wall”
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How many determinants in total?

Ndet. ≈
e2N ln 2

πN

N=50≈ 1029
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How many determinants in total?

Ndet. ≈
e2N ln 2

πN

N=400≈ 1.88 × 10239
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Truncated CI methods and the size-consistency issue

Ĉ ≈ ĈCISD = C0+
ℳ

∑
a=N+1

N

∑
i=1

Ca
i ̂a†

a ̂ai +
ℳ

∑
a,b=N+1

N

∑
i,j=1

Cab
ij ̂a†

a ̂a†
b ̂ai ̂aj

CI singles and doubles ansatz (CISD):
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Truncated CI methods and the size-consistency issue
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φ̃N+2

φ̃N+3

φ̃N+4

φ̃ℳ−1

φ̃ℳ

Let us consider two monomers  
far apart from each other  

(each monomer contains two electrons) 
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Truncated CI methods and the size-consistency issue
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Truncated CI methods and the size-consistency issue
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Truncated CI methods and the size-consistency issue
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Truncated CI methods and the size-consistency issue
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CISD is not “exact”

φ̃2
φ̃1

φ̃N
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φ̃N+4
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CISDTQ would be

Let us consider two monomers  
far apart from each other  

(each monomer contains two electrons) 
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Coupled Cluster (CC) theory

|Ψ0⟩ ≈ |Ψ(t)⟩ = e ̂T |Φ0⟩

̂T = t0+
ℳ

∑
a=N+1

N

∑
i=1

ta
i ̂a†

a ̂ai +
ℳ

∑
a,b=N+1

N

∑
i, j=1

tab
ij ̂a†

a ̂a†
b ̂ai ̂aj +

ℳ

∑
a,b,c=N+1

N

∑
i, j,k=1

tabc
ijk ̂a†

a ̂a†
b ̂a†

c ̂ai ̂aj ̂ak + …

Excitation operator
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Coupled Cluster (CC) theory

|Ψ0⟩ ≈ |Ψ(t)⟩ = e ̂T |Φ0⟩

̂T = t0+
ℳ

∑
a=N+1

N

∑
i=1

ta
i ̂a†

a ̂ai +
ℳ

∑
a,b=N+1

N

∑
i, j=1

tab
ij ̂a†

a ̂a†
b ̂ai ̂aj +

ℳ

∑
a,b,c=N+1

N

∑
i, j,k=1

tabc
ijk ̂a†

a ̂a†
b ̂a†

c ̂ai ̂aj ̂ak + …

To-be-optimized Coupled Cluster amplitudes
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Coupled Cluster (CC) theory

|Ψ0⟩ ≈ |Ψ(t)⟩ = e ̂T |Φ0⟩

̂T = t0 +
ℳ

∑
a=N+1

N

∑
i=1

ta
i ̂a†

a ̂ai +
ℳ

∑
a,b=N+1

N

∑
i, j=1

tab
ij ̂a†

a ̂a†
b ̂ai ̂aj +

ℳ

∑
a,b,c=N+1

N

∑
i, j,k=1

tabc
ijk ̂a†

a ̂a†
b ̂a†

c ̂ai ̂aj ̂ak + …

e ̂T = 1 +
+∞

∑
n=1

̂Tn

n!
= 1+ ̂T +

1
2

̂T2 +
1
6

̂T3 +
1
24

̂T4+…

CI
CC
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Truncated CC theory

̂T → ̂TCCSD = t0+
ℳ

∑
a=N+1

N

∑
i=1

ta
i ̂a†

a ̂ai +
ℳ

∑
a,b=N+1

N

∑
i,j=1

tab
ij ̂a†

a ̂a†
b ̂ai ̂aj

e ̂T → e ̂TCCSD = 1 + ̂TCCSD+
1
2

̂TCCSD
̂TCCSD +…

Will generate triple 

and quadruple excitations
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Truncated CC theory

̂T → ̂TCCSD = t0+
ℳ

∑
a=N+1

N

∑
i=1

ta
i ̂a†

a ̂ai +
ℳ

∑
a,b=N+1

N

∑
i,j=1

tab
ij ̂a†

a ̂a†
b ̂ai ̂aj

e ̂T → e ̂TCCSD = 1 + ̂TCCSD+
1
2

̂TCCSD
̂TCCSD +…

Will generate triple 

and quadruple excitations

Size-consistency  

is restored
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Conventional (non-variational) optimisation of the CC amplitudes

Ĥ (e ̂T |Φ0⟩) = ECC (e ̂T |Φ0⟩)
Schrödinger equation for the CC wave function
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Conventional (non-variational) optimisation of the CC amplitudes

e− ̂TĤ e ̂T |Φ0⟩ = ECC e− ̂Te ̂T |Φ0⟩

Ĥ (e ̂T |Φ0⟩) = ECC (e ̂T |Φ0⟩)
e− ̂T ×
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Conventional (non-variational) optimisation of the CC amplitudes

e− ̂TĤ e ̂T |Φ0⟩ = ECC e− ̂Te ̂T |Φ0⟩

Ĥ (e ̂T |Φ0⟩) = ECC (e ̂T |Φ0⟩)

ℋ̂CC(t) |Φ0⟩ = ECC |Φ0⟩

ℋ̂CC(t) = e− ̂TĤ e ̂T
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Conventional (non-variational) optimisation of the CC amplitudes

ℋ̂CC(t) |Φ0⟩ = ECC |Φ0⟩ Effective -electron

Schrödinger equation

N

Known!
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Conventional (non-variational) optimisation of the CC amplitudes

ℋ̂CC(t) = e− ̂TĤ e ̂T = (1 − ̂T +
1
2

̂T2 − …)Ĥ(1 + ̂T +
1
2

̂T2 + …)

ℋ̂CC(t) |Φ0⟩ = ECC |Φ0⟩ Effective -electron

Schrödinger equation

N

To-be-determined
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Conventional (non-variational) optimisation of the CC amplitudes

ℋ̂CC(t) = e− ̂TĤ e ̂T = (1 − ̂T +
1
2

̂T2 − …)Ĥ(1 + ̂T +
1
2

̂T2 + …)

ℋ̂CC(t) |Φ0⟩ = ECC |Φ0⟩ Effective -electron

Schrödinger equation

N

To-be-determined

Expansion stops exactly at fourth order in ̂T
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Unitary CC (uCC) theory 
(standard in quantum algorithms for quantum chemistry)

|ΨCC(t)⟩ = e ̂T |Φ0⟩ → |ΨuCC(t)⟩ = e ̂T− ̂T† |Φ0⟩
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Unitary CC (uCC) theory

|ΨCC(t)⟩ = e ̂T |Φ0⟩ → |ΨuCC(t)⟩ = e ̂T− ̂T† |Φ0⟩

̂T = t0+
ℳ

∑
a=N+1

N

∑
i=1

ta
i ̂a†

a ̂ai +
ℳ

∑
a,b=N+1

N

∑
i, j=1

tab
ij ̂a†

a ̂a†
b ̂ai ̂aj +

ℳ

∑
a,b,c=N+1

N

∑
i, j,k=1

tabc
ijk ̂a†

a ̂a†
b ̂a†

c ̂ai ̂aj ̂ak + …

Excitation operator

φi

φa



107

Unitary CC (uCC) theory

|ΨCC(t)⟩ = e ̂T |Φ0⟩ → |ΨuCC(t)⟩ = e ̂T− ̂T† |Φ0⟩

̂T† = t0+
ℳ

∑
a=N+1

N

∑
i=1

ta
i ̂a†

i ̂aa +
ℳ

∑
a,b=N+1

N

∑
i, j=1

tab
ij ̂a†

j ̂a†
i ̂ab ̂aa +

ℳ

∑
a,b,c=N+1

N

∑
i, j,k=1

tabc
ijk ̂a†

k ̂a†
j ̂a†

i ̂ac ̂ab ̂aa + …

De-excitation operator

with the same CC amplitudes 

φi

φa
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Unitary CC (uCC) theory

|ΨCC(t)⟩ = e ̂T |Φ0⟩ → |ΨuCC(t)⟩ = e ̂T− ̂T† |Φ0⟩
Unitary transformation 

⟨ΨuCC(t) |ΨuCC(t)⟩ = ⟨Φ0 |Φ0⟩

The square norm is preserved!
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Unitary CC (uCC) theory

|ΨCC(t)⟩ = e ̂T |Φ0⟩ → |ΨuCC(t)⟩ = e ̂T− ̂T† |Φ0⟩
Unitary transformation 

⟨ΨuCC(t) |ΨuCC(t)⟩ = 1

The square norm is preserved!
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Unitary CC (uCC) theory

|ΨCC(t)⟩ = e ̂T |Φ0⟩ → |ΨuCC(t)⟩ = e ̂T− ̂T† |Φ0⟩

EuCC = min
t { ⟨ΨuCC(t) | Ĥ |ΨuCC(t)⟩

⟨ΨuCC(t) |ΨuCC(t)⟩ }
Variational evaluation of the energy: 
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Unitary CC (uCC) theory

|ΨCC(t)⟩ = e ̂T |Φ0⟩ → |ΨuCC(t)⟩ = e ̂T− ̂T† |Φ0⟩

EuCC = min
t { ⟨ΨuCC(t) | Ĥ |ΨuCC(t)⟩

⟨ΨuCC(t) |ΨuCC(t)⟩ }
= min

t {⟨ΨuCC(t) | Ĥ |ΨuCC(t)⟩}

Variational evaluation of the energy: 
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Unitary CC (uCC) theory

|ΨCC(t)⟩ = e ̂T |Φ0⟩ → |ΨuCC(t)⟩ = e ̂T− ̂T† |Φ0⟩

Variational evaluation of the energy: 

EuCC = min
t {⟨Φ0 |ℋ̂uCC(t) |Φ0⟩}

ℋ̂uCC(t) = e−( ̂T − ̂T†)Ĥ e( ̂T− ̂T†) ≠ e− ̂TĤ e ̂T = ℋ̂CC(t)
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and compute approximate per-site energies as follows,

E(µ)
L

+ µn(µ) ⇡
LPFET

⌦
t̂01 + Û0

↵
YC (µ�ṽHxc,ṽHxc)

, (88)

since the approximation in Equation (75) is also used in LPFET, as discussed above.

Figure 1. Graphical representation of the LPFET procedure. Note that the same Hxc potential ṽHxc is
used in the KS lattice and the embedding Householder cluster. It is optimized self-consistently in
order to fulfill the density constraint of Equation (85). See text for further details.

Note that Ht-DMFET (which is equivalent to DMET in the present context) and LPFET
use the same per-site energy expression (see Equation (47)), which is a functional of the
interacting cluster’s wave function. In both approaches, the latter and the non-interacting
lattice share the same density. Therefore, if the per-site energy or the double occupation⌦

n̂0"n̂0#
↵

were plotted as functions of the (converged) lattice filling n, as it is usually done
in the literature [15], both methods would give exactly the same results. The reason
is that, at convergence of the LPFET algorithm, the density constraint of Equation (85)
should be fulfilled, exactly like in Ht-DMFET (see Equations (45) and (46)). However, if
properties were plotted as functions of the chemical potential value µ in the true interacting
lattice, LPFET and Ht-DMFET would give different results, simply because the densities
obtained (for a given µ value) with the two methods would be different. Indeed, as
shown in Section 2.3.2, Ht-DMFET can be viewed as an approximation to KS-DFT where
the Hxc density-functional potential of Equation (78) is employed. As readily seen from
Equation (86), the LPFET and Ht-DMFET Hxc potentials differ by the Householder kinetic
correlation potential (which is neglected in LPFET). If the corresponding KS densities
were the same then the Hxc potential, the Householder transformation, and, therefore,
the chemical potential on the interacting embedded impurity would be the same, which
is impossible according to Equations (78) and (86). In summary, differences in properties
between LPFET and Ht-DMFET are directly related to differences in density. This is

Computation 2022, 10, 45 15 of 23

and compute approximate per-site energies as follows,

E(µ)
L

+ µn(µ) ⇡
LPFET

⌦
t̂01 + Û0
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