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applications, three of which correspond to ligand association
reactions in transition-metal complexes and three of which
correspond to defect formation in graphene sheets and carbon
nanotubes. We present results that illustrate the convergence of
errors in the EMFT with respect to high-level calculations
performed over the full system, illustrating the utility of the
method for realistic applications.
As before, in specifying the density-fitting basis sets, we use DF

to indicate the Ahlrichs density-fitting basis for calculations in
which PBE is the high-level exchange-correlation functional and
to indicate cc-pVDZ/JKFIT for calculations in which B3LYP is
the high-level exchange-correlation functional; DF(s) indicates
the subset of the corresponding fitting basis consisting of only the
s-type functions. Similarly, we use DF2 to indicate the Def2-SVP
density fitting basis,70 and DF2(s) denotes the subset that only
contains s-type functions.
For each calculation reported in this section, the Supporting

Information provides full details of the molecular geometries and
the specific list of atoms that are included in subsystem A. For all
plots that report errors as a function of the number of atoms in
subsystem A, the case in which subsystem A includes zero atoms
corresponds to treating the full system using the low-level KS-
DFT. All EMFT calculations in this section are performed using a
modified version of the Molpro software package, and all
ONIOM calculations are performed using Gaussian 09.

■ LIGAND ASSOCIATION IN TRANSITION-METAL
COMPLEXES

Acetonitrile Binding by a Cobalt-Based Hydrogen-
Reduction Catalyst. Cobalt diglyoxime complexes have been
recently researched as potential hydrogen reduction catalysts for
artificial solar cells and other applications.72,73 Theoretical work
in this area has focused on computing ligand-binding energies
and reduction potentials associated with key steps in the catalytic
process.71,74

In particular, we examine the utility of EMFT in describing the
binding of acetonitrile to the catalyst Co0(dpgBF2)2 (dpg =
diphenylglyoxime); Figure 7a illustrates the bound complex, with
the acetonitrile ligand indicated in magenta. Dissociation of the
axial acetonitrile ligand is thought to accompany catalyst
reduction in some systems, playing an important part in the
energetics of different reaction pathways.74

Figure 7b presents EMFT (PBE:LDA, Def2-SVP:STO-3G,
DF:DF(s)) results for the embedding of high-level KS-DFT in
low-level KS-DFT. The convergence of error in the ligand
binding energy is plotted with respect to the size of subsystem A.
The atoms in subsystem A are included according to their
proximity to the Cometal center, with the requirement that these
atoms be contiguous via chemical bonds.
The binding energy for this reaction obtained using the high-

level KS-DFT is 20.3 kcal/mol, and it is clear from Figure 7b that

Figure 7. (a) Illustration of the binding reaction between acetonitrile (magenta) and Co catalyst complex (geometries from ref 71). For the choice of
subsystem Awith 21 atoms, the atoms associated with subsystem B are shown as translucent. (b) EMFT embedding errors, reported relative to the high-
level (PBE/Def2-SVP/DF) KS-DFT reaction energy of 20.3 kcal/mol; the low-level (LDA/STO-3G/DF(s)) KS-DFT reaction energy is 6.7 kcal/mol.

Figure 8. (a) Illustration of binding reaction between CO (magenta) and hememodel complex (geometries from ref 75). For the choice of subsystem A
with 3 atoms, the atoms associated with subsystem B are shown as translucent. (b) EMFT embedding errors, reported relative to the high-level (PBE/
Def2-SVP/DF) KS-DFT reaction energy of 4.5 kcal/mol; the low-level (LDA/STO-3G/DF(s)) KS-DFT reaction energy is −8.5 kcal/mol.
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ABSTRACT: We report and characterize ground-state and
excited-state potential energy profiles using a variety of electronic
structure methods along a loop lying on the branching plane
associated with a conical intersection (CI) of a reduced retinal
model, the penta-2,4-dieniminium cation (PSB3). Whereas the
performance of the equation-of-motion coupled-cluster, density
functional theory, and multireference methods had been tested
along the excited- and ground-state paths of PSB3 in our earlier
work, the ability of these methods to correctly describe the
potential energy surface shape along a CI branching plane has
not yet been investigated. This is the focus of the present contribution. We find, in agreement with earlier studies by others, that
standard time-dependent DFT (TDDFT) does not yield the correct two-dimensional (i.e., conical) crossing along the branching
plane but rather a one-dimensional (i.e., linear) crossing along the same plane. The same type of behavior is found for
SS-CASPT2(IPEA=0), SS-CASPT2(IPEA=0.25), spin-projected SF-TDDFT, EOM-SF-CCSD, and, finally, for the reference
MRCISD+Q method. In contrast, we found that MRCISD, CASSCF, MS-CASPT2(IPEA=0), MS-CASPT2(IPEA=0.25), XMCQDPT2,
QD-NEVPT2, non-spin-projected SF-TDDFT, and SI-SA-REKS yield the expected conical crossing. To assess the effect of the
different crossing topologies (i.e., linear or conical) on the PSB3 photoisomerization efficiency, we discuss the results of 100
semiclassical trajectories computed by CASSCF and SS-CASPT2(IPEA=0.25) for a PSB3 derivative. We show that for the same
initial conditions, the two methods yield similar dynamics leading to isomerization quantum yields that differ by only a few percent.

■ INTRODUCTION

A conical intersection (CI) is a specific molecular structure
(a point in the space of nuclear configurations) where the
potential energy surfaces corresponding to two electronic states
of the same multiplicity cross1,2 (here the “CI” label indicates
a point of “conical intersection” and should not be confused
with the configuration interaction method for which the CI
acronym is commonly used). CIs are ubiquitous in polyatomic
systems and play an important role in the photochemistry of
organic,3−8 inorganic,9 and biological10−12 systems. For example,
the primary event in vision, the photoisomerization of the retinal

protonated Schiff base (rPSB) chromophore of visual pigments
(see Scheme 1A), is mediated by a CI.13−17

At a CI between two electronic states of the same spin and
symmetry, the degeneracy can only be lifted by distorting the
molecule along one of two specific degrees of freedom (see
Figure 1A):
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applications, three of which correspond to ligand association
reactions in transition-metal complexes and three of which
correspond to defect formation in graphene sheets and carbon
nanotubes. We present results that illustrate the convergence of
errors in the EMFT with respect to high-level calculations
performed over the full system, illustrating the utility of the
method for realistic applications.
As before, in specifying the density-fitting basis sets, we use DF

to indicate the Ahlrichs density-fitting basis for calculations in
which PBE is the high-level exchange-correlation functional and
to indicate cc-pVDZ/JKFIT for calculations in which B3LYP is
the high-level exchange-correlation functional; DF(s) indicates
the subset of the corresponding fitting basis consisting of only the
s-type functions. Similarly, we use DF2 to indicate the Def2-SVP
density fitting basis,70 and DF2(s) denotes the subset that only
contains s-type functions.
For each calculation reported in this section, the Supporting

Information provides full details of the molecular geometries and
the specific list of atoms that are included in subsystem A. For all
plots that report errors as a function of the number of atoms in
subsystem A, the case in which subsystem A includes zero atoms
corresponds to treating the full system using the low-level KS-
DFT. All EMFT calculations in this section are performed using a
modified version of the Molpro software package, and all
ONIOM calculations are performed using Gaussian 09.

■ LIGAND ASSOCIATION IN TRANSITION-METAL
COMPLEXES

Acetonitrile Binding by a Cobalt-Based Hydrogen-
Reduction Catalyst. Cobalt diglyoxime complexes have been
recently researched as potential hydrogen reduction catalysts for
artificial solar cells and other applications.72,73 Theoretical work
in this area has focused on computing ligand-binding energies
and reduction potentials associated with key steps in the catalytic
process.71,74

In particular, we examine the utility of EMFT in describing the
binding of acetonitrile to the catalyst Co0(dpgBF2)2 (dpg =
diphenylglyoxime); Figure 7a illustrates the bound complex, with
the acetonitrile ligand indicated in magenta. Dissociation of the
axial acetonitrile ligand is thought to accompany catalyst
reduction in some systems, playing an important part in the
energetics of different reaction pathways.74

Figure 7b presents EMFT (PBE:LDA, Def2-SVP:STO-3G,
DF:DF(s)) results for the embedding of high-level KS-DFT in
low-level KS-DFT. The convergence of error in the ligand
binding energy is plotted with respect to the size of subsystem A.
The atoms in subsystem A are included according to their
proximity to the Cometal center, with the requirement that these
atoms be contiguous via chemical bonds.
The binding energy for this reaction obtained using the high-

level KS-DFT is 20.3 kcal/mol, and it is clear from Figure 7b that

Figure 7. (a) Illustration of the binding reaction between acetonitrile (magenta) and Co catalyst complex (geometries from ref 71). For the choice of
subsystem Awith 21 atoms, the atoms associated with subsystem B are shown as translucent. (b) EMFT embedding errors, reported relative to the high-
level (PBE/Def2-SVP/DF) KS-DFT reaction energy of 20.3 kcal/mol; the low-level (LDA/STO-3G/DF(s)) KS-DFT reaction energy is 6.7 kcal/mol.

Figure 8. (a) Illustration of binding reaction between CO (magenta) and hememodel complex (geometries from ref 75). For the choice of subsystem A
with 3 atoms, the atoms associated with subsystem B are shown as translucent. (b) EMFT embedding errors, reported relative to the high-level (PBE/
Def2-SVP/DF) KS-DFT reaction energy of 4.5 kcal/mol; the low-level (LDA/STO-3G/DF(s)) KS-DFT reaction energy is −8.5 kcal/mol.
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ABSTRACT: We report and characterize ground-state and
excited-state potential energy profiles using a variety of electronic
structure methods along a loop lying on the branching plane
associated with a conical intersection (CI) of a reduced retinal
model, the penta-2,4-dieniminium cation (PSB3). Whereas the
performance of the equation-of-motion coupled-cluster, density
functional theory, and multireference methods had been tested
along the excited- and ground-state paths of PSB3 in our earlier
work, the ability of these methods to correctly describe the
potential energy surface shape along a CI branching plane has
not yet been investigated. This is the focus of the present contribution. We find, in agreement with earlier studies by others, that
standard time-dependent DFT (TDDFT) does not yield the correct two-dimensional (i.e., conical) crossing along the branching
plane but rather a one-dimensional (i.e., linear) crossing along the same plane. The same type of behavior is found for
SS-CASPT2(IPEA=0), SS-CASPT2(IPEA=0.25), spin-projected SF-TDDFT, EOM-SF-CCSD, and, finally, for the reference
MRCISD+Q method. In contrast, we found that MRCISD, CASSCF, MS-CASPT2(IPEA=0), MS-CASPT2(IPEA=0.25), XMCQDPT2,
QD-NEVPT2, non-spin-projected SF-TDDFT, and SI-SA-REKS yield the expected conical crossing. To assess the effect of the
different crossing topologies (i.e., linear or conical) on the PSB3 photoisomerization efficiency, we discuss the results of 100
semiclassical trajectories computed by CASSCF and SS-CASPT2(IPEA=0.25) for a PSB3 derivative. We show that for the same
initial conditions, the two methods yield similar dynamics leading to isomerization quantum yields that differ by only a few percent.

■ INTRODUCTION

A conical intersection (CI) is a specific molecular structure
(a point in the space of nuclear configurations) where the
potential energy surfaces corresponding to two electronic states
of the same multiplicity cross1,2 (here the “CI” label indicates
a point of “conical intersection” and should not be confused
with the configuration interaction method for which the CI
acronym is commonly used). CIs are ubiquitous in polyatomic
systems and play an important role in the photochemistry of
organic,3−8 inorganic,9 and biological10−12 systems. For example,
the primary event in vision, the photoisomerization of the retinal

protonated Schiff base (rPSB) chromophore of visual pigments
(see Scheme 1A), is mediated by a CI.13−17

At a CI between two electronic states of the same spin and
symmetry, the degeneracy can only be lifted by distorting the
molecule along one of two specific degrees of freedom (see
Figure 1A):
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applications, three of which correspond to ligand association
reactions in transition-metal complexes and three of which
correspond to defect formation in graphene sheets and carbon
nanotubes. We present results that illustrate the convergence of
errors in the EMFT with respect to high-level calculations
performed over the full system, illustrating the utility of the
method for realistic applications.
As before, in specifying the density-fitting basis sets, we use DF

to indicate the Ahlrichs density-fitting basis for calculations in
which PBE is the high-level exchange-correlation functional and
to indicate cc-pVDZ/JKFIT for calculations in which B3LYP is
the high-level exchange-correlation functional; DF(s) indicates
the subset of the corresponding fitting basis consisting of only the
s-type functions. Similarly, we use DF2 to indicate the Def2-SVP
density fitting basis,70 and DF2(s) denotes the subset that only
contains s-type functions.
For each calculation reported in this section, the Supporting

Information provides full details of the molecular geometries and
the specific list of atoms that are included in subsystem A. For all
plots that report errors as a function of the number of atoms in
subsystem A, the case in which subsystem A includes zero atoms
corresponds to treating the full system using the low-level KS-
DFT. All EMFT calculations in this section are performed using a
modified version of the Molpro software package, and all
ONIOM calculations are performed using Gaussian 09.

■ LIGAND ASSOCIATION IN TRANSITION-METAL
COMPLEXES

Acetonitrile Binding by a Cobalt-Based Hydrogen-
Reduction Catalyst. Cobalt diglyoxime complexes have been
recently researched as potential hydrogen reduction catalysts for
artificial solar cells and other applications.72,73 Theoretical work
in this area has focused on computing ligand-binding energies
and reduction potentials associated with key steps in the catalytic
process.71,74

In particular, we examine the utility of EMFT in describing the
binding of acetonitrile to the catalyst Co0(dpgBF2)2 (dpg =
diphenylglyoxime); Figure 7a illustrates the bound complex, with
the acetonitrile ligand indicated in magenta. Dissociation of the
axial acetonitrile ligand is thought to accompany catalyst
reduction in some systems, playing an important part in the
energetics of different reaction pathways.74

Figure 7b presents EMFT (PBE:LDA, Def2-SVP:STO-3G,
DF:DF(s)) results for the embedding of high-level KS-DFT in
low-level KS-DFT. The convergence of error in the ligand
binding energy is plotted with respect to the size of subsystem A.
The atoms in subsystem A are included according to their
proximity to the Cometal center, with the requirement that these
atoms be contiguous via chemical bonds.
The binding energy for this reaction obtained using the high-

level KS-DFT is 20.3 kcal/mol, and it is clear from Figure 7b that

Figure 7. (a) Illustration of the binding reaction between acetonitrile (magenta) and Co catalyst complex (geometries from ref 71). For the choice of
subsystem Awith 21 atoms, the atoms associated with subsystem B are shown as translucent. (b) EMFT embedding errors, reported relative to the high-
level (PBE/Def2-SVP/DF) KS-DFT reaction energy of 20.3 kcal/mol; the low-level (LDA/STO-3G/DF(s)) KS-DFT reaction energy is 6.7 kcal/mol.

Figure 8. (a) Illustration of binding reaction between CO (magenta) and hememodel complex (geometries from ref 75). For the choice of subsystem A
with 3 atoms, the atoms associated with subsystem B are shown as translucent. (b) EMFT embedding errors, reported relative to the high-level (PBE/
Def2-SVP/DF) KS-DFT reaction energy of 4.5 kcal/mol; the low-level (LDA/STO-3G/DF(s)) KS-DFT reaction energy is −8.5 kcal/mol.
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ABSTRACT: We report and characterize ground-state and
excited-state potential energy profiles using a variety of electronic
structure methods along a loop lying on the branching plane
associated with a conical intersection (CI) of a reduced retinal
model, the penta-2,4-dieniminium cation (PSB3). Whereas the
performance of the equation-of-motion coupled-cluster, density
functional theory, and multireference methods had been tested
along the excited- and ground-state paths of PSB3 in our earlier
work, the ability of these methods to correctly describe the
potential energy surface shape along a CI branching plane has
not yet been investigated. This is the focus of the present contribution. We find, in agreement with earlier studies by others, that
standard time-dependent DFT (TDDFT) does not yield the correct two-dimensional (i.e., conical) crossing along the branching
plane but rather a one-dimensional (i.e., linear) crossing along the same plane. The same type of behavior is found for
SS-CASPT2(IPEA=0), SS-CASPT2(IPEA=0.25), spin-projected SF-TDDFT, EOM-SF-CCSD, and, finally, for the reference
MRCISD+Q method. In contrast, we found that MRCISD, CASSCF, MS-CASPT2(IPEA=0), MS-CASPT2(IPEA=0.25), XMCQDPT2,
QD-NEVPT2, non-spin-projected SF-TDDFT, and SI-SA-REKS yield the expected conical crossing. To assess the effect of the
different crossing topologies (i.e., linear or conical) on the PSB3 photoisomerization efficiency, we discuss the results of 100
semiclassical trajectories computed by CASSCF and SS-CASPT2(IPEA=0.25) for a PSB3 derivative. We show that for the same
initial conditions, the two methods yield similar dynamics leading to isomerization quantum yields that differ by only a few percent.

■ INTRODUCTION

A conical intersection (CI) is a specific molecular structure
(a point in the space of nuclear configurations) where the
potential energy surfaces corresponding to two electronic states
of the same multiplicity cross1,2 (here the “CI” label indicates
a point of “conical intersection” and should not be confused
with the configuration interaction method for which the CI
acronym is commonly used). CIs are ubiquitous in polyatomic
systems and play an important role in the photochemistry of
organic,3−8 inorganic,9 and biological10−12 systems. For example,
the primary event in vision, the photoisomerization of the retinal

protonated Schiff base (rPSB) chromophore of visual pigments
(see Scheme 1A), is mediated by a CI.13−17

At a CI between two electronic states of the same spin and
symmetry, the degeneracy can only be lifted by distorting the
molecule along one of two specific degrees of freedom (see
Figure 1A):
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applications, three of which correspond to ligand association
reactions in transition-metal complexes and three of which
correspond to defect formation in graphene sheets and carbon
nanotubes. We present results that illustrate the convergence of
errors in the EMFT with respect to high-level calculations
performed over the full system, illustrating the utility of the
method for realistic applications.
As before, in specifying the density-fitting basis sets, we use DF

to indicate the Ahlrichs density-fitting basis for calculations in
which PBE is the high-level exchange-correlation functional and
to indicate cc-pVDZ/JKFIT for calculations in which B3LYP is
the high-level exchange-correlation functional; DF(s) indicates
the subset of the corresponding fitting basis consisting of only the
s-type functions. Similarly, we use DF2 to indicate the Def2-SVP
density fitting basis,70 and DF2(s) denotes the subset that only
contains s-type functions.
For each calculation reported in this section, the Supporting

Information provides full details of the molecular geometries and
the specific list of atoms that are included in subsystem A. For all
plots that report errors as a function of the number of atoms in
subsystem A, the case in which subsystem A includes zero atoms
corresponds to treating the full system using the low-level KS-
DFT. All EMFT calculations in this section are performed using a
modified version of the Molpro software package, and all
ONIOM calculations are performed using Gaussian 09.

■ LIGAND ASSOCIATION IN TRANSITION-METAL
COMPLEXES

Acetonitrile Binding by a Cobalt-Based Hydrogen-
Reduction Catalyst. Cobalt diglyoxime complexes have been
recently researched as potential hydrogen reduction catalysts for
artificial solar cells and other applications.72,73 Theoretical work
in this area has focused on computing ligand-binding energies
and reduction potentials associated with key steps in the catalytic
process.71,74

In particular, we examine the utility of EMFT in describing the
binding of acetonitrile to the catalyst Co0(dpgBF2)2 (dpg =
diphenylglyoxime); Figure 7a illustrates the bound complex, with
the acetonitrile ligand indicated in magenta. Dissociation of the
axial acetonitrile ligand is thought to accompany catalyst
reduction in some systems, playing an important part in the
energetics of different reaction pathways.74

Figure 7b presents EMFT (PBE:LDA, Def2-SVP:STO-3G,
DF:DF(s)) results for the embedding of high-level KS-DFT in
low-level KS-DFT. The convergence of error in the ligand
binding energy is plotted with respect to the size of subsystem A.
The atoms in subsystem A are included according to their
proximity to the Cometal center, with the requirement that these
atoms be contiguous via chemical bonds.
The binding energy for this reaction obtained using the high-

level KS-DFT is 20.3 kcal/mol, and it is clear from Figure 7b that

Figure 7. (a) Illustration of the binding reaction between acetonitrile (magenta) and Co catalyst complex (geometries from ref 71). For the choice of
subsystem Awith 21 atoms, the atoms associated with subsystem B are shown as translucent. (b) EMFT embedding errors, reported relative to the high-
level (PBE/Def2-SVP/DF) KS-DFT reaction energy of 20.3 kcal/mol; the low-level (LDA/STO-3G/DF(s)) KS-DFT reaction energy is 6.7 kcal/mol.

Figure 8. (a) Illustration of binding reaction between CO (magenta) and hememodel complex (geometries from ref 75). For the choice of subsystem A
with 3 atoms, the atoms associated with subsystem B are shown as translucent. (b) EMFT embedding errors, reported relative to the high-level (PBE/
Def2-SVP/DF) KS-DFT reaction energy of 4.5 kcal/mol; the low-level (LDA/STO-3G/DF(s)) KS-DFT reaction energy is −8.5 kcal/mol.
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ABSTRACT: We report and characterize ground-state and
excited-state potential energy profiles using a variety of electronic
structure methods along a loop lying on the branching plane
associated with a conical intersection (CI) of a reduced retinal
model, the penta-2,4-dieniminium cation (PSB3). Whereas the
performance of the equation-of-motion coupled-cluster, density
functional theory, and multireference methods had been tested
along the excited- and ground-state paths of PSB3 in our earlier
work, the ability of these methods to correctly describe the
potential energy surface shape along a CI branching plane has
not yet been investigated. This is the focus of the present contribution. We find, in agreement with earlier studies by others, that
standard time-dependent DFT (TDDFT) does not yield the correct two-dimensional (i.e., conical) crossing along the branching
plane but rather a one-dimensional (i.e., linear) crossing along the same plane. The same type of behavior is found for
SS-CASPT2(IPEA=0), SS-CASPT2(IPEA=0.25), spin-projected SF-TDDFT, EOM-SF-CCSD, and, finally, for the reference
MRCISD+Q method. In contrast, we found that MRCISD, CASSCF, MS-CASPT2(IPEA=0), MS-CASPT2(IPEA=0.25), XMCQDPT2,
QD-NEVPT2, non-spin-projected SF-TDDFT, and SI-SA-REKS yield the expected conical crossing. To assess the effect of the
different crossing topologies (i.e., linear or conical) on the PSB3 photoisomerization efficiency, we discuss the results of 100
semiclassical trajectories computed by CASSCF and SS-CASPT2(IPEA=0.25) for a PSB3 derivative. We show that for the same
initial conditions, the two methods yield similar dynamics leading to isomerization quantum yields that differ by only a few percent.

■ INTRODUCTION

A conical intersection (CI) is a specific molecular structure
(a point in the space of nuclear configurations) where the
potential energy surfaces corresponding to two electronic states
of the same multiplicity cross1,2 (here the “CI” label indicates
a point of “conical intersection” and should not be confused
with the configuration interaction method for which the CI
acronym is commonly used). CIs are ubiquitous in polyatomic
systems and play an important role in the photochemistry of
organic,3−8 inorganic,9 and biological10−12 systems. For example,
the primary event in vision, the photoisomerization of the retinal

protonated Schiff base (rPSB) chromophore of visual pigments
(see Scheme 1A), is mediated by a CI.13−17

At a CI between two electronic states of the same spin and
symmetry, the degeneracy can only be lifted by distorting the
molecule along one of two specific degrees of freedom (see
Figure 1A):
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applications, three of which correspond to ligand association
reactions in transition-metal complexes and three of which
correspond to defect formation in graphene sheets and carbon
nanotubes. We present results that illustrate the convergence of
errors in the EMFT with respect to high-level calculations
performed over the full system, illustrating the utility of the
method for realistic applications.
As before, in specifying the density-fitting basis sets, we use DF

to indicate the Ahlrichs density-fitting basis for calculations in
which PBE is the high-level exchange-correlation functional and
to indicate cc-pVDZ/JKFIT for calculations in which B3LYP is
the high-level exchange-correlation functional; DF(s) indicates
the subset of the corresponding fitting basis consisting of only the
s-type functions. Similarly, we use DF2 to indicate the Def2-SVP
density fitting basis,70 and DF2(s) denotes the subset that only
contains s-type functions.
For each calculation reported in this section, the Supporting

Information provides full details of the molecular geometries and
the specific list of atoms that are included in subsystem A. For all
plots that report errors as a function of the number of atoms in
subsystem A, the case in which subsystem A includes zero atoms
corresponds to treating the full system using the low-level KS-
DFT. All EMFT calculations in this section are performed using a
modified version of the Molpro software package, and all
ONIOM calculations are performed using Gaussian 09.

■ LIGAND ASSOCIATION IN TRANSITION-METAL
COMPLEXES

Acetonitrile Binding by a Cobalt-Based Hydrogen-
Reduction Catalyst. Cobalt diglyoxime complexes have been
recently researched as potential hydrogen reduction catalysts for
artificial solar cells and other applications.72,73 Theoretical work
in this area has focused on computing ligand-binding energies
and reduction potentials associated with key steps in the catalytic
process.71,74

In particular, we examine the utility of EMFT in describing the
binding of acetonitrile to the catalyst Co0(dpgBF2)2 (dpg =
diphenylglyoxime); Figure 7a illustrates the bound complex, with
the acetonitrile ligand indicated in magenta. Dissociation of the
axial acetonitrile ligand is thought to accompany catalyst
reduction in some systems, playing an important part in the
energetics of different reaction pathways.74

Figure 7b presents EMFT (PBE:LDA, Def2-SVP:STO-3G,
DF:DF(s)) results for the embedding of high-level KS-DFT in
low-level KS-DFT. The convergence of error in the ligand
binding energy is plotted with respect to the size of subsystem A.
The atoms in subsystem A are included according to their
proximity to the Cometal center, with the requirement that these
atoms be contiguous via chemical bonds.
The binding energy for this reaction obtained using the high-

level KS-DFT is 20.3 kcal/mol, and it is clear from Figure 7b that

Figure 7. (a) Illustration of the binding reaction between acetonitrile (magenta) and Co catalyst complex (geometries from ref 71). For the choice of
subsystem Awith 21 atoms, the atoms associated with subsystem B are shown as translucent. (b) EMFT embedding errors, reported relative to the high-
level (PBE/Def2-SVP/DF) KS-DFT reaction energy of 20.3 kcal/mol; the low-level (LDA/STO-3G/DF(s)) KS-DFT reaction energy is 6.7 kcal/mol.

Figure 8. (a) Illustration of binding reaction between CO (magenta) and hememodel complex (geometries from ref 75). For the choice of subsystem A
with 3 atoms, the atoms associated with subsystem B are shown as translucent. (b) EMFT embedding errors, reported relative to the high-level (PBE/
Def2-SVP/DF) KS-DFT reaction energy of 4.5 kcal/mol; the low-level (LDA/STO-3G/DF(s)) KS-DFT reaction energy is −8.5 kcal/mol.
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⊥Aix-Marseille Universite,́ CNRS, Institut de Chimie Radicalaire, Marseille, France
#Dipartimento di Scienze Chimiche e Farmaceutiche, Universita ̀ di Ferrara, via Fossato di Mortara 17, I-44121 Ferrara, Italy
∇Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
○Firefly Project, Moscow 117593, Russia
¶Department of Chemistry - Ångström, the Theoretical Chemistry Programme, POB 518, SE-751 20 Uppsala, Sweden

*S Supporting Information

ABSTRACT: We report and characterize ground-state and
excited-state potential energy profiles using a variety of electronic
structure methods along a loop lying on the branching plane
associated with a conical intersection (CI) of a reduced retinal
model, the penta-2,4-dieniminium cation (PSB3). Whereas the
performance of the equation-of-motion coupled-cluster, density
functional theory, and multireference methods had been tested
along the excited- and ground-state paths of PSB3 in our earlier
work, the ability of these methods to correctly describe the
potential energy surface shape along a CI branching plane has
not yet been investigated. This is the focus of the present contribution. We find, in agreement with earlier studies by others, that
standard time-dependent DFT (TDDFT) does not yield the correct two-dimensional (i.e., conical) crossing along the branching
plane but rather a one-dimensional (i.e., linear) crossing along the same plane. The same type of behavior is found for
SS-CASPT2(IPEA=0), SS-CASPT2(IPEA=0.25), spin-projected SF-TDDFT, EOM-SF-CCSD, and, finally, for the reference
MRCISD+Q method. In contrast, we found that MRCISD, CASSCF, MS-CASPT2(IPEA=0), MS-CASPT2(IPEA=0.25), XMCQDPT2,
QD-NEVPT2, non-spin-projected SF-TDDFT, and SI-SA-REKS yield the expected conical crossing. To assess the effect of the
different crossing topologies (i.e., linear or conical) on the PSB3 photoisomerization efficiency, we discuss the results of 100
semiclassical trajectories computed by CASSCF and SS-CASPT2(IPEA=0.25) for a PSB3 derivative. We show that for the same
initial conditions, the two methods yield similar dynamics leading to isomerization quantum yields that differ by only a few percent.

■ INTRODUCTION

A conical intersection (CI) is a specific molecular structure
(a point in the space of nuclear configurations) where the
potential energy surfaces corresponding to two electronic states
of the same multiplicity cross1,2 (here the “CI” label indicates
a point of “conical intersection” and should not be confused
with the configuration interaction method for which the CI
acronym is commonly used). CIs are ubiquitous in polyatomic
systems and play an important role in the photochemistry of
organic,3−8 inorganic,9 and biological10−12 systems. For example,
the primary event in vision, the photoisomerization of the retinal

protonated Schiff base (rPSB) chromophore of visual pigments
(see Scheme 1A), is mediated by a CI.13−17

At a CI between two electronic states of the same spin and
symmetry, the degeneracy can only be lifted by distorting the
molecule along one of two specific degrees of freedom (see
Figure 1A):
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applications, three of which correspond to ligand association
reactions in transition-metal complexes and three of which
correspond to defect formation in graphene sheets and carbon
nanotubes. We present results that illustrate the convergence of
errors in the EMFT with respect to high-level calculations
performed over the full system, illustrating the utility of the
method for realistic applications.
As before, in specifying the density-fitting basis sets, we use DF

to indicate the Ahlrichs density-fitting basis for calculations in
which PBE is the high-level exchange-correlation functional and
to indicate cc-pVDZ/JKFIT for calculations in which B3LYP is
the high-level exchange-correlation functional; DF(s) indicates
the subset of the corresponding fitting basis consisting of only the
s-type functions. Similarly, we use DF2 to indicate the Def2-SVP
density fitting basis,70 and DF2(s) denotes the subset that only
contains s-type functions.
For each calculation reported in this section, the Supporting

Information provides full details of the molecular geometries and
the specific list of atoms that are included in subsystem A. For all
plots that report errors as a function of the number of atoms in
subsystem A, the case in which subsystem A includes zero atoms
corresponds to treating the full system using the low-level KS-
DFT. All EMFT calculations in this section are performed using a
modified version of the Molpro software package, and all
ONIOM calculations are performed using Gaussian 09.

■ LIGAND ASSOCIATION IN TRANSITION-METAL
COMPLEXES

Acetonitrile Binding by a Cobalt-Based Hydrogen-
Reduction Catalyst. Cobalt diglyoxime complexes have been
recently researched as potential hydrogen reduction catalysts for
artificial solar cells and other applications.72,73 Theoretical work
in this area has focused on computing ligand-binding energies
and reduction potentials associated with key steps in the catalytic
process.71,74

In particular, we examine the utility of EMFT in describing the
binding of acetonitrile to the catalyst Co0(dpgBF2)2 (dpg =
diphenylglyoxime); Figure 7a illustrates the bound complex, with
the acetonitrile ligand indicated in magenta. Dissociation of the
axial acetonitrile ligand is thought to accompany catalyst
reduction in some systems, playing an important part in the
energetics of different reaction pathways.74

Figure 7b presents EMFT (PBE:LDA, Def2-SVP:STO-3G,
DF:DF(s)) results for the embedding of high-level KS-DFT in
low-level KS-DFT. The convergence of error in the ligand
binding energy is plotted with respect to the size of subsystem A.
The atoms in subsystem A are included according to their
proximity to the Cometal center, with the requirement that these
atoms be contiguous via chemical bonds.
The binding energy for this reaction obtained using the high-

level KS-DFT is 20.3 kcal/mol, and it is clear from Figure 7b that

Figure 7. (a) Illustration of the binding reaction between acetonitrile (magenta) and Co catalyst complex (geometries from ref 71). For the choice of
subsystem Awith 21 atoms, the atoms associated with subsystem B are shown as translucent. (b) EMFT embedding errors, reported relative to the high-
level (PBE/Def2-SVP/DF) KS-DFT reaction energy of 20.3 kcal/mol; the low-level (LDA/STO-3G/DF(s)) KS-DFT reaction energy is 6.7 kcal/mol.

Figure 8. (a) Illustration of binding reaction between CO (magenta) and hememodel complex (geometries from ref 75). For the choice of subsystem A
with 3 atoms, the atoms associated with subsystem B are shown as translucent. (b) EMFT embedding errors, reported relative to the high-level (PBE/
Def2-SVP/DF) KS-DFT reaction energy of 4.5 kcal/mol; the low-level (LDA/STO-3G/DF(s)) KS-DFT reaction energy is −8.5 kcal/mol.
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ABSTRACT: We report and characterize ground-state and
excited-state potential energy profiles using a variety of electronic
structure methods along a loop lying on the branching plane
associated with a conical intersection (CI) of a reduced retinal
model, the penta-2,4-dieniminium cation (PSB3). Whereas the
performance of the equation-of-motion coupled-cluster, density
functional theory, and multireference methods had been tested
along the excited- and ground-state paths of PSB3 in our earlier
work, the ability of these methods to correctly describe the
potential energy surface shape along a CI branching plane has
not yet been investigated. This is the focus of the present contribution. We find, in agreement with earlier studies by others, that
standard time-dependent DFT (TDDFT) does not yield the correct two-dimensional (i.e., conical) crossing along the branching
plane but rather a one-dimensional (i.e., linear) crossing along the same plane. The same type of behavior is found for
SS-CASPT2(IPEA=0), SS-CASPT2(IPEA=0.25), spin-projected SF-TDDFT, EOM-SF-CCSD, and, finally, for the reference
MRCISD+Q method. In contrast, we found that MRCISD, CASSCF, MS-CASPT2(IPEA=0), MS-CASPT2(IPEA=0.25), XMCQDPT2,
QD-NEVPT2, non-spin-projected SF-TDDFT, and SI-SA-REKS yield the expected conical crossing. To assess the effect of the
different crossing topologies (i.e., linear or conical) on the PSB3 photoisomerization efficiency, we discuss the results of 100
semiclassical trajectories computed by CASSCF and SS-CASPT2(IPEA=0.25) for a PSB3 derivative. We show that for the same
initial conditions, the two methods yield similar dynamics leading to isomerization quantum yields that differ by only a few percent.

■ INTRODUCTION

A conical intersection (CI) is a specific molecular structure
(a point in the space of nuclear configurations) where the
potential energy surfaces corresponding to two electronic states
of the same multiplicity cross1,2 (here the “CI” label indicates
a point of “conical intersection” and should not be confused
with the configuration interaction method for which the CI
acronym is commonly used). CIs are ubiquitous in polyatomic
systems and play an important role in the photochemistry of
organic,3−8 inorganic,9 and biological10−12 systems. For example,
the primary event in vision, the photoisomerization of the retinal

protonated Schiff base (rPSB) chromophore of visual pigments
(see Scheme 1A), is mediated by a CI.13−17

At a CI between two electronic states of the same spin and
symmetry, the degeneracy can only be lifted by distorting the
molecule along one of two specific degrees of freedom (see
Figure 1A):
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Strategy 1: DFT-based quantum embedding approach
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Frozen density embedding theory 

n0(r) = ?
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Frozen density embedding theory 

nA(r) Density giving an  
approximate description  
of a molecular fragment 

Fragment A

Wesolowski, T. A.; Warshel, A., J. Phys. Chem. 1993, 97, 8050−8053.
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Frozen density embedding theory 

nA(r)

∫ dr nA(r) = NA < N

Total number of  
electrons in the molecule

Density giving an  
approximate description  
of a molecular fragment 

Fragment A

Wesolowski, T. A.; Warshel, A., J. Phys. Chem. 1993, 97, 8050−8053.
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Frozen density embedding theory 

nA(r) Density giving an  
approximate description  
of a molecular fragment 

Fixed in the theory 
(hence the name “frozen density”)  

Fragment A

Wesolowski, T. A.; Warshel, A., J. Phys. Chem. 1993, 97, 8050−8053.
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Frozen density embedding theory 

nB(r) = n0(r)−nA(r) = ?

nA(r) known

Fragment B Fragment A

Wesolowski, T. A.; Warshel, A., J. Phys. Chem. 1993, 97, 8050−8053.
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Frozen density embedding theory 

nB(r) = n0(r)−nA(r) ≡ nΨB
= ?

nA(r) known

Fragment B Fragment A

Wesolowski, T. A.; Warshel, A., J. Phys. Chem. 1993, 97, 8050−8053.
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Frozen density embedding theory 

ΨB = ? nA(r) knownunknown

Fragment B

Wesolowski, T. A.; Warshel, A., J. Phys. Chem. 1993, 97, 8050−8053.
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Frozen density embedding theory 

ΨB = ? nA(r) known

Fragment B

Fragment B is embedded into the density-functional fragment A

unknown

Wesolowski, T. A.; Warshel, A., J. Phys. Chem. 1993, 97, 8050−8053.
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Variational principle for fragment B

E0 = min
n {F[n] + ∫ dr vext(r)n(r)}
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Variational principle for fragment B

E0 = min
n {F[n] + ∫ dr vext(r)n(r)}

= min
nB→N−NA

{F[nB+nA] + ∫ dr vext(r)nB(r)} + ∫ dr vext(r) nA(r)

Frozen (i.e., fixed)
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Variational principle for fragment B

E0 = min
n {F[n] + ∫ dr vext(r)n(r)}

= min
nB→N−NA

{F[nB+nA] + ∫ dr vext(r)nB(r)} + ∫ dr vext(r) nA(r)

= min
nB→N−NA

{F[nB] + ∫ dr vext(r)nB(r) + ΔF[nB, nA]} + ∫ dr vext(r) nA(r)+F[nA]

F[nB+nA] = F[nB] + F[nA] + ΔF[nB, nA] Formal decomposition
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Variational principle for fragment B

E0 = min
n {F[n] + ∫ dr vext(r)n(r)}

= min
nB→N−NA

{F[nB+nA] + ∫ dr vext(r)nB(r)} + ∫ dr vext(r) nA(r)

= min
nB→N−NA

{F[nB] + ∫ dr vext(r)nB(r) + ΔF[nB, nA]} + ∫ dr vext(r) nA(r)+F[nA]

F[nB+nA] = F[nB] + F[nA] + ΔF[nB, nA]

Bifunctional  
describing the coupling 

between the two fragments 
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Variational principle for fragment B

E0 = min
n {F[n] + ∫ dr vext(r)n(r)}

= min
nB→N−NA

{F[nB+nA] + ∫ dr vext(r)nB(r)} + ∫ dr vext(r) nA(r)

= min
nB→N−NA

{F[nB] + ∫ dr vext(r)nB(r) + ΔF[nB, nA]} + ∫ dr vext(r) nA(r)+F[nA]

min
nB→N−NA

min
Ψ→nB {⟨Ψ | ̂T + Ŵee |Ψ⟩}+∫ dr vext(r)nB(r) + ΔF[nB, nA]
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Variational principle for fragment B

E0 = min
n {F[n] + ∫ dr vext(r)n(r)}

= min
nB→N−NA

{F[nB+nA] + ∫ dr vext(r)nB(r)} + ∫ dr vext(r) nA(r)

= min
nB→N−NA

{F[nB] + ∫ dr vext(r)nB(r) + ΔF[nB, nA]} + ∫ dr vext(r) nA(r)+F[nA]

min
nB→N−NA

min
Ψ→nB {⟨Ψ | ̂T + Ŵee |Ψ⟩}+∫ dr vext(r)nB(r) + ΔF[nB, nA]

= min
nB→N−NA

min
Ψ→nB {⟨Ψ | ̂T + Ŵee |Ψ⟩ + ∫ dr vext(r)nΨ(r) + ΔF[nΨ, nA]}
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Variational principle for fragment B

E0 − ∫ dr vext(r) nA(r)−F[nA] = min
Ψ→N−NA

{⟨Ψ | Ĥ |Ψ⟩ + ΔF[nΨ, nA]}
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Variational principle for fragment B

E0 − ∫ dr vext(r) nA(r)−F[nA] = min
Ψ→N−NA

{⟨Ψ | Ĥ |Ψ⟩ + ΔF[nΨ, nA]}

Analogous to solving  
the Schrödinger equation for fragment B 

 in the presence of fragment A
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Variational principle for fragment B

E0 − ∫ dr vext(r) nA(r)−F[nA] = min
Ψ→N−NA

{⟨Ψ | Ĥ |Ψ⟩ + ΔF[nΨ, nA]}

ΔF[nB, nA] = F[nB+nA] − F[nB] − F[nA]

Embedding  
density functional
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Variational principle for fragment B

E0 − ∫ dr vext(r) nA(r)−F[nA] = min
Ψ→N−NA

{⟨Ψ | Ĥ |Ψ⟩ + ΔF[nΨ, nA]}

ΔF[nB, nA] = F[nB+nA] − F[nB] − F[nA]

= EHxc[nB+nA] − EHxc[nB] − EHxc[nA]

+Ts[nB+nA] − Ts[nB] − Ts[nA]

KS decompositions F[n] = Ts[n] + EHxc[n]
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Variational principle for fragment B

E0 − ∫ dr vext(r) nA(r)−F[nA] = min
Ψ→N−NA

{⟨Ψ | Ĥ |Ψ⟩ + ΔF[nΨ, nA]}

ΔF[nB, nA] = F[nB+nA] − F[nB] − F[nA]

= EHxc[nB+nA] − EHxc[nB] − EHxc[nA]

+Ts[nB+nA] − Ts[nB] − Ts[nA]

Evaluated from  
xc density-functional 

approximations (DFAs)
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Variational principle for fragment B

E0 − ∫ dr vext(r) nA(r)−F[nA] = min
Ψ→N−NA

{⟨Ψ | Ĥ |Ψ⟩ + ΔF[nΨ, nA]}

ΔF[nB, nA] = F[nB+nA] − F[nB] − F[nA]

= EHxc[nB+nA] − EHxc[nB] − EHxc[nA]

+Ts[nB+nA] − Ts[nB] − Ts[nA] Described with KS orbitals  
in KS-DFT 
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Variational principle for fragment B

E0 − ∫ dr vext(r) nA(r)−F[nA] = min
Ψ→N−NA

{⟨Ψ | Ĥ |Ψ⟩ + ΔF[nΨ, nA]}

ΔF[nB, nA] = F[nB+nA] − F[nB] − F[nA]

= EHxc[nB+nA] − EHxc[nB] − EHxc[nA]

+Ts[nB+nA] − Ts[nB] − Ts[nA] Described with KS orbitals  
in KS-DFT 

Implicit functional  
of the density
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Variational principle for fragment B

E0 − ∫ dr vext(r) nA(r)−F[nA] = min
Ψ→N−NA

{⟨Ψ | Ĥ |Ψ⟩ + ΔF[nΨ, nA]}

ΔF[nB, nA] = F[nB+nA] − F[nB] − F[nA]

= EHxc[nB+nA] − EHxc[nB] − EHxc[nA]

+Ts[nB+nA] − Ts[nB] − Ts[nA] More difficult  
to approximate with  
density functionals
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Variational principle for fragment B

E0 − ∫ dr vext(r) nA(r)−F[nA] = min
Ψ→N−NA

{⟨Ψ | Ĥ |Ψ⟩ + ΔF[nΨ, nA]}

ΔF[nB, nA] = F[nB+nA] − F[nB] − F[nA]

= EHxc[nB+nA] − EHxc[nB] − EHxc[nA]

+Ts[nB+nA] − Ts[nB] − Ts[nA] More difficult  
to approximate with  
density functionals

challenging task!
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Strategy 2: Quantum embedding in the � -electron spaceN
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We need to write the Hamiltonian in second quantization for that purpose

https://www.youtube.com/watch?v=FQBrEI57pDA

Strategy 2: Quantum embedding in the � -electron spaceN



Second-quantized encoding of many-electron wave functions

!34

Hydrogen molecule in the dissociation limit:

2Ψ0(r1, r2) = φ1σg
(r1)φ1σg

(r2) − φ1σu
(r1)φ1σu

(r2)



Second-quantized encoding of many-electron wave functions
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Hydrogen molecule in the dissociation limit:

2Ψ0(r1, r2) = φ1σg
(r1)φ1σg

(r2) − φ1σu
(r1)φ1σu

(r2)

2 |Ψ0⟩ = −φ1σg

φ1σu| ⟩ φ1σg

φ1σu| ⟩
⇔

Dirac notation



Second-quantized encoding of many-electron wave functions
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|vac⟩

φ1σg

φ1σu

Zero-electron (vacuum) quantum state
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|φ1⟩

φ1σg

φ1σu

φ1σg

φ1σu φ1σu

φ1σg

φ1σu

φ1σg

One-electron quantum states

|φ2⟩ |φ3⟩ |φ4⟩



!38

|φ1⟩

φ1σg

φ1σu

φ1σg

φ1σu φ1σu

φ1σg

φ1σu

φ1σg

One-electron quantum states

|φ2⟩ |φ3⟩ |φ4⟩

Spin-orbitals
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One-electron quantum states

|φ1⟩

φ1σg

φ1σu

φ1σg

φ1σu| ⟩̂a†
1≡

Second quantization  
notation
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One-electron quantum states

|φ1⟩

φ1σg

φ1σu

φ1σg

φ1σu| ⟩̂a†
1≡

Quantum operator that creates  
an electron and put it in the spin-orbital �φ1
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One-electron quantum states

|φ1⟩

φ1σg

φ1σu

φ1σg

φ1σu| ⟩̂a†
1≡

Creation operator
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One-electron quantum states

|φ1⟩ ≡ ̂a†
1 |vac⟩

Second-quantized  
notation

|φ1⟩

φ1σg

φ1σu

φ1σg

φ1σu| ⟩̂a†
1
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|φ1⟩ ≡ ̂a†
1 |vac⟩

φ1σg

φ1σu

φ1σg

φ1σu φ1σu

φ1σg

φ1σu

φ1σg

One-electron quantum states

|φ2⟩ ≡ ̂a†
2 |vac⟩ |φ3⟩ ≡ ̂a†

3 |vac⟩ |φ4⟩ ≡ ̂a†
4 |vac⟩
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Two-electron quantum states

φ1σg

φ1σu

|φ1⟩

φ1σg

φ1σu

φ1σg

φ1σu φ1σu

φ1σg

φ1σu

φ1σg

|φ2⟩ |φ3⟩ |φ4⟩

≡ | ⟩̂a†
1 φ1σg

φ1σu

= ̂a†
1 |φ2⟩

One-electron quantum states
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Two-electron quantum states

φ1σg

φ1σu

|φ1⟩

φ1σg

φ1σu

φ1σg

φ1σu φ1σu

φ1σg

φ1σu

φ1σg

|φ2⟩ |φ3⟩ |φ4⟩

≡ ̂a†
1 ̂a†

2 |vac⟩

One-electron quantum states
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Two-electron quantum states

φ1σg

φ1σu

|φ1⟩

φ1σg

φ1σu

φ1σg

φ1σu φ1σu

φ1σg

φ1σu

φ1σg

|φ2⟩ |φ3⟩ |φ4⟩

≡ ̂a†
1 ̂a†

2 |vac⟩
φ1σg

φ1σu

≡ ̂a†
3 ̂a†

4 |vac⟩

One-electron quantum states
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Two-electron quantum states

φ1σg

φ1σu

≡ ̂a†
1 ̂a†

2 |vac⟩
φ1σg

φ1σu

≡ ̂a†
3 ̂a†

4 |vac⟩
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Two-electron quantum states

φ1σg

φ1σu

≡ ̂a†
1 ̂a†

2 |vac⟩
φ1σg

φ1σu

≡ ̂a†
3 ̂a†

4 |vac⟩

φ1σg

φ1σu

φ1σg

φ1σu

φ1σg

φ1σu

≡

| ⟩̂a2 ̂a1 φ1σg

φ1σu

= |vac⟩
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| ⟩̂a2 ̂a1 φ1σg

φ1σu

Quantum operator that removes 
the electron occupying the spin-orbital �φ1
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| ⟩̂a2 ̂a1 φ1σg

φ1σu

Quantum operator that removes 
the electron occupying the spin-orbital �φ2
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| ⟩̂a2 ̂a1 φ1σg

φ1σu

Annihilation operators 
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Two-electron quantum states

φ1σg

φ1σu

≡ ̂a†
1 ̂a†

2 |vac⟩
φ1σg

φ1σu

≡ ̂a†
3 ̂a†

4 |vac⟩

φ1σg

φ1σu

φ1σg

φ1σu

φ1σg

φ1σu

̂a†
3 ̂a†

4 ̂a2 ̂a1| ⟩φ1σg

φ1σu

≡
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̂a†
3 ̂a†

4 ̂a2 ̂a1| ⟩φ1σg

φ1σu

Double excitation operator

φ1σg

φ1σu| ⟩ ≡
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Step 1: Choose a one-electron basis of molecular spin orbitals �{φP}P=1,2,3,…,ℳ
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Step 1: Choose a one-electron basis of molecular spin orbitals �{φP}P=1,2,3,…,ℳ

Usually Hartree-Fock (HF) orbitals
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Step 1: Choose a one-electron basis of molecular spin orbitals �{φP}P=1,2,3,…,ℳ

Usually Hartree-Fock (HF) orbitals

{χν(x)}ν=A,B,…
Atomic spin-orbitals centered  

on the nuclei �  A, B, …
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Step 1: Choose a one-electron basis of molecular spin orbitals �{φP}P=1,2,3,…,ℳ

Usually Hartree-Fock (HF) spin-orbitals

{χν(x)}ν=A,B,…
Atomic spin-orbitals centered  

on the nuclei �  A, B, …

φP(x) =
nuclei

∑
ν

CνP χν(x)
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Step 1: Choose a one-electron basis of molecular spin orbitals �{φP}P=1,2,3,…,ℳ

φP(x) =
nuclei

∑
ν

CνP χν(x)

Optimised through  
energy minimisation



Prototypical ring of �  hydrogen atoms L = 16
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H

H

HH

H

H

H

H

H
HH

H

H

H

H
H



Prototypical ring of �  hydrogen atoms L = 16
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H

H

HH

H

H

H

H

H
HH

H

H

H

H
H

χ0(r)

�  orbital 1s



Prototypical ring of �  hydrogen atoms L = 16
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H

H

HH

H

H

H

H

H
HH

H

H

H

H
H

χ0(r)

�  orbital 1s

χ1(r)



Prototypical ring of �  hydrogen atoms L = 16
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H

H

HH

H

H

H

H

H
HH

H

H

H

H
H

χ0(r)

�  orbital 1s

χ1(r)
χ2(r)



Prototypical ring of �  hydrogen atoms L = 16
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H

H

HH

H

H

H

H

H
HH

H

H

H

H
H

χ0(r)
χ1(r)

χ2(r)
χ15(r)

χ14(r)

χν=8(r)



Prototypical ring of �  hydrogen atoms L = 16
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H

H

HH

H
H

H

H

H
HH

H

H

H

H
H

χ0(r)
χ1(r)

χ2(r)
χ15(r)

χ14(r)

χν=8(r)

φP(x) =
15

∑
ν=0

CνP χν(x)

Molecular spin-orbitals



Prototypical ring of �  hydrogen atoms L = 16
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H

H

HH

H
H

H

H

H
HH

H

H

H

H
H

χ0(r)
χ1(r)

χ2(r)
χ15(r)

χ14(r)

χν=8(r)

φP(x) = ∑
ν

CνP χν(x)

Molecular spin-orbitals

Delocalised over the ring
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Step 1: Choose a one-electron basis of molecular spin orbitals �{φP}P=1,2,3,…,ℳ

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂a†
P ̂a†

Q ̂aS ̂aR

Step 2: Implement the Hamiltonian in second quantization in that basis 

See the video�  for further explanations*

� https://www.youtube.com/watch?v=FQBrEI57pDA*
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂a†
P ̂a†

Q ̂aS ̂aR

∫ dx φP(x)(−
1
2

∇2
r + vext(r)) φQ(x) One-electron integrals

Step 1: Choose a one-electron basis of molecular spin orbitals �{φP}P=1,2,3,…,ℳ

Step 2: Implement the Hamiltonian in second quantization in that basis 
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂a†
P ̂a†

Q ̂aS ̂aR

Two-electron integrals ∫ dx1 ∫ dx2 φP(x1)φQ(x2)
1

|r1 − r2 |
φR(x1)φS(x2)

Step 1: Choose a one-electron basis of molecular spin orbitals �{φP}P=1,2,3,…,ℳ

Step 2: Implement the Hamiltonian in second quantization in that basis 
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Step 3: Determine variationally the ground-state wave function expansion  
             in the corresponding � -electron basis N

|Ψ0⟩ ≡ ∑
P1<P2<…<PN

CP1P2…PN
̂a†
P1

̂a†
P2

… ̂a†
PN−1

̂a†
PN

|vac⟩

Step 1: Choose a one-electron basis of molecular spin orbitals �{φP}P=1,2,3,…,ℳ

Step 2: Implement the Hamiltonian in second quantization in that basis 
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

|Ψ0⟩ ≡ ∑
P1<P2<…<PN

CP1P2…PN
̂a†
P1

̂a†
P2

… ̂a†
PN−1

̂a†
PN

|vac⟩

Step 3: Determine variationally the ground-state wave function expansion  
             in the corresponding � -electron basis N

Step 1: Choose a one-electron basis of molecular spin orbitals �{φP}P=1,2,3,…,ℳ

Step 2: Implement the Hamiltonian in second quantization in that basis 

Distribute �  electrons in �  spin-orbitals!N ℳ
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Step 3: Determine variationally the ground-state wave function expansion  
             in the corresponding � -electron basis N

|Ψ0⟩ ≡ ∑
P1<P2<…<PN

CP1P2…PN
̂a†
P1

̂a†
P2

… ̂a†
PN−1

̂a†
PN

|vac⟩

Step 1: Choose a one-electron basis of molecular spin orbitals �{φP}P=1,2,3,…,ℳ

Step 2: Implement the Hamiltonian in second quantization in that basis 

Slater determinant
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Step 3: Determine variationally the ground-state wave function expansion  
             in the corresponding � -electron basis N

Step 1: Choose a one-electron basis of molecular spin orbitals �{φP}P=1,2,3,…,ℳ

Step 2: Implement the Hamiltonian in second quantization in that basis 

|Ψ0⟩ ≡ ∑
P1<P2<…<PN

CP1P2…PN
̂a†
P1

̂a†
P2

… ̂a†
PN−1

̂a†
PN

|vac⟩

Configuration Interaction (CI) coefficient
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Configuration interaction (CI) method

|Ψ0⟩ ≡ ∑
P1<P2<…<PN

CP1P2…PN
̂a†
P1

̂a†
P2

… ̂a†
PN−1

̂a†
PN

|vac⟩

CI coefficient

Slater determinant
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Configuration interaction (CI) method

|Ψ0⟩ ≡ ∑
P1<P2<…<PN

CP1P2…PN
̂a†
P1

̂a†
P2

… ̂a†
PN−1

̂a†
PN

|vac⟩

CI coefficient

≡
determinants

∑
ℐ

Cℐ |detℐ⟩
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Configuration interaction (CI) method

|Ψ0⟩ ≡ ∑
P1<P2<…<PN

CP1P2…PN
̂a†
P1

̂a†
P2

… ̂a†
PN−1

̂a†
PN

|vac⟩

≡
determinants

∑
ℐ

Cℐ |detℐ⟩

Known
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Configuration interaction (CI) method

|Ψ0⟩ ≡ ∑
P1<P2<…<PN

CP1P2…PN
̂a†
P1

̂a†
P2

… ̂a†
PN−1

̂a†
PN

|vac⟩

Orthonormal basis  
of � -electron statesN

⟨detℐ |detℒ⟩ = δℐℒ

≡
determinants

∑
ℐ

Cℐ |detℐ⟩
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Configuration interaction (CI) method

|Ψ0⟩ ≡ ∑
P1<P2<…<PN

CP1P2…PN
̂a†
P1

̂a†
P2

… ̂a†
PN−1

̂a†
PN

|vac⟩

≡
determinants

∑
ℐ

Cℐ |detℐ⟩

Unknown
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Configuration interaction (CI) method

Ψ({Cℐ}) =
determinants

∑
ℐ

Cℐ |detℐ⟩

ECI = min{Cℐ}
⟨Ψ({Cℐ}) | Ĥ |Ψ({Cℐ})⟩

⟨Ψ({Cℐ}) |Ψ({Cℐ})⟩
CI energy

CI wave function
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Configuration interaction (CI) method

ECI = min{Cℐ}
⟨Ψ({Cℐ}) | Ĥ |Ψ({Cℐ})⟩

⟨Ψ({Cℐ}) |Ψ({Cℐ})⟩
CI energy

The minimising CI coefficients are obtained by 

diagonalising the (so-called CI) Hamiltonian matrix 

H ≡ {Hℒℐ = ⟨detℒ | Ĥ |detℐ⟩}
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∂
∂Cℒ

⟨Ψ({Cℐ}) | Ĥ |Ψ({Cℐ})⟩
⟨Ψ({Cℐ}) |Ψ({Cℐ})⟩

= 0

Proof:

ECI = min{Cℐ}
⟨Ψ({Cℐ}) | Ĥ |Ψ({Cℐ})⟩

⟨Ψ({Cℐ}) |Ψ({Cℐ})⟩
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∂
∂Cℒ

⟨Ψ({Cℐ}) | Ĥ |Ψ({Cℐ})⟩
⟨Ψ({Cℐ}) |Ψ({Cℐ})⟩

= 0

Proof:

=
∂

∂Cℒ [⟨Ψ({Cℐ}) |Ψ({Cℐ})⟩ ×
⟨Ψ({Cℐ}) | Ĥ |Ψ({Cℐ})⟩

⟨Ψ({Cℐ}) |Ψ({Cℐ})⟩ ]

∂
∂Cℒ

[⟨Ψ({Cℐ}) | Ĥ |Ψ({Cℐ})⟩]

= ECI ×
∂

∂Cℒ
[⟨Ψ({Cℐ}) |Ψ({Cℐ})⟩]
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Proof:

∂
∂Cℒ

[⟨Ψ({Cℐ}) | Ĥ |Ψ({Cℐ})⟩] = ECI
∂

∂Cℒ
[⟨Ψ({Cℐ}) |Ψ({Cℐ})⟩]
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Proof:

∂
∂Cℒ

[⟨Ψ({Cℐ}) | Ĥ |Ψ({Cℐ})⟩] = ECI
∂

∂Cℒ
[⟨Ψ({Cℐ}) |Ψ({Cℐ})⟩]

= 2⟨
∂Ψ({Cℐ})

∂Cℒ
| Ĥ |Ψ({Cℐ})⟩

= 2⟨detℒ | Ĥ |Ψ({Cℐ})⟩
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Proof:

2⟨detℒ | Ĥ |Ψ({Cℐ})⟩ = ECI
∂

∂Cℒ
[⟨Ψ({Cℐ}) |Ψ({Cℐ})⟩]

2ECI × ⟨detℒ |Ψ({Cℐ})⟩
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⟨detℒ | Ĥ |Ψ({Cℐ})⟩ = ECI × ⟨detℒ |Ψ({Cℐ})⟩

∑
ℐ

Cℐ⟨detℒ | Ĥ |detℐ⟩

Proof:

Ψ({Cℐ}) =
determinants

∑
ℐ

Cℐ |detℐ⟩

= ∑
ℐ

Hℒℐ Cℐ
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∑
ℐ

Hℒℐ Cℐ = ECI × ⟨detℒ |Ψ({Cℐ})⟩

Proof:

Ψ({Cℐ}) =
determinants

∑
ℐ

Cℐ |detℐ⟩

Cℒ
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∑
ℐ

Hℒℐ Cℐ = ECI Cℒ

Proof:

[HC]ℒ

C =

C1
C2
⋮

Cℐ
⋮
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[HC]ℒ
= ECI Cℒ

Proof:

C =

C1
C2
⋮

Cℐ
⋮
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[HC]ℒ
= ECI Cℒ

Proof:

C =

C1
C2
⋮

Cℐ
⋮

⇔
HC = ECI C
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How many determinants in total?

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ
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How many determinants in total?

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

or
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How many determinants in total?

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

or
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How many determinants in total?

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

or
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How many determinants in total?

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

or Etc…
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How many determinants in total?

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

We have �  spin-orbitals  
available for �  electrons 

 

ℳ
N
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How many determinants in total?

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

We have �  spin-orbitals  
available for �  electrons 

 

ℳ
N

Ndet. = (ℳ
N ) =

ℳ!
N!(ℳ−N)!
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H

HH

H
H

H

H

H
HH

H

H

H

H
H

H

How many determinants in total?

ℳ = 2 × N

Spin
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How many determinants in total?

Ndet. =
ℳ!

N!(ℳ−N)!
=

(2N)!
(N!)2

ℳ = 2 × N
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How many determinants in total?

Ndet. =
ℳ!

N!(ℳ−N)!
=

(2N)!
(N!)2

ℳ = 2 × N

≈
22N

πN
=

e2N ln 2

πN

N! ≈ 2πN ( N
e )

N
Stirling formula for large �  valuesN
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How many determinants in total?

Ndet. ≈
e2N ln 2

πN
“Exponential wall”
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How many determinants in total?

Ndet. ≈
e2N ln 2

πN

N=50≈ 1029
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How many determinants in total?

Ndet. ≈
e2N ln 2

πN

N=400≈ 1.88 × 10239
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φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

Complete active space CI (CAS-CI) method
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φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

Complete active space CI (CAS-CI) method



!105

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

or

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

Complete active space CI (CAS-CI) method
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φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

or

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

Complete active space CI (CAS-CI) method
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Complete active space CI (CAS-CI) method

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

or

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ
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φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

or Etc…

Complete active space CI (CAS-CI) method
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φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

Inactive core orbitals

Active orbitals

Complete active space CI (CAS-CI) method
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Projection operators in the � -electron spaceN

|Ψ⟩ =
determinants

∑
ℐ

Cℐ |detℐ⟩
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Projection operators in the � -electron spaceN

|Ψ⟩ =
determinants

∑
ℐ

Cℐ |detℐ⟩

⟨detℒ |Ψ⟩ = Cℒ
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Projection operators in the � -electron spaceN

|Ψ⟩ =
determinants

∑
ℐ

Cℐ |detℐ⟩

⟨detℒ |Ψ⟩ = Cℒ

determinants

∑
ℒ

|detℒ⟩⟨detℒ |Ψ⟩ = |Ψ⟩
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Projection operators in the � -electron spaceN

determinants

∑
ℒ

|detℒ⟩⟨detℒ |Ψ⟩ = |Ψ⟩

determinants

∑
ℒ

|detℒ⟩⟨detℒ | ≡ 1̂ Identity operator �  (1̂ |Ψ⟩ = |Ψ⟩)
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Projection operators in the � -electron spaceN

determinants

∑
ℒ

|detℒ⟩⟨detℒ | ≡ 1̂ “resolution of the identity"
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Projection operators in the � -electron spaceN

determinants

∑
ℒ

|detℒ⟩⟨detℒ | ≡ 1̂ “resolution of the identity"

determinants

∑
ℒ∈CAS

|detℒ⟩⟨detℒ | +
determinants

∑
ℒ∉CAS

|detℒ⟩⟨detℒ | ≡ 1̂
⇔
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Projection operators in the � -electron spaceN

determinants

∑
ℒ∈CAS

|detℒ⟩⟨detℒ | +
determinants

∑
ℒ∉CAS

|detℒ⟩⟨detℒ | ≡ 1̂

̂P
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Complete active space (CAS) and effective Hamiltonian

φ2
φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

̂P =
determinants

∑
ℒ∈CAS

|detℒ⟩⟨detℒ |
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Projection operators in the � -electron spaceN

determinants

∑
ℒ∈CAS

|detℒ⟩⟨detℒ | +
determinants

∑
ℒ∉CAS

|detℒ⟩⟨detℒ | ≡ 1̂

̂P Q̂
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Effective Hamiltonian

Ĥ |Ψ⟩ = E |Ψ⟩
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Effective Hamiltonian

Ĥ |Ψ⟩ = E |Ψ⟩

|Ψ⟩ = ( ̂P+Q̂) |Ψ⟩ = ̂P |Ψ⟩ + Q̂ |Ψ⟩
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Effective Hamiltonian

Ĥ |Ψ⟩ = E |Ψ⟩

|Ψ⟩ = ( ̂P+Q̂) |Ψ⟩ = ̂P |Ψ⟩ + Q̂ |Ψ⟩

To-be-embedded part of the � -electron wave function  N
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Effective Hamiltonian

Ĥ |Ψ⟩ = E |Ψ⟩

|Ψ⟩ = ( ̂P+Q̂) |Ψ⟩ = ̂P |Ψ⟩ + Q̂ |Ψ⟩

Can be determined  
from �   ̂P |Ψ⟩
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Proof:

Ĥ |Ψ⟩ = E |Ψ⟩

Q̂Ĥ |Ψ⟩ = EQ̂ |Ψ⟩

Q̂Ĥ ̂P |Ψ⟩ + Q̂ĤQ̂ |Ψ⟩ = EQ̂ |Ψ⟩

Q̂Ĥ ̂P |Ψ⟩ = (EQ̂ − Q̂ĤQ̂) Q̂ |Ψ⟩

Q̂Ĥ ( ̂P+Q̂) |Ψ⟩ = EQ̂ |Ψ⟩

Q̂ |Ψ⟩ = [EQ̂ − Q̂ĤQ̂]
−1

Q̂Ĥ ̂P |Ψ⟩

Q̂2 = Q̂



!124

Effective Hamiltonian

Ĥ |Ψ⟩ = E |Ψ⟩

̂PĤ |Ψ⟩ = E ̂P |Ψ⟩

̂PĤ ( ̂P+Q̂) |Ψ⟩ = E ̂P |Ψ⟩

̂PĤ ̂P |Ψ⟩+ ̂PĤQ̂ |Ψ⟩ = E ̂P |Ψ⟩

̂PĤ ̂P |Ψ⟩+ ̂PĤ [EQ̂ − Q̂ĤQ̂]
−1

Q̂Ĥ ̂P |Ψ⟩ = E ̂P |Ψ⟩

Ĥeff(E) ̂P |Ψ⟩ = E ̂P |Ψ⟩
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Effective Hamiltonian

Ĥeff(E) ̂P |Ψ⟩ = E ̂P |Ψ⟩

Ĥeff(E) = ̂PĤ ̂P + ̂PĤ [EQ̂ − Q̂ĤQ̂]
−1

Q̂Ĥ ̂P



!126

Effective Hamiltonian

Ĥeff(E) ̂P |Ψ⟩ = E ̂P |Ψ⟩

Ĥeff(E) = ̂PĤ ̂P + ̂PĤ [EQ̂ − Q̂ĤQ̂]
−1

Q̂Ĥ ̂P

Embedded wave function
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Effective Hamiltonian

Ĥeff(E) ̂P |Ψ⟩ = E ̂P |Ψ⟩

“Embedding Hamiltonian”

Ĥeff(E) = ̂PĤ ̂P + ̂PĤ [EQ̂ − Q̂ĤQ̂]
−1

Q̂Ĥ ̂P
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Effective Hamiltonian

Ĥeff(E) ̂P |Ψ⟩ = E ̂P |Ψ⟩

Energy (i.e frequency- or time-) dependent 

Ĥeff(E) = ̂PĤ ̂P + ̂PĤ [EQ̂ − Q̂ĤQ̂]
−1

Q̂Ĥ ̂P
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Strategy 3: Quantum embedding of localized orbitals
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In this third approach we will proceed with a fragmentation of  
the electronic Hamiltonian (written in a localised orbital basis)  

and the design of embedding orbitals

Strategy 3: Quantum embedding of localized orbitals



Prototypical ring of �  hydrogen atoms L = 16

!131

H

H

HH

H
H

H

H

H
HH

H

H

H

H
H

χ0(r)
χ1(r)

χ2(r)
χ15(r)

χ14(r)

χν=8(r)

φP(x) = ∑
ν

CνP χν(x)

Molecular spin-orbitals

Delocalised over the ring



Prototypical ring of �  hydrogen atoms L = 16
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H

H

HH

H
H

H

H

H
HH

H

H

H

H
H

χ0(r)
χ1(r)

χ2(r)
χ15(r)

χ14(r)

χν=8(r)

φP(x) = ∑
ν

CνP χν(x)

Delocalized molecular spin-orbitals

|φP⟩ = ∑
ν

CνP |χν⟩

Dirac notation



Prototypical ring of �  hydrogen atoms L = 16
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H

H

HH

H
H

H

H

H
HH

H

H

H

H
H

χ0(r)
χ1(r)

χ2(r)
χ15(r)

χ14(r)

χν=8(r)

φP(x) = ∑
ν

CνP χν(x)

Second-quantized notation

̂a†
P |vac⟩ = ∑

ν

CνP ̂c†
ν |vac⟩

Delocalized molecular spin-orbitals



Prototypical ring of �  hydrogen atoms L = 16
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H

H

HH

H
H

H

H

H
HH

H

H

H

H
H

χ0(r)
χ1(r)

χ2(r)
χ15(r)

χ14(r)

χν=8(r) ̂a†
P |vac⟩ = ∑

ν

CνP ̂c†
ν |vac⟩

Creates an electron that occupies 
 the localised spin-orbital �  χν



Prototypical ring of �  hydrogen atoms L = 16
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H

H

HH

H
H

H

H

H
HH

H

H

H

H
H

χ0(r)
χ1(r)

χ2(r)
χ15(r)

χ14(r)

χν=8(r)

φP(x) = ∑
ν

CνP χν(x)

Second-quantized notation

̂a†
P = ∑

ν

CνP ̂c†
ν

Delocalized molecular spin-orbitals



Change of representation in second quantization 
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̂a†
P = ∑

ν

CνP ̂c†
ν



Change of representation in second quantization 
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̂a†
P = ∑

ν

CνP ̂c†
ν

Chemist’s delocalized  
representation

φP(x) = ∑
ν

CνP χν(x)

H

H

HH

H

H

H

H

H

HH

H

H

H

H
H



Change of representation in second quantization 
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̂a†
P = ∑

ν

CνP ̂c†
ν Physicist’s localized  

representation

H

H

HH

H

H

H

H

H

HH

H

H

H

H
H



Change of representation in second quantization 
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̂a†
P = ∑

ν

CνP ̂c†
ν Physicist’s localized  

representation

H

H

HH

H

H

H

H

H

HH

H

H

H

H
H

Allows for a fragmentation of the molecule  
in the orbital space!



Change of representation in second quantization 
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̂a†
P = ∑

ν

CνP ̂c†
ν Physicist’s localized  

representation

H

H

H

H

H

H

H

H

H

H

H

H
H

H
H

H

This is a relevant strategy for describing  
strong (local) electron correlation effects.

R → ∞

R

R

R

Allows for a fragmentation of the molecule  
in the orbital space!
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Hamiltonian in the localised representation

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂a†
P ̂a†

Q ̂aS ̂aR

Delocalized representation
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Hamiltonian in the localised representation

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂a†
P ̂a†

Q ̂aS ̂aR

Delocalized representation

̂a†
P = ∑

μ

CμP ̂c†
μ
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Hamiltonian in the localised representation

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂a†
P ̂a†

Q ̂aS ̂aR

Delocalized representation

̂a†
P = ∑

μ

CμP ̂c†
μ ̂aQ = ∑

ν

CνQ ̂cν
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Hamiltonian in the localised representation

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂a†
P ̂a†

Q ̂aS ̂aR

Delocalized representation

̂a†
P = ∑

μ

CμP ̂c†
μ ̂aQ = ∑

ν

CνQ ̂cν

∑
μν

∑
PQ

CμP ⟨φP | ĥ |φQ⟩ CνQ ̂c†
μ ̂cν

hμν
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Hamiltonian in the localised representation

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂a†
P ̂a†

Q ̂aS ̂aR

Delocalized representation

̂a†
P = ∑

μ

CμP ̂c†
μ ̂aQ = ∑

ν

CνQ ̂cν

∑
μν

∑
PQ

CμP ⟨φP | ĥ |φQ⟩ CνQ ̂c†
μ ̂cν

hμν
One-electron integrals 

in the localised orbital basis
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Hamiltonian in the localised representation

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂a†
P ̂a†

Q ̂aS ̂aR

Delocalized representation

≡
∑
μν

hμν ̂c†
μ ̂cν

Localized representation
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Hamiltonian in the localised representation

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂a†
P ̂a†

Q ̂aS ̂aR

Delocalized representation

≡
∑
μν

hμν ̂c†
μ ̂cν

Localized representation

≡

1
2 ∑

μνλτ

gμντλ ̂c†
μ ̂c†

ν ̂cλ ̂cτ

Localized representation
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Hamiltonian in the localised representation

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂a†
P ̂a†

Q ̂aS ̂aR

≡

1
2 ∑

μνλτ

gμντλ ̂c†
μ ̂c†

ν ̂cλ ̂cτ

∑
PQRS

CμPCνQ ⟨φPφQ | ̂g |φRφS⟩ CτRCλSTwo-electron integrals 
in the localised orbital basis
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In summary…

∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂a†
P ̂a†

Q ̂aS ̂aR

Delocalized representation

∑
μν

hμν ̂c†
μ ̂cν +

1
2 ∑

μνλτ

gμντλ ̂c†
μ ̂c†

ν ̂cλ ̂cτ

Localized representation

Ĥ

≡

≡
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In summary…

ℳ

∑
μ,ν=1

hμν ̂c†
μ ̂cν +

1
2

ℳ

∑
μ,ν,λ,τ=1

gμντλ ̂c†
μ ̂c†

ν ̂cλ ̂cτĤ ≡
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In summary…

ℳ

∑
P,Q=1

hPQ ̂c†
P ̂cQ +

1
2

ℳ

∑
P,Q,R,S=1

gPQRS ̂c†
P ̂c†

Q ̂cS ̂cRĤ ≡

just labels…
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In summary…

∑
PQ

⟨φP | ĥ |φQ⟩ ̂a†
P ̂aQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂a†
P ̂a†

Q ̂aS ̂aR

Delocalized representation

Ĥ

≡

≡

Localized representation

∑
PQ

hPQ ̂c†
P ̂cQ +

1
2 ∑

PQRS

gPQRS ̂c†
P ̂c†

Q ̂cS ̂cR
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E0 = ⟨Ĥ⟩Ψ0

Reduced density matrices
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E0 = ⟨Ĥ⟩Ψ0

Reduced density matrices

Ĥ ≡ ∑
PQ

hPQ ̂c†
P ̂cQ +

1
2 ∑

PQRS

gPQRS ̂c†
P ̂c†

Q ̂cS ̂cR
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E0 = ⟨Ĥ⟩Ψ0

Reduced density matrices

= ∑
PQ

hPQ ⟨ ̂c†
P ̂cQ⟩Ψ0

+
1
2 ∑

PQRS

gPQRS ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0
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E0 = ⟨Ĥ⟩Ψ0

Reduced density matrices

γPQ = ⟨ ̂c†
P ̂cQ⟩Ψ0

One-electron reduced 
density matrix (1RDM)

= ∑
PQ

hPQ ⟨ ̂c†
P ̂cQ⟩Ψ0

+
1
2 ∑

PQRS

gPQRS ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0
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E0 = ⟨Ĥ⟩Ψ0

Reduced density matrices

γPQ = ⟨ ̂c†
P ̂cQ⟩Ψ0

One-electron reduced 
density matrix (1RDM)

= ∑
PQ

hPQ ⟨ ̂c†
P ̂cQ⟩Ψ0

+
1
2 ∑

PQRS

gPQRS ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0

ΓPQSR = ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0

Two-electron reduced 
density matrix (2RDM)
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Let’s consider a 2D lattice of localised spin-orbitals

P

Q

R

S

Reduced density matrices
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P

Q

R

S

Reduced density matrices

“fragment”
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Reduced density matrices

γPQ = ⟨Ψ0 | ̂c†
P ̂cQ |Ψ0⟩

P

Q

R

S
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Reduced density matrices

P

Q

R

S

ΓPQSR = ⟨Ψ0 | ̂c†
P ̂c†

Q ̂cS ̂cR |Ψ0⟩
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Reduced density matrices

P

Q

R

S

ΓPQSR = ⟨Ψ0 | ̂c†
P ̂c†

Q ̂cS ̂cR |Ψ0⟩
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Reduced density matrices

P

Q

R

S

The �  orbital fragment is NOT disconnected from the other orbitals  PQRS
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Reduced density matrices

P

Q

R

S

The �  orbital fragment is NOT disconnected from the other orbitals  PQRS

Open quantum  
subsystem
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Reduced density matrices

P

Q

R

S
Entanglement

Ĥ ≡ ∑
PQ

hPQ ̂c†
P ̂cQ +

1
2 ∑

PQRS

gPQRS ̂c†
P ̂c†

Q ̂cS ̂cR

T
hPT ≠ 0

L
hLQ ≠ 0



!166

Reduced density matrices

P

Q

R

S
Entanglement

T

M

gPMTS ≠ 0

Ĥ ≡ ∑
PQ

hPQ ̂c†
P ̂cQ +

1
2 ∑

PQRS

gPQRS ̂c†
P ̂c†

Q ̂cS ̂cR
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Reduced density matrices

P

Q

R

S

The evaluation of the RDMs requires, in principle, the full wave function �Ψ0

γPQ = ⟨ ̂c†
P ̂cQ⟩Ψ0

ΓPQSR = ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0
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Embedding of localised spin-orbitals

P

Q

R

S

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012).
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P

Q

R

S

Embedded  
 fragment 

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012).

Embedding of localised spin-orbitals
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Bath orbitals 
(reservoir)

Bath orbitals 
(reservoir)

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012).

Embedding of localised spin-orbitals
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P

Q

R

S

Bath orbitals 
(reservoir)

Bath orbitals 
(reservoir)

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012).

Embedding of localised spin-orbitals

Embedded  
 fragment 
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P

Q

R

S

Cluster

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012).

Embedding of localised spin-orbitals



!173

P

Q

R

S

Cluster

Ψ𝒞

Closed (and much smaller than the true system)

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012).

Embedding of localised spin-orbitals
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P

Q

R

S

Cluster

Ψ𝒞

γPQ = ⟨Ψ0 | ̂c†
P ̂cQ |Ψ0⟩ ≈ ⟨Ψ𝒞 | ̂c†

P ̂cQ |Ψ𝒞⟩

ΓPQSR = ⟨Ψ0 | ̂c†
P ̂c†

Q ̂cS ̂cR |Ψ0⟩ ≈ ⟨Ψ𝒞 | ̂c†
P ̂c†

Q ̂cS ̂cR |Ψ𝒞⟩

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012).

Embedding of localised spin-orbitals
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