

Quantum embedding in electronic structure theory

Part 2: Concept of embedding and its various formulations

Emmanuel Fromager

Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg, Université de Strasbourg, Strasbourg, France.

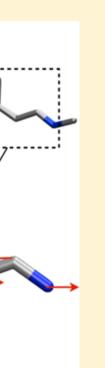
Online RCTGE courses in Theoretical Chemistry

November 2021

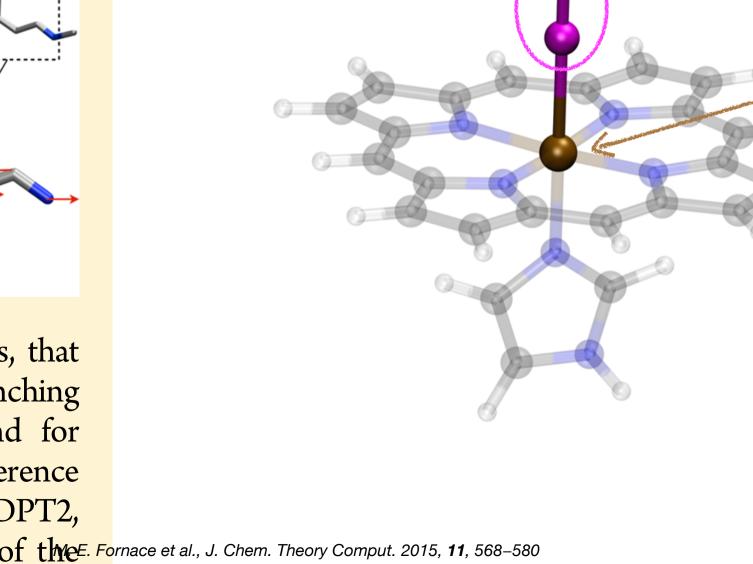
CO Binding in an Iron–Porphyrin Complex

CO molecule

Iron atom



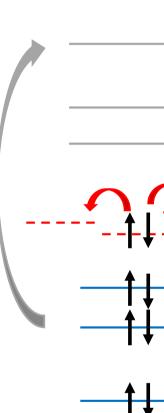
s, that nching d for erence OPT2, (100)



CO Binding in an Iron–Porphyrin Complex

s, that nching nd for erence OPT2, of three. F

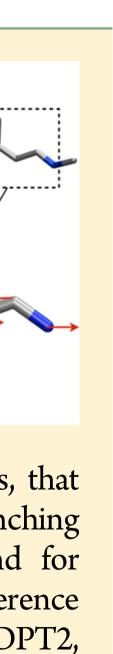


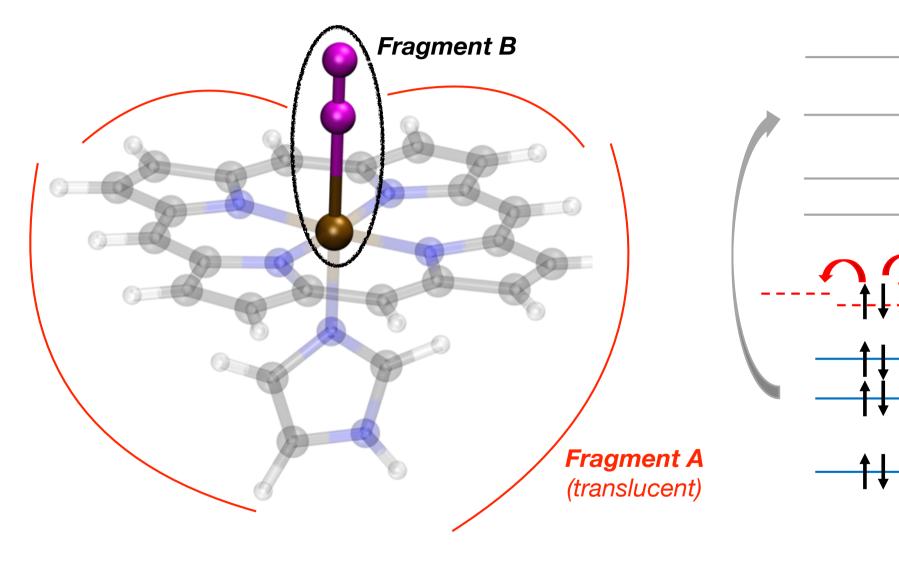


of the E. Fornace et al., J. Chem. Theory Comput. 2015, **11**, 568–580

 f_{100}

CO Binding in an Iron–Porphyrin Complex

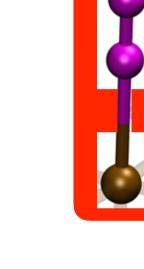




of the E. Fornace et al., J. Chem. Theory Comput. 2015, **11**, 568–580

 $\int 100$

CO Binding in an Iron–Porphyrin Comple



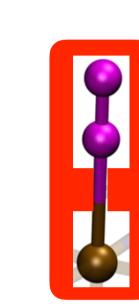
To-be-described fragme

ing for nce Τ2,

-

E. Fornace et al., J. Chem. Theory Comput. 2015, 11, 568–580

CO Binding in an Iron–Porphyrin Comple



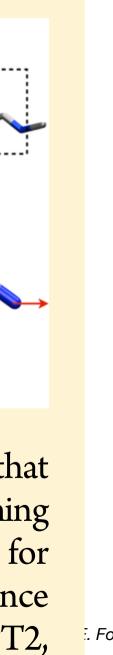
To-be-described fragme

 $\hat{H}^{emb}\Psi_B = \mathcal{E}_B\Psi_B$

that ing for nce T2,

E. Fornace et al., J. Chem. Theory Comput. 2015, 11, 568–580

CO Binding in an Iron–Porphyrin Comple



1

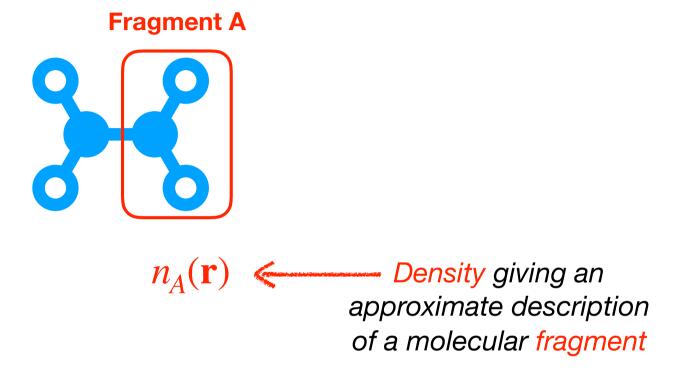
To-be-described fragme

 $\hat{H}^{emb}\Psi_B = \mathcal{E}_B\Psi_B$

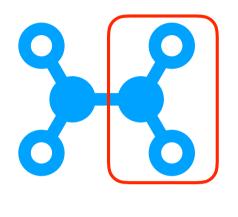
E. Fornace et al., J. Chem. Theory Comput. 2015, 11, 568–580

Strategy 1: DFT-based quantum embedding approach

$$n_0(\mathbf{r}) = ?$$



Fragment A

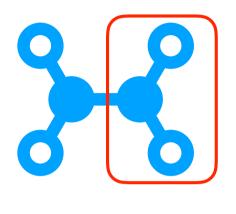


 $n_A(\mathbf{r})$

Density giving an approximate description of a molecular fragment

Total number of electrons in the molecule $\int d\mathbf{r} \, n_A(\mathbf{r}) = N_A < N$

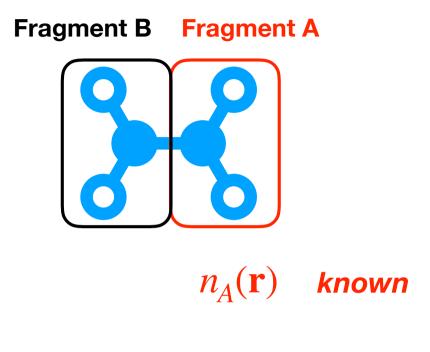
Fragment A



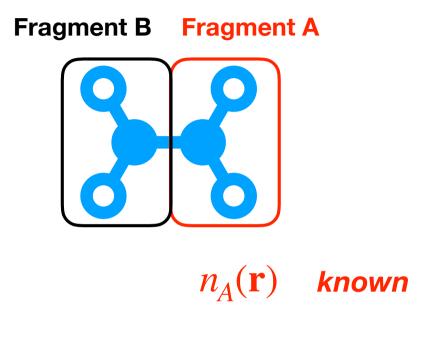
 $n_A(\mathbf{r})$

Density giving an approximate description of a molecular fragment

Fixed in the theory (hence the name "frozen density")

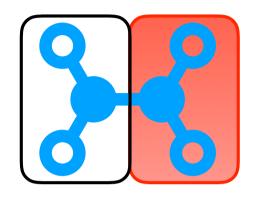


$$n_B(\mathbf{r}) = n_0(\mathbf{r}) - n_A(\mathbf{r}) = ?$$



$$n_B(\mathbf{r}) = n_0(\mathbf{r}) - n_A(\mathbf{r}) \equiv n_{\Psi_B} = ?$$

Fragment B



unknown $\Psi_B = ? n_A(\mathbf{r})$ known

unknown $\Psi_B = ? n_A(\mathbf{r})$ known

Fragment B

Fragment B is embedded into the density-functional fragment A

$$E_0 = \min_n \left\{ F[n] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n(\mathbf{r}) \right\}$$

$$E_{0} = \min_{n} \left\{ F[n] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n(\mathbf{r}) \right\}$$
$$= \min_{n_{B} \to N - N_{A}} \left\{ F[n_{B} + n_{A}] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{B}(\mathbf{r}) \right\} + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, n_{A}(\mathbf{r})$$
Frozen (*i.e.*, fixed)

$$E_{0} = \min_{n} \left\{ F[n] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n(\mathbf{r}) \right\}$$

$$= \min_{n_{B} \to N - N_{A}} \left\{ F[n_{B} + n_{A}] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{B}(\mathbf{r}) \right\} + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, n_{A}(\mathbf{r})$$

$$= \min_{n_{B} \to N - N_{A}} \left\{ F[n_{B}] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{B}(\mathbf{r}) + \Delta F[n_{B}, n_{A}] \right\} + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, n_{A}(\mathbf{r}) + F[n_{A}]$$

$$F[n_{B} + n_{A}] = F[n_{B}] + F[n_{A}] + \Delta F[n_{B}, n_{A}]$$
Formal decomposition

$$E_{0} = \min_{n} \left\{ F[n] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n(\mathbf{r}) \right\}$$

$$= \min_{n_{B} \to N-N_{A}} \left\{ F[n_{B}+n_{A}] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{B}(\mathbf{r}) \right\} + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, n_{A}(\mathbf{r})$$

$$= \min_{n_{B} \to N-N_{A}} \left\{ F[n_{B}] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{B}(\mathbf{r}) + \Delta F[n_{B}, n_{A}] \right\} + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, n_{A}(\mathbf{r}) + F[n_{A}]$$
Bifunctional
describing the coupling
between the two fragments

$$F[n_{B}+n_{A}] = F[n_{B}] + F[n_{A}] + \Delta F[n_{B}, n_{A}]$$

$$E_{0} = \min_{n} \left\{ F[n] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n(\mathbf{r}) \right\}$$

$$= \min_{n_{B} \to N - N_{A}} \left\{ F[n_{B} + n_{A}] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{B}(\mathbf{r}) \right\} + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, n_{A}(\mathbf{r})$$

$$= \min_{n_{B} \to N - N_{A}} \left\{ F[n_{B}] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{B}(\mathbf{r}) + \Delta F[n_{B}, n_{A}] \right\} + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, n_{A}(\mathbf{r}) + F[n_{A}]$$

$$\min_{n_{B} \to N - N_{A}} \left\{ \min_{\Psi \to n_{B}} \left\{ \langle \Psi | \, \hat{T} + \hat{W}_{\text{ee}} | \Psi \rangle \right\} + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{B}(\mathbf{r}) + \Delta F[n_{B}, n_{A}] \right\}$$

$$E_{0} = \min_{n} \left\{ F[n] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n(\mathbf{r}) \right\}$$

$$= \min_{n_{B} \to N-N_{A}} \left\{ F[n_{B}+n_{A}] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{B}(\mathbf{r}) \right\} + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, n_{A}(\mathbf{r})$$

$$= \min_{n_{B} \to N-N_{A}} \left\{ F[n_{B}] + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{B}(\mathbf{r}) + \Delta F[n_{B}, n_{A}] \right\} + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, n_{A}(\mathbf{r}) + F[n_{A}]$$

$$\min_{n_{B} \to N-N_{A}} \left\{ \min_{\Psi \to n_{B}} \left\{ \langle \Psi | \hat{T} + \hat{W}_{\text{ee}} | \Psi \rangle \right\} + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{B}(\mathbf{r}) + \Delta F[n_{B}, n_{A}] \right\}$$

$$= \min_{n_{B} \to N-N_{A}} \left\{ \min_{\Psi \to n_{B}} \left\{ \langle \Psi | \hat{T} + \hat{W}_{\text{ee}} | \Psi \rangle + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n_{\Psi}(\mathbf{r}) + \Delta F[n_{\Psi}, n_{A}] \right\}$$

$$E_0 - \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, \underline{n_A(\mathbf{r})} - F[\underline{n_A}] = \min_{\Psi \to N - N_A} \left\{ \langle \Psi | \hat{H} | \Psi \rangle + \Delta F[\underline{n_\Psi}, \underline{n_A}] \right\}$$

$$E_{0} - \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, n_{A}(\mathbf{r}) - F[n_{A}] = \min_{\Psi \to N - N_{A}} \left\{ \left\langle \Psi \, | \, \hat{H} \, | \, \Psi \right\rangle + \Delta F[n_{\Psi}, n_{A}] \right\}$$
Analogous to solving
the Schrödinger equation for fragment B
in the presence of fragment A

$$E_0 - \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, \mathbf{n}_A(\mathbf{r}) - F[\mathbf{n}_A] = \min_{\Psi \to N - N_A} \left\{ \langle \Psi \, | \, \hat{H} \, | \, \Psi \rangle + \Delta F[n_\Psi, \mathbf{n}_A] \right\}$$

Embedding density functional

 $\Delta F[n_B, n_A] = F[n_B + n_A] - F[n_B] - F[n_A]$

$$E_0 - \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, \mathbf{n}_A(\mathbf{r}) - F[\mathbf{n}_A] = \min_{\Psi \to N - N_A} \left\{ \langle \Psi \, | \, \hat{H} \, | \, \Psi \rangle + \Delta F[n_\Psi, \mathbf{n}_A] \right\}$$

$$\Delta F[n_B, n_A] = F[n_B + n_A] - F[n_B] - F[n_A]$$

$$= E_{\text{Hxc}}[n_B + n_A] - E_{\text{Hxc}}[n_B] - E_{\text{Hxc}}[n_A]$$

$$+ T_{\text{s}}[n_B + n_A] - T_{\text{s}}[n_B] - T_{\text{s}}[n_A]$$

$$KS \text{ decompositions} - F[n] = T_{\text{s}}[n] + E_{\text{Hxc}}[n]$$

$$E_0 - \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, \mathbf{n}_A(\mathbf{r}) - F[\mathbf{n}_A] = \min_{\Psi \to N - N_A} \left\{ \langle \Psi \, | \, \hat{H} \, | \, \Psi \rangle + \Delta F[n_\Psi, \mathbf{n}_A] \right\}$$

$$\Delta F[n_B, n_A] = F[n_B + n_A] - F[n_B] - F[n_A]$$

$$= E_{\text{Hxc}}[n_B + n_A] - E_{\text{Hxc}}[n_B] - E_{\text{Hxc}}[n_A]$$
 Evaluated from
xc density-functional
approximations (DFAs)
 $+T_{\text{S}}[n_B + n_A] - T_{\text{S}}[n_B] - T_{\text{S}}[n_A]$

$$E_0 - \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, \mathbf{n}_A(\mathbf{r}) - F[\mathbf{n}_A] = \min_{\Psi \to N - N_A} \left\{ \langle \Psi \, | \, \hat{H} \, | \, \Psi \rangle + \Delta F[n_\Psi, \mathbf{n}_A] \right\}$$

$$\Delta F[n_B, n_A] = F[n_B + n_A] - F[n_B] - F[n_A]$$

$$= E_{\text{Hxc}}[n_B + n_A] - E_{\text{Hxc}}[n_B] - E_{\text{Hxc}}[n_A]$$

 $+T_{s}[n_{B}+n_{A}] - T_{s}[n_{B}] - T_{s}[n_{A}]$ Described with KS orbitals in KS-DFT

$$E_0 - \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, \mathbf{n}_A(\mathbf{r}) - F[\mathbf{n}_A] = \min_{\Psi \to N - N_A} \left\{ \langle \Psi \, | \, \hat{H} \, | \, \Psi \rangle + \Delta F[n_\Psi, \mathbf{n}_A] \right\}$$

$$\Delta F[n_B, n_A] = F[n_B + n_A] - F[n_B] - F[n_A]$$

$$= E_{\text{Hxc}}[n_B + n_A] - E_{\text{Hxc}}[n_B] - E_{\text{Hxc}}[n_A]$$

$$+ T_{\text{s}}[n_B + n_A] - T_{\text{s}}[n_B] - T_{\text{s}}[n_A]$$
Described with KS orbitals in KS-DFT

$$E_0 - \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, \mathbf{n}_A(\mathbf{r}) - F[\mathbf{n}_A] = \min_{\Psi \to N - N_A} \left\{ \langle \Psi \, | \, \hat{H} \, | \, \Psi \rangle + \Delta F[n_\Psi, \mathbf{n}_A] \right\}$$

$$\Delta F[n_B, n_A] = F[n_B + n_A] - F[n_B] - F[n_A]$$

$$= E_{\text{Hxc}}[n_B + n_A] - E_{\text{Hxc}}[n_B] - E_{\text{Hxc}}[n_A]$$

$$+T_{s}[n_{B}+n_{A}] - T_{s}[n_{B}] - T_{s}[n_{A}]$$
 More di

More difficult to approximate with density functionals

$$E_0 - \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) \, \mathbf{n}_A(\mathbf{r}) - F[\mathbf{n}_A] = \min_{\Psi \to N - N_A} \left\{ \langle \Psi \, | \, \hat{H} \, | \, \Psi \rangle + \Delta F[n_\Psi, \mathbf{n}_A] \right\}$$

$$\Delta F[n_B, n_A] = F[n_B + n_A] - F[n_B] - F[n_A]$$

$$= E_{\text{Hxc}}[n_B + n_A] - E_{\text{Hxc}}[n_B] - E_{\text{Hxc}}[n_A]$$

$$+ T_{\text{s}}[n_B + n_A] - T_{\text{s}}[n_B] - T_{\text{s}}[n_A]$$

More difficult
to approximate with
density functionals

Strategy 2: Quantum embedding in the *N*-electron space

Strategy 2: Quantum embedding in the *N*-electron space

We need to write the Hamiltonian in **second quantization** for that purpose

Second-quantized encoding of many-electron wave functions

Hydrogen molecule in the dissociation limit:

$$\sqrt{2}\Psi_0(\mathbf{r}_1,\mathbf{r}_2) = \varphi_{1\sigma_g}(\mathbf{r}_1)\varphi_{1\sigma_g}(\mathbf{r}_2) - \varphi_{1\sigma_u}(\mathbf{r}_1)\varphi_{1\sigma_u}(\mathbf{r}_2)$$

Second-quantized encoding of many-electron wave functions

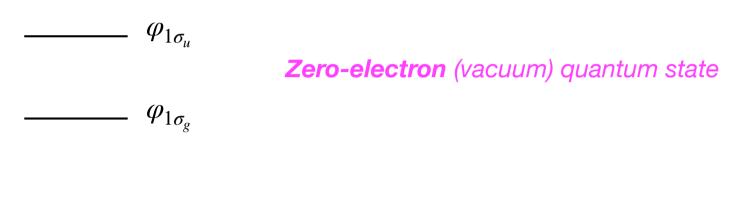
Hydrogen molecule in the dissociation limit:

$$\sqrt{2}\Psi_{0}(\mathbf{r}_{1},\mathbf{r}_{2}) = \varphi_{1\sigma_{g}}(\mathbf{r}_{1})\varphi_{1\sigma_{g}}(\mathbf{r}_{2}) - \varphi_{1\sigma_{u}}(\mathbf{r}_{1})\varphi_{1\sigma_{u}}(\mathbf{r}_{2})$$

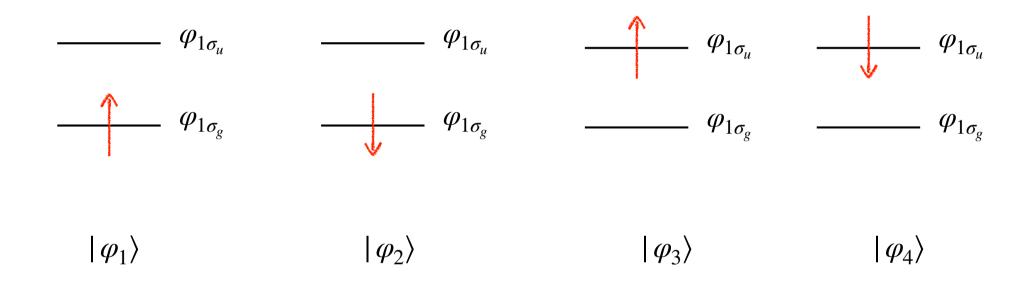
$$\sqrt{2}|\Psi_{0}\rangle = \left| \bigoplus_{\varphi_{1\sigma_{u}}}^{\varphi_{1\sigma_{u}}} \right\rangle - \left| \bigoplus_{\varphi_{1\sigma_{u}}}^{\varphi_{1\sigma_{u}}} \right\rangle$$

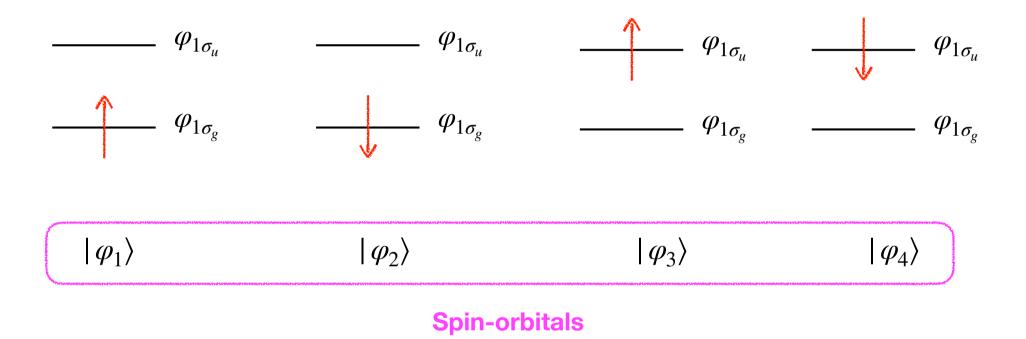
Dirac notation

Second-quantized encoding of many-electron wave functions



 $|vac\rangle$







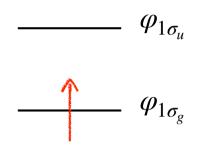
 $| \varphi_1
angle$

 $\varphi_{1\sigma_u}$ $\varphi_{1\sigma_g}$

 $| \varphi_1 \rangle$

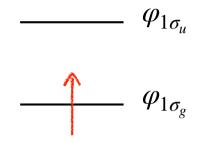
Quantum operator that creates an electron and put it in the spin-orbital φ_1

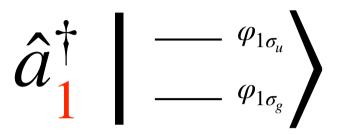
 $\hat{a}^{\dagger}_{1} = \left[\begin{array}{c} & - & \varphi_{1\sigma_{u}} \\ & - & \varphi_{1\sigma_{g}} \end{array} \right]$



Creation operator

 $| \varphi_1 \rangle$





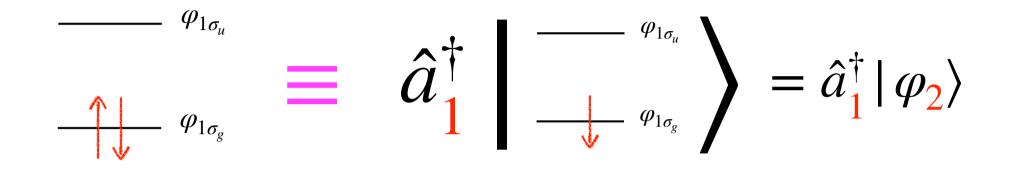
 $| \varphi_1 \rangle$

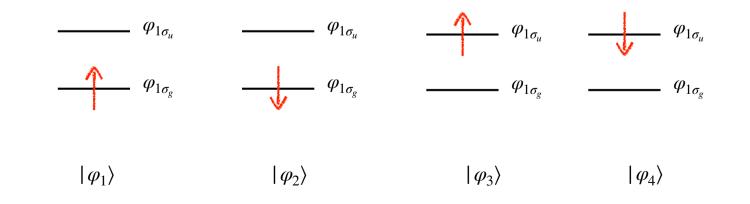
 $|\varphi_1\rangle \equiv \hat{a}_1^{\dagger} |\operatorname{vac}\rangle$

Second-quantized notation

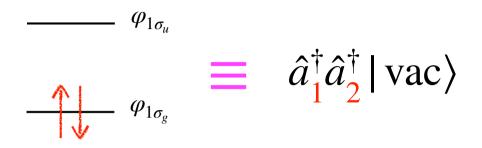


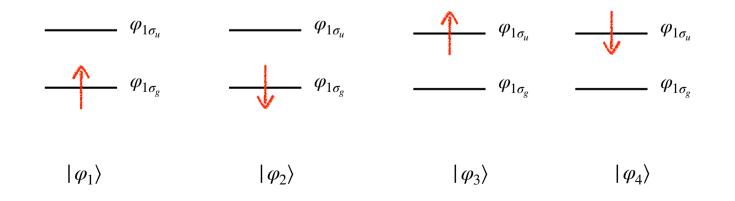
 $|\varphi_1\rangle \equiv \hat{a}_1^{\dagger} |\operatorname{vac}\rangle \qquad |\varphi_2\rangle \equiv \hat{a}_2^{\dagger} |\operatorname{vac}\rangle \qquad |\varphi_3\rangle \equiv \hat{a}_3^{\dagger} |\operatorname{vac}\rangle \qquad |\varphi_4\rangle \equiv \hat{a}_4^{\dagger} |\operatorname{vac}\rangle$



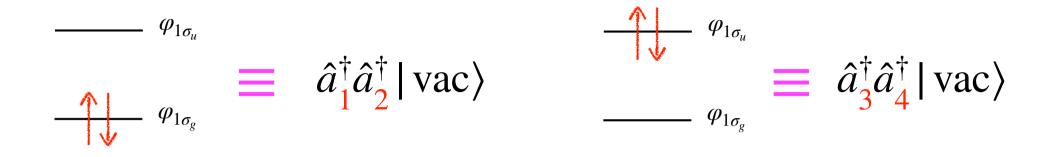


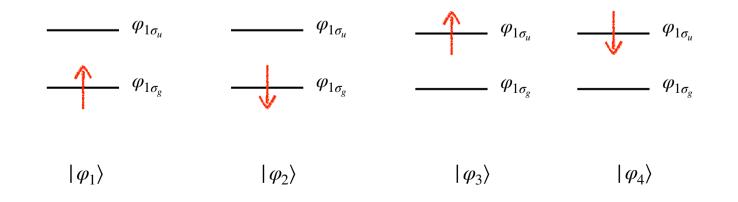
Two-electron quantum states



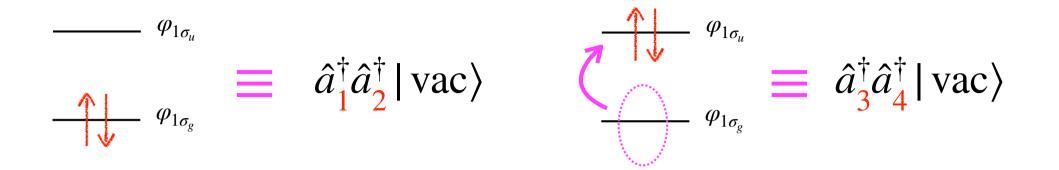


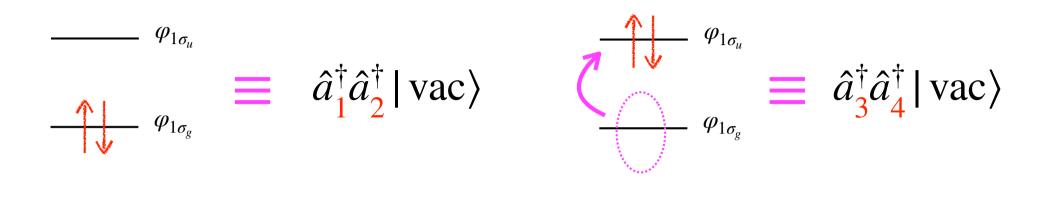
Two-electron quantum states

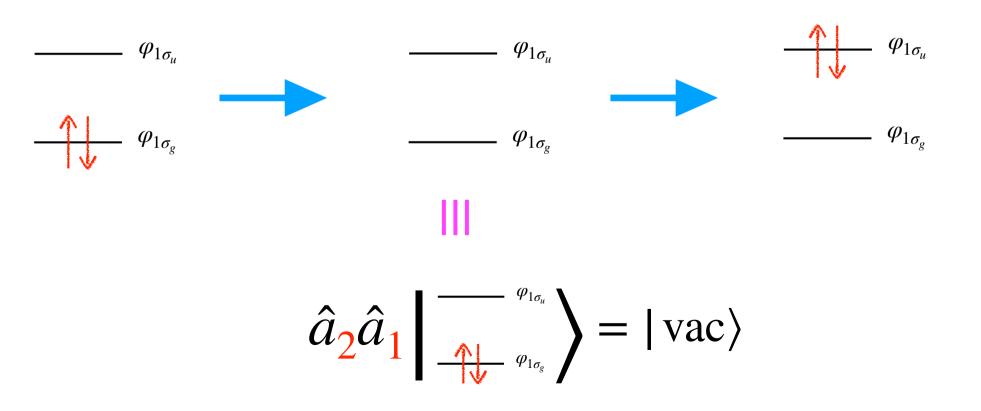




Two-electron quantum states



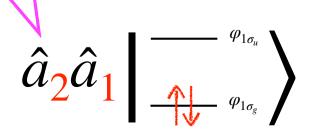




Quantum operator that **removes** the electron occupying the spin-orbital φ_1

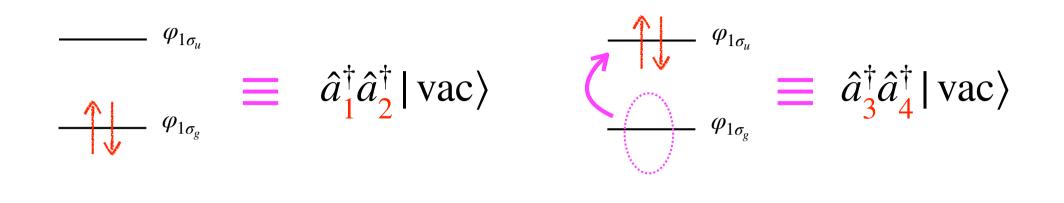
 $\hat{a}_{2}\hat{a}_{1}$

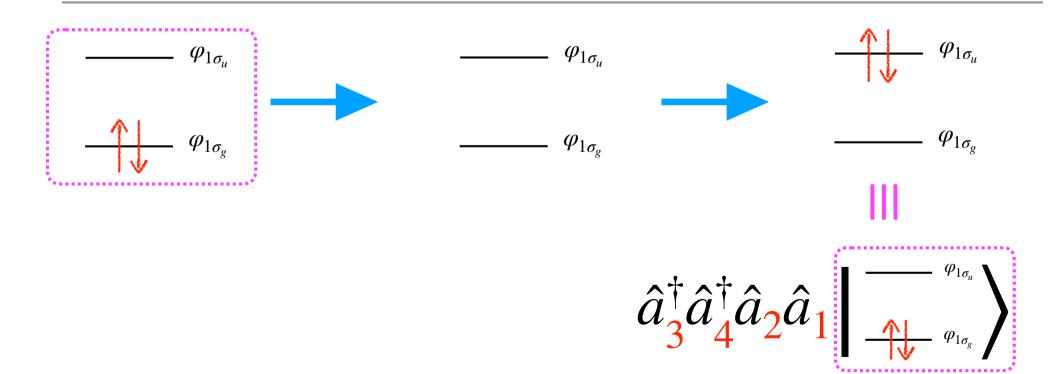
Quantum operator that removes the electron occupying the spin-orbital φ_2



Annihilation operators

$$\hat{a}_2 \hat{a}_1 \left[\begin{array}{c} \varphi_{1\sigma_u} \\ \varphi_{1\sigma_g} \end{array} \right]$$





Double excitation operator

$$\left| \begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & &$$

$$\hat{H}|\Psi_0\rangle = E_0|\Psi_0\rangle$$

Step 1: Choose a one-electron basis of molecular spin orbitals $\{\varphi_P\}_{P=1,2,3,...,M}$

$$\hat{H} | \Psi_0 \rangle = E_0 | \Psi_0 \rangle$$

Step 1: Choose a one-electron basis of molecular spin orbitals $\{\varphi_P\}_{P=1,2,3,...,M}$

Usually Hartree-Fock (HF) orbitals

$$\hat{H} | \Psi_0 \rangle = E_0 | \Psi_0 \rangle$$

Step 1: Choose a one-electron basis of molecular spin orbitals $\{\varphi_P\}_{P=1,2,3,...,M}$

Usually Hartree-Fock (HF) orbitals

 $\left\{\chi_{\nu}(\mathbf{X})\right\}_{\nu=A,B,\ldots}$

Atomic spin-orbitals centered on the nuclei A, B, ...

$$\hat{H} | \Psi_0 \rangle = E_0 | \Psi_0 \rangle$$

Step 1: Choose a one-electron basis of molecular spin orbitals $\{\varphi_P\}_{P=1,2,3,...,M}$

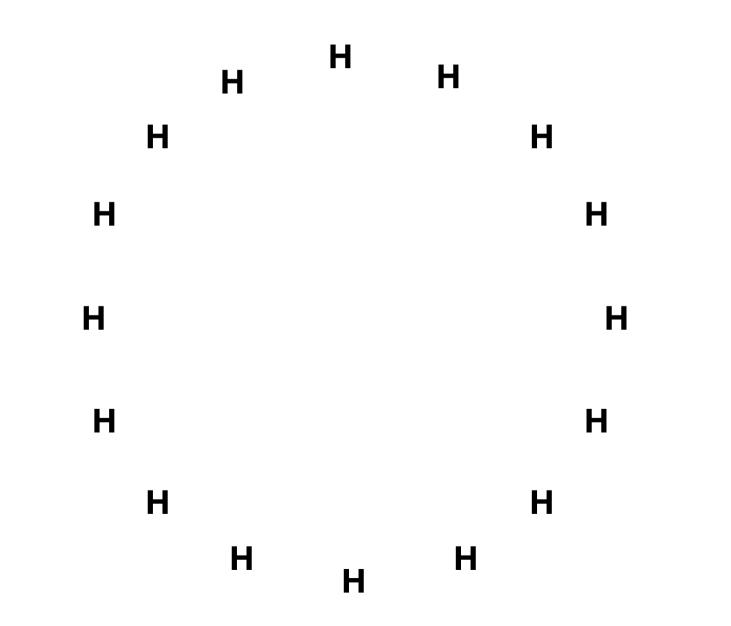
Usually Hartree-Fock (HF) spin-orbitals

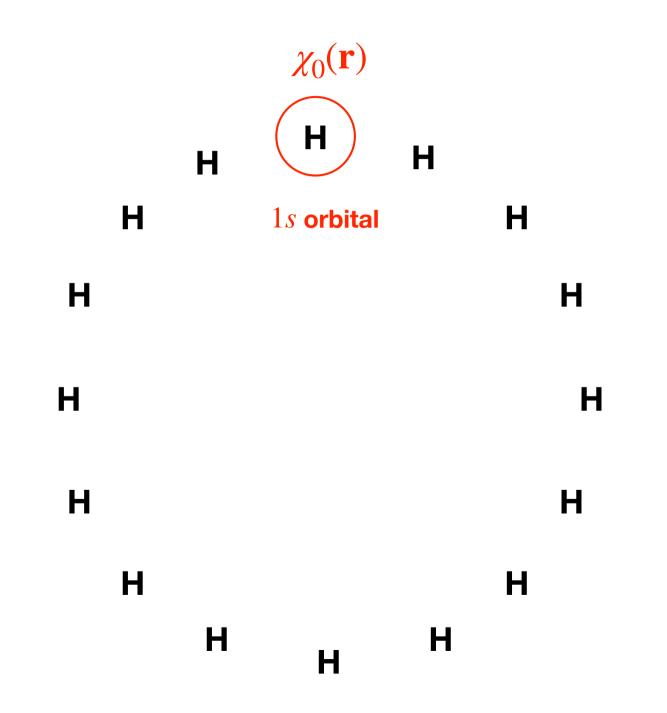
Atomic spin-orbitals centered on the nuclei A, B, ...

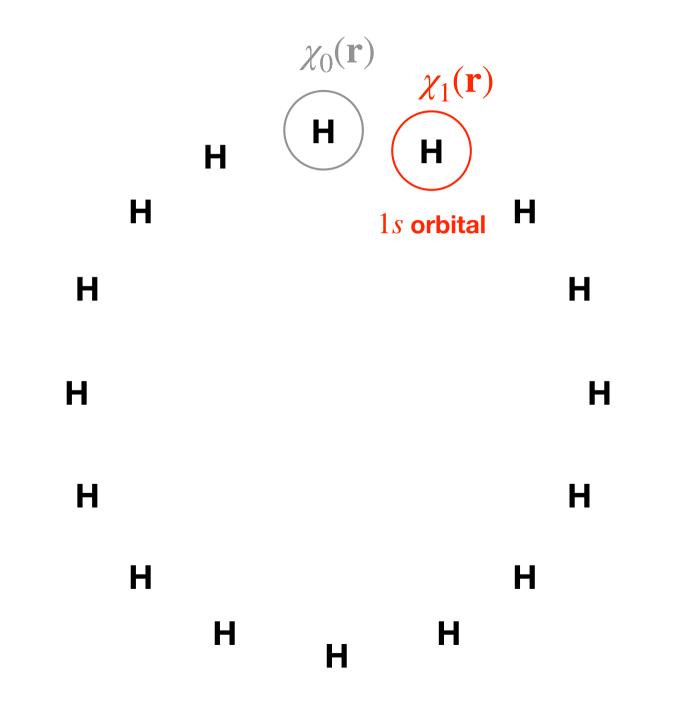
$$\hat{H} | \Psi_0 \rangle = E_0 | \Psi_0 \rangle$$

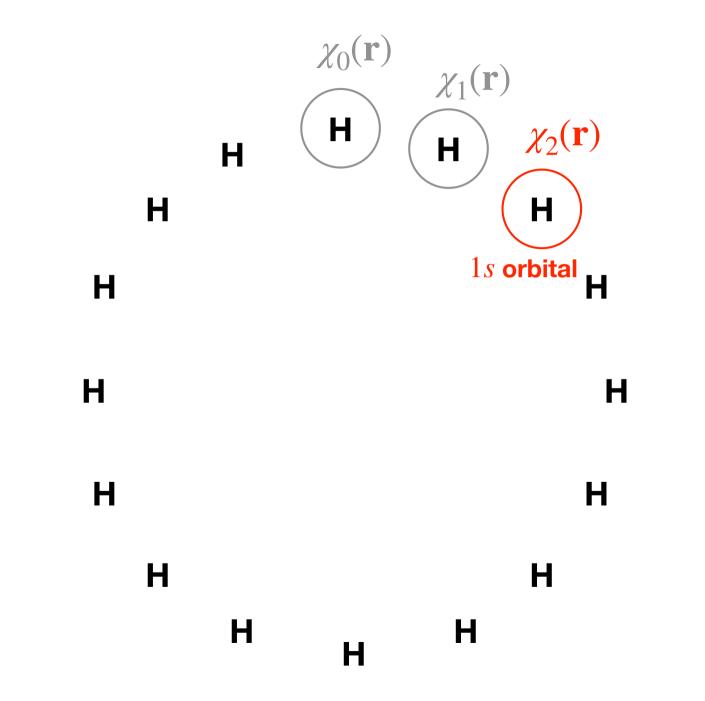
Step 1: Choose a one-electron basis of molecular spin orbitals $\{\varphi_P\}_{P=1,2,3,...,M}$

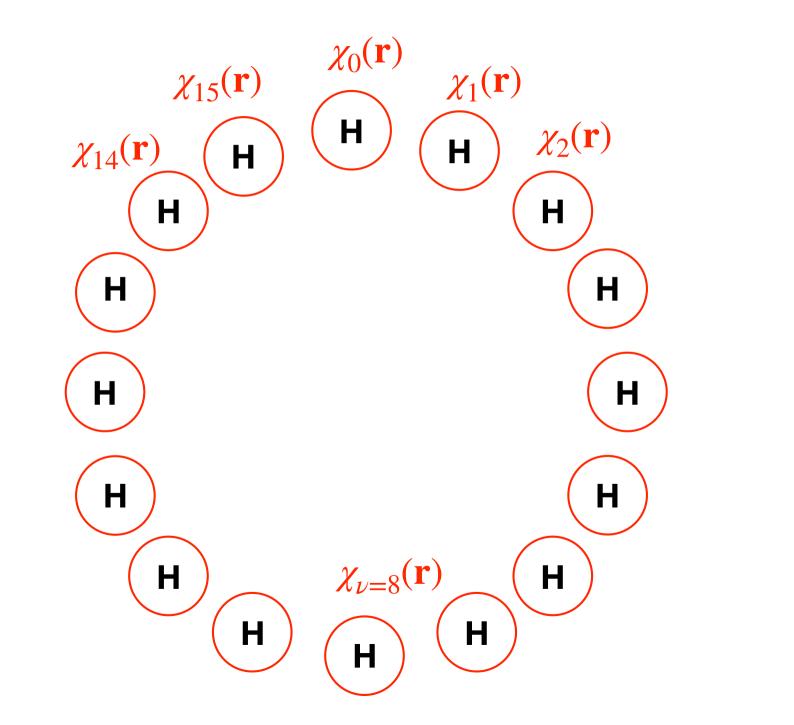
$$\varphi_{P}(\mathbf{x}) = \sum_{\nu}^{nuclei} C_{\nu P} \chi_{\nu}(\mathbf{x})$$

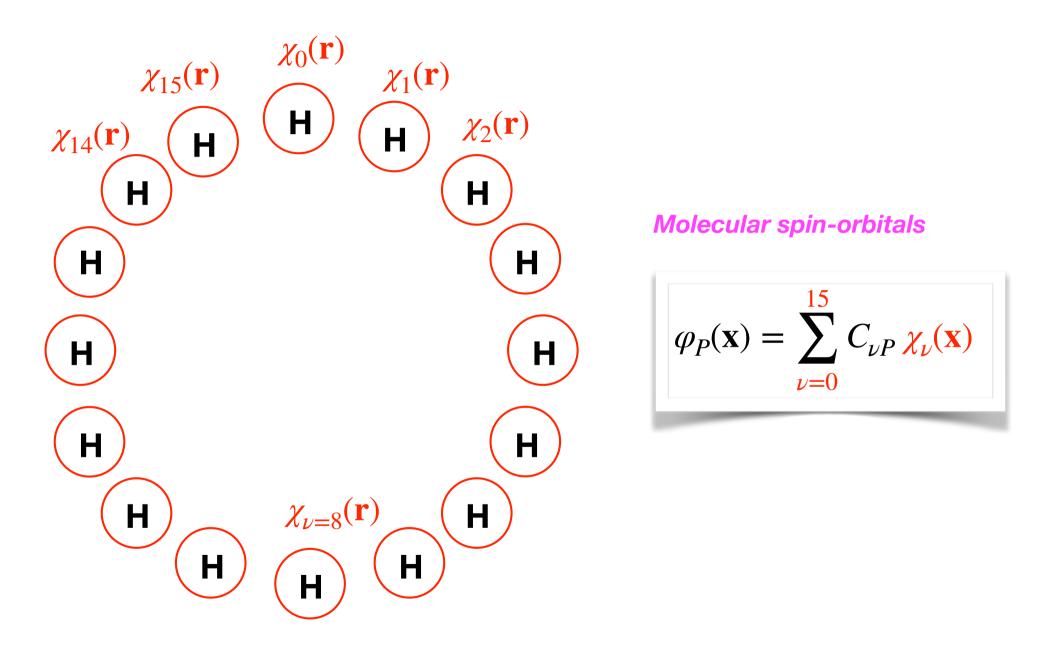


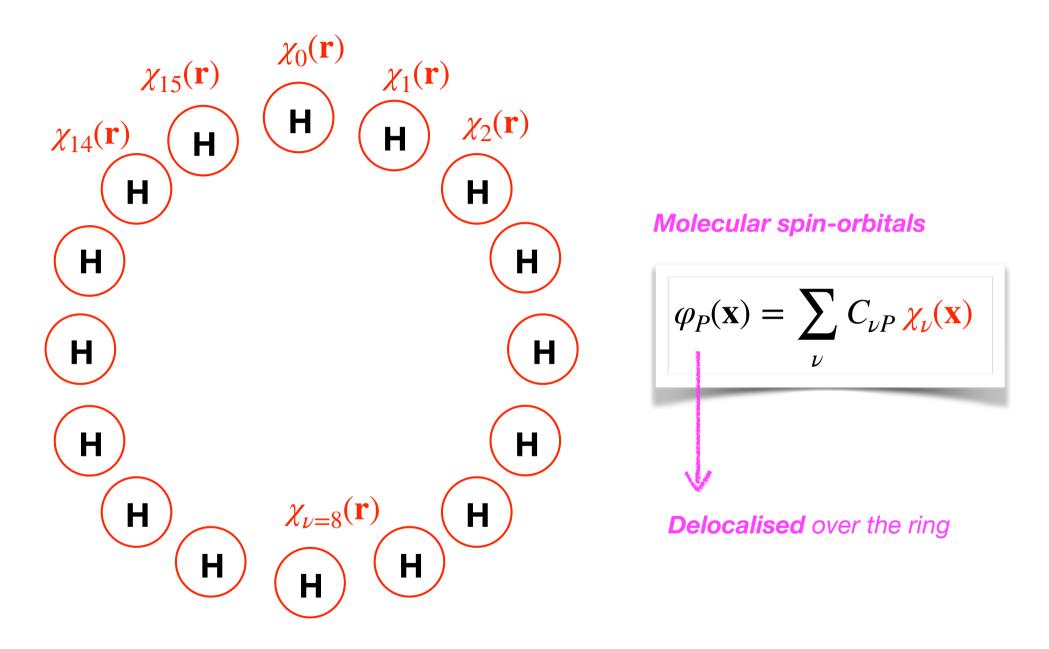












$$\hat{H} | \Psi_0 \rangle = E_0 | \Psi_0 \rangle$$

Step 1: Choose a one-electron basis of molecular spin orbitals $\{\varphi_P\}_{P=1,2,3,...,M}$

Step 2: Implement the Hamiltonian in second quantization in that basis

$$\hat{H} \equiv \sum_{PQ} \langle \varphi_{P} | \hat{h} | \varphi_{Q} \rangle \hat{a}_{P}^{\dagger} \hat{a}_{Q} + \frac{1}{2} \sum_{PQRS} \langle \varphi_{P} \varphi_{Q} | \hat{g} | \varphi_{R} \varphi_{S} \rangle \hat{a}_{P}^{\dagger} \hat{a}_{Q}^{\dagger} \hat{a}_{S} \hat{a}_{R}$$

See the video* for further explanations

$$\hat{H} | \Psi_0 \rangle = E_0 | \Psi_0 \rangle$$

Step 1: Choose a one-electron basis of molecular spin orbitals $\{\varphi_P\}_{P=1,2,3,...,\mathcal{M}}$

Step 2: Implement the Hamiltonian in second quantization in that basis

$$\hat{H} \equiv \sum_{PQ} \langle \varphi_{P} | \hat{h} | \varphi_{Q} \rangle \hat{a}_{P}^{\dagger} \hat{a}_{Q} + \frac{1}{2} \sum_{PQRS} \langle \varphi_{P} \varphi_{Q} | \hat{g} | \varphi_{R} \varphi_{S} \rangle \hat{a}_{P}^{\dagger} \hat{a}_{Q}^{\dagger} \hat{a}_{S} \hat{a}_{R}$$

$$\int d\mathbf{x} \ \varphi_{P}(\mathbf{x}) \left(-\frac{1}{2} \nabla_{\mathbf{r}}^{2} + v_{\text{ext}}(\mathbf{r}) \right) \varphi_{Q}(\mathbf{x}) \quad \text{One-electron integrals}$$

67

$$\hat{H}|\Psi_0\rangle = E_0|\Psi_0\rangle$$

Step 1: Choose a one-electron basis of molecular spin orbitals $\{\varphi_P\}_{P=1,2,3,...,\mathcal{M}}$

Step 2: Implement the Hamiltonian in second quantization in that basis

$$\hat{H} \equiv \sum_{PQ} \langle \varphi_{P} | \hat{h} | \varphi_{Q} \rangle \hat{a}_{P}^{\dagger} \hat{a}_{Q} + \frac{1}{2} \sum_{PQRS} \langle \varphi_{P} \varphi_{Q} | \hat{g} | \varphi_{R} \varphi_{S} \rangle \hat{a}_{P}^{\dagger} \hat{a}_{Q}^{\dagger} \hat{a}_{S} \hat{a}_{R}$$

$$Two-electron integrals \qquad \int d\mathbf{x}_{1} \int d\mathbf{x}_{2} \varphi_{P}(\mathbf{x}_{1}) \varphi_{Q}(\mathbf{x}_{2}) \frac{1}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} \varphi_{R}(\mathbf{x}_{1}) \varphi_{S}(\mathbf{x}_{2})$$

$$\hat{H} | \Psi_0 \rangle = E_0 | \Psi_0 \rangle$$

Step 1: Choose a one-electron basis of molecular spin orbitals $\{\varphi_P\}_{P=1,2,3,...,M}$

Step 2: Implement the Hamiltonian in second quantization in that basis

Step 3: Determine variationally the ground-state wave function expansion in the corresponding *N*-electron basis

$$|\Psi_{0}\rangle \equiv \sum_{P_{1} < P_{2} < \dots < P_{N}} C_{P_{1}P_{2}\dots P_{N}} \hat{a}_{P_{1}}^{\dagger} \hat{a}_{P_{2}}^{\dagger} \dots \hat{a}_{P_{N-1}}^{\dagger} \hat{a}_{P_{N}}^{\dagger} |\operatorname{vac}\rangle$$

$$\hat{H} | \Psi_0 \rangle = E_0 | \Psi_0 \rangle$$

Step 1: Choose a one-electron basis of molecular spin orbitals $\{\varphi_P\}_{P=1,2,3,...,M}$

Step 2: Implement the Hamiltonian in second quantization in that basis

Step 3: Determine variationally the ground-state wave function expansion in the corresponding N-electron basis $|\Psi_0\rangle \equiv \sum_{P_1 < P_2 < \ldots < P_N} C_{P_1 P_2 \ldots P_N} \left[\hat{a}_{P_1}^{\dagger} \hat{a}_{P_2}^{\dagger} \ldots \hat{a}_{P_{N-1}}^{\dagger} \hat{a}_{P_N}^{\dagger} | \operatorname{vac} \right\rangle$

Distribute N electrons in \mathcal{M} spin-orbitals!

$$\hat{H} | \Psi_0 \rangle = E_0 | \Psi_0 \rangle$$

Step 1: Choose a one-electron basis of molecular spin orbitals $\{\varphi_P\}_{P=1,2,3,...,M}$

Step 2: Implement the Hamiltonian in second quantization in that basis

Step 3: Determine variationally the ground-state wave function expansion in the corresponding *N*-electron basis

$$|\Psi_{0}\rangle \equiv \sum_{P_{1} < P_{2} < \dots < P_{N}} C_{P_{1}P_{2}\dots P_{N}} \left[\hat{a}_{P_{1}}^{\dagger} \hat{a}_{P_{2}}^{\dagger} \dots \hat{a}_{P_{N-1}}^{\dagger} \hat{a}_{P_{N}}^{\dagger} | \operatorname{vac} \right\rangle$$

Slater determinant

$$\hat{H} | \Psi_0 \rangle = E_0 | \Psi_0 \rangle$$

Step 1: Choose a one-electron basis of molecular spin orbitals $\{\varphi_P\}_{P=1,2,3,...,M}$

Step 2: Implement the Hamiltonian in second quantization in that basis

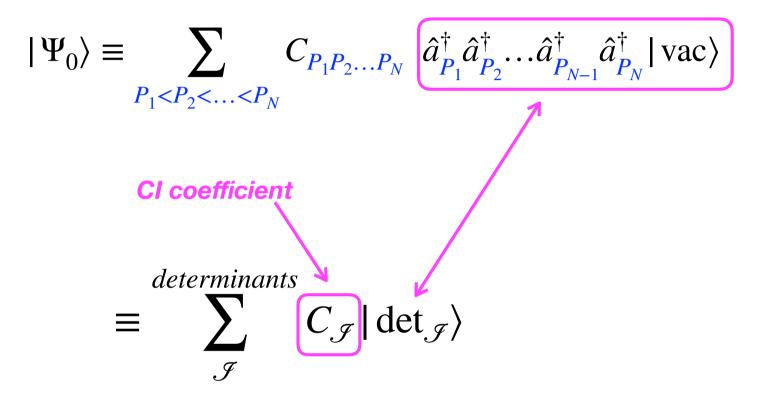
Step 3: Determine variationally the ground-state wave function expansion in the corresponding *N*-electron basis

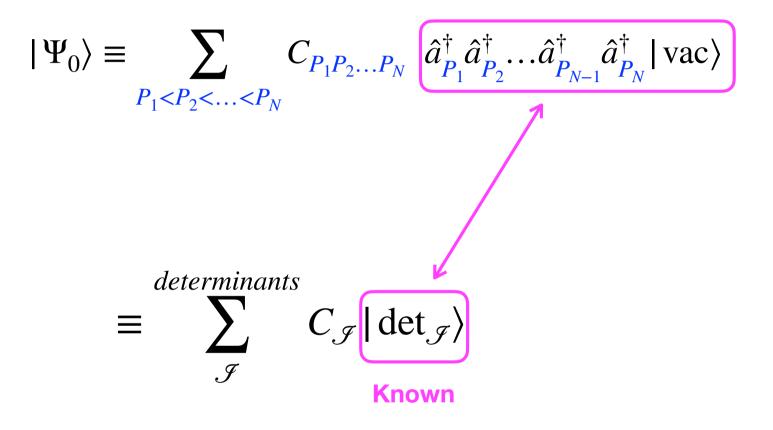
$$|\Psi_{0}\rangle \equiv \sum_{P_{1} < P_{2} < \ldots < P_{N}} C_{P_{1}P_{2} \ldots P_{N}} \hat{a}_{P_{1}}^{\dagger} \hat{a}_{P_{2}}^{\dagger} \ldots \hat{a}_{P_{N-1}}^{\dagger} \hat{a}_{P_{N}}^{\dagger} |\operatorname{vac}\rangle$$

Configuration Interaction (CI) coefficient

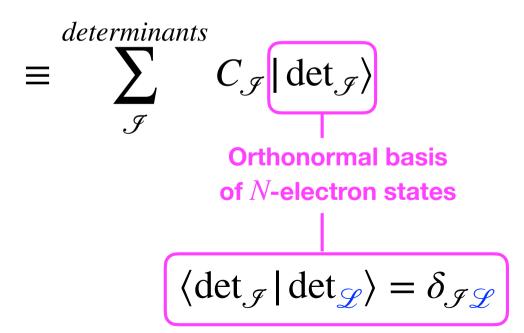
$$|\Psi_{0}\rangle \equiv \sum_{P_{1} < P_{2} < \ldots < P_{N}} C_{P_{1}P_{2}\ldots P_{N}} \hat{a}_{P_{1}}^{\dagger} \hat{a}_{P_{2}}^{\dagger} \ldots \hat{a}_{P_{N-1}}^{\dagger} \hat{a}_{P_{N}}^{\dagger} |\operatorname{vac}\rangle$$

Slater determinant
Cl coefficient

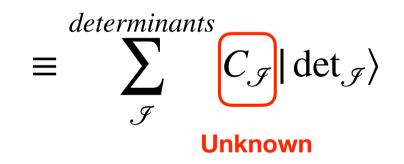




$$|\Psi_{0}\rangle \equiv \sum_{P_{1} < P_{2} < \dots < P_{N}} C_{P_{1}P_{2}\dots P_{N}} \hat{a}_{P_{1}}^{\dagger} \hat{a}_{P_{2}}^{\dagger} \dots \hat{a}_{P_{N-1}}^{\dagger} \hat{a}_{P_{N}}^{\dagger} |\operatorname{vac}\rangle$$



$$|\Psi_{0}\rangle \equiv \sum_{P_{1} < P_{2} < \dots < P_{N}} C_{P_{1}P_{2}\dots P_{N}} \hat{a}_{P_{1}}^{\dagger} \hat{a}_{P_{2}}^{\dagger} \dots \hat{a}_{P_{N-1}}^{\dagger} \hat{a}_{P_{N}}^{\dagger} |\operatorname{vac}\rangle$$



$$Cl \, energy \qquad E_{\rm CI} = \min_{\{C_{\mathcal{J}}\}} \frac{\langle \Psi(\{C_{\mathcal{J}}\}) | \hat{H} | \Psi(\{C_{\mathcal{J}}\}) \rangle}{\langle \Psi(\{C_{\mathcal{J}}\}) | \Psi(\{C_{\mathcal{J}}\}) \rangle}$$

CI wave function

$$\Psi(\{C_{\mathcal{J}}\}) = \sum_{\mathcal{J}}^{determinants} C_{\mathcal{J}} |\det_{\mathcal{J}}\rangle$$

78

$$Cl \, energy \qquad E_{\rm CI} = \min_{\{C_{\mathcal{J}}\}} \frac{\langle \Psi(\{C_{\mathcal{J}}\}) | \hat{H} | \Psi(\{C_{\mathcal{J}}\}) \rangle}{\langle \Psi(\{C_{\mathcal{J}}\}) | \Psi(\{C_{\mathcal{J}}\}) \rangle}$$

The minimising CI coefficients are obtained by *diagonalising* the (so-called CI) *Hamiltonian matrix*

$$\mathbf{H} \equiv \left\{ H_{\mathcal{I}} = \langle \det_{\mathcal{I}} | \hat{H} | \det_{\mathcal{I}} \rangle \right\}$$

$$E_{\rm CI} = \min_{\{C_{\mathcal{F}}\}} \frac{\langle \Psi(\{C_{\mathcal{F}}\}) | \hat{H} | \Psi(\{C_{\mathcal{F}}\}) \rangle}{\langle \Psi(\{C_{\mathcal{F}}\}) | \Psi(\{C_{\mathcal{F}}\}) \rangle}$$

$$\frac{\partial}{\partial C_{\mathcal{I}}} \frac{\langle \Psi(\{C_{\mathcal{I}}\}) | \hat{H} | \Psi(\{C_{\mathcal{I}}\}) \rangle}{\langle \Psi(\{C_{\mathcal{I}}\}) | \Psi(\{C_{\mathcal{I}}\}) \rangle} = 0$$

$$\frac{\partial}{\partial C_{\mathscr{G}}} \frac{\langle \Psi(\{C_{\mathscr{F}}\}) | \hat{H} | \Psi(\{C_{\mathscr{F}}\}) \rangle}{\langle \Psi(\{C_{\mathscr{F}}\}) | \Psi(\{C_{\mathscr{F}}\}) \rangle} = 0$$

$$\frac{\partial}{\partial C_{\mathscr{G}}} \left[\langle \Psi(\{C_{\mathscr{F}}\}) | \hat{H} | \Psi(\{C_{\mathscr{F}}\}) \rangle \right]$$

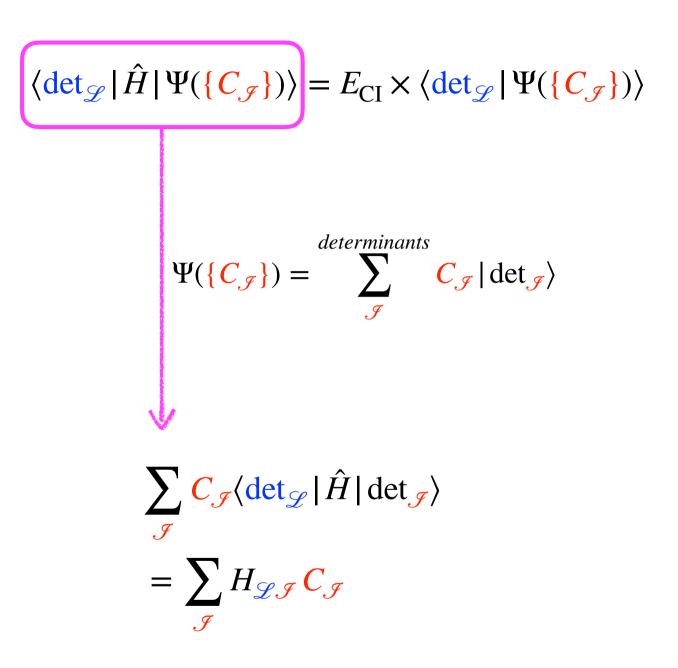
$$= \frac{\partial}{\partial C_{\mathscr{G}}} \left[\langle \Psi(\{C_{\mathscr{F}}\}) | \Psi(\{C_{\mathscr{F}}\}) \rangle \times \frac{\langle \Psi(\{C_{\mathscr{F}}\}) | \hat{H} | \Psi(\{C_{\mathscr{F}}\}) \rangle}{\langle \Psi(\{C_{\mathscr{F}}\}) | \Psi(\{C_{\mathscr{F}}\}) \rangle} \right]$$

$$= E_{CI} \times \frac{\partial}{\partial C_{\mathscr{G}}} \left[\langle \Psi(\{C_{\mathscr{F}}\}) | \Psi(\{C_{\mathscr{F}}\}) | \Psi(\{C_{\mathscr{F}}\}) \rangle \right]$$

$$\frac{\partial}{\partial C_{\mathcal{S}}} \left[\langle \Psi(\{C_{\mathcal{F}}\}) | \hat{H} | \Psi(\{C_{\mathcal{F}}\}) \rangle \right] = E_{\mathrm{CI}} \frac{\partial}{\partial C_{\mathcal{S}}} \left[\langle \Psi(\{C_{\mathcal{F}}\}) | \Psi(\{C_{\mathcal{F}}\}) \rangle \right]$$

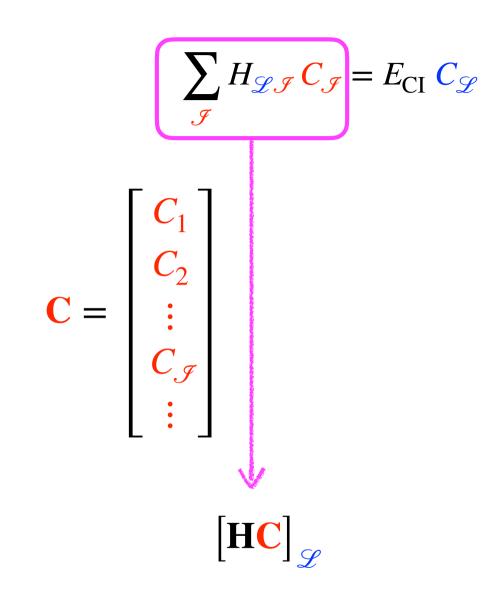
$$\begin{aligned} \frac{\partial}{\partial C_{\mathscr{G}}} \left[\langle \Psi(\{C_{\mathscr{F}}\}) | \hat{H} | \Psi(\{C_{\mathscr{F}}\}) \rangle \right] &= E_{\mathrm{CI}} \frac{\partial}{\partial C_{\mathscr{G}}} \left[\langle \Psi(\{C_{\mathscr{F}}\}) | \Psi(\{C_{\mathscr{F}}\}) \rangle \right] \\ &= 2 \langle \frac{\partial \Psi(\{C_{\mathscr{F}}\})}{\partial C_{\mathscr{G}}} | \hat{H} | \Psi(\{C_{\mathscr{F}}\}) \rangle \\ &= 2 \langle \det_{\mathscr{G}} | \hat{H} | \Psi(\{C_{\mathscr{F}}\}) \rangle \end{aligned}$$

$$2\langle \det_{\mathscr{L}} | \hat{H} | \Psi(\{C_{\mathscr{J}}\}) \rangle = E_{\mathrm{CI}} \underbrace{\frac{\partial}{\partial C_{\mathscr{L}}} \left[\langle \Psi(\{C_{\mathscr{J}}\}) | \Psi(\{C_{\mathscr{J}}\}) \rangle \right]}_{2E_{\mathrm{CI}} \times \langle \det_{\mathscr{L}} | \Psi(\{C_{\mathscr{J}}\}) \rangle}$$



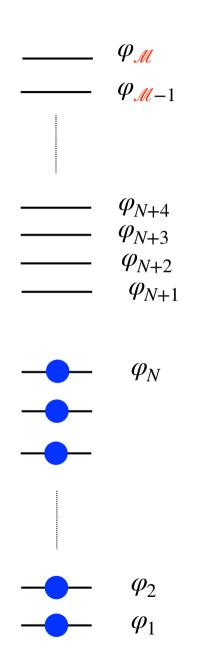
 $\sum H_{\mathscr{I}} C_{\mathscr{I}} = E_{\mathrm{CI}} \times \left\langle \det_{\mathscr{I}} | \Psi(\{C_{\mathscr{I}}\}) \right\rangle$.1

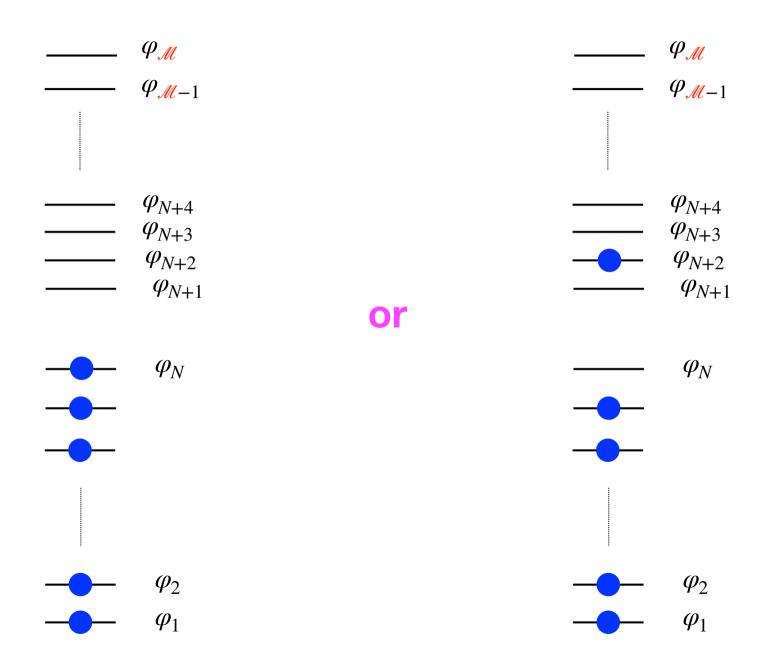
determinants $\Psi(\{C_{\mathcal{F}}\}) = \sum_{\mathcal{F}} C_{\mathcal{F}} |\det_{\mathcal{F}}\rangle$ $C_{\mathcal{L}}$

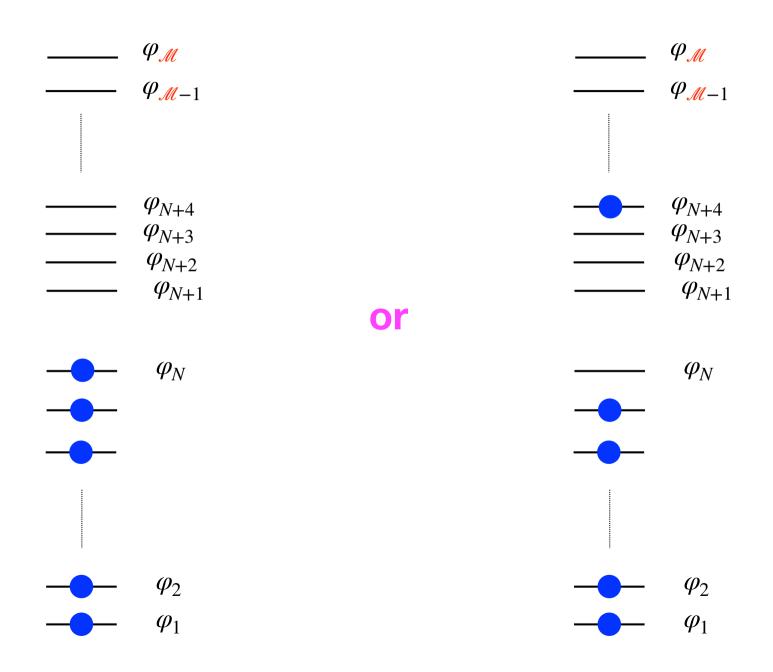


 $\left[\mathbf{HC}\right]_{\mathscr{L}} = E_{\mathrm{CI}} \ \mathbf{C}_{\mathscr{L}}$

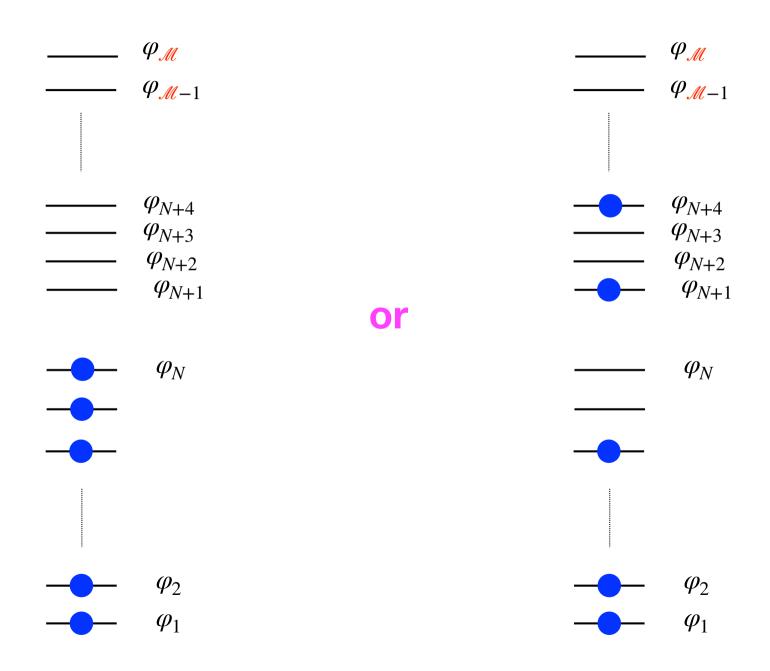
$$\mathbf{HC} = E_{\mathrm{CI}} \mathbf{C}$$

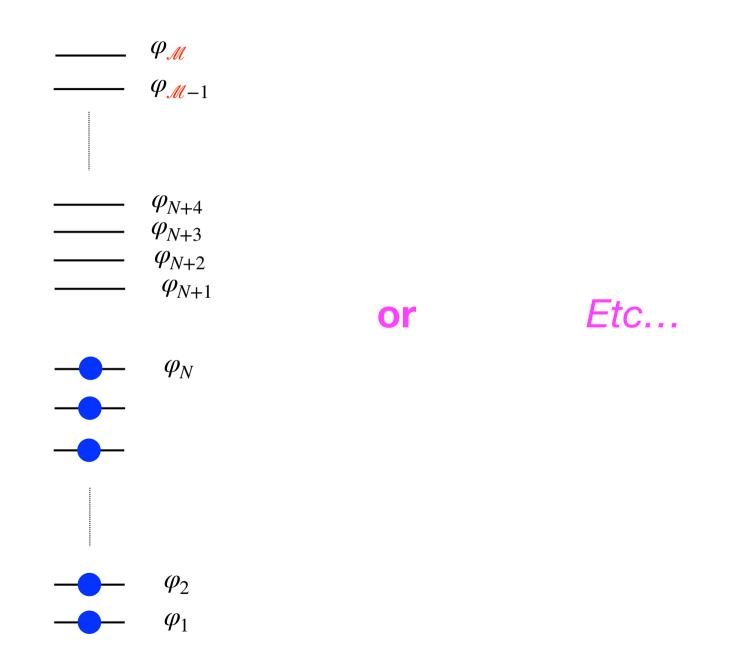


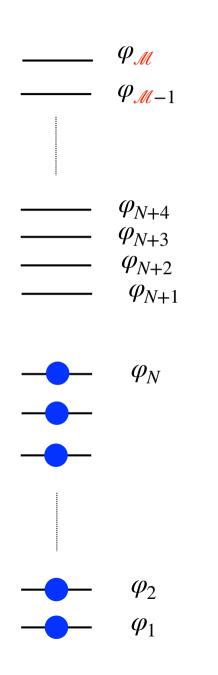




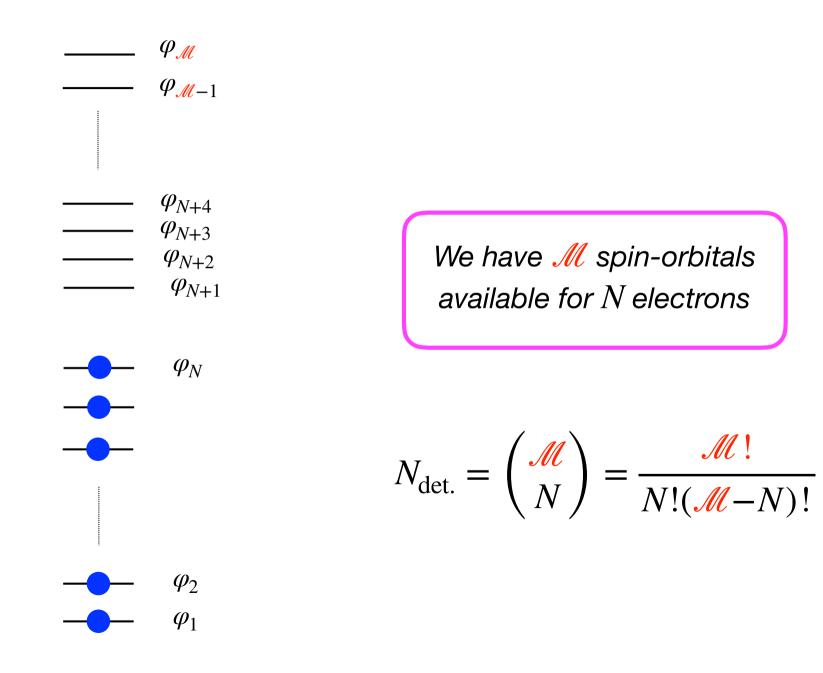
92

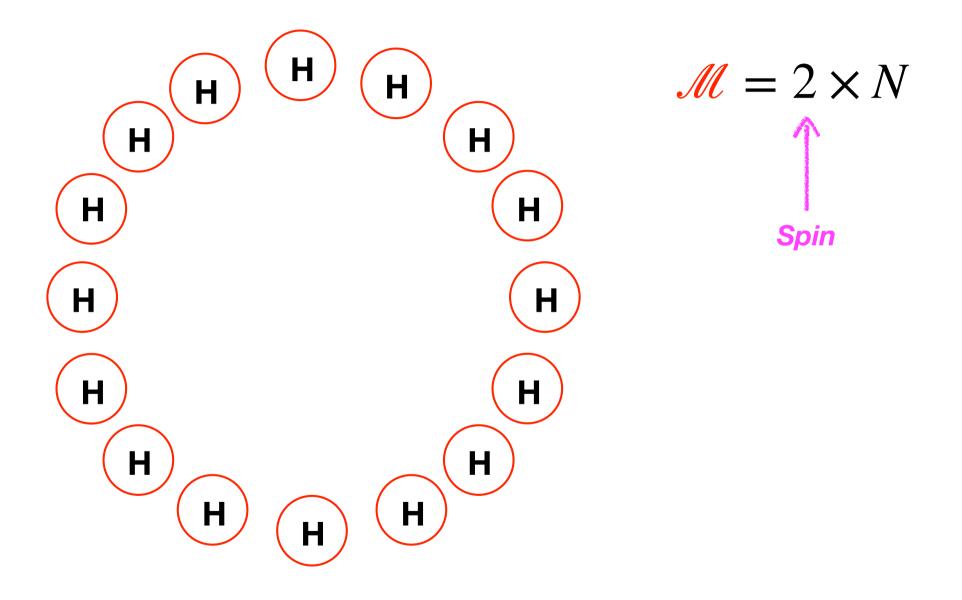






We have \mathcal{M} spin-orbitals available for N electrons





$$\mathcal{M} = 2 \times N$$

$$N_{\text{det.}} = \frac{\mathcal{M}!}{N!(\mathcal{M}-N)!} = \frac{(2N)!}{(N!)^2}$$

$$\mathcal{M} = 2 \times N$$

$$N_{\text{det.}} = \frac{\mathcal{M}!}{N!(\mathcal{M}-N)!} = \frac{(2N)!}{(N!)^2}$$

$$N! \approx \sqrt{2\pi N} \left(\frac{N}{e}\right)^N \quad \text{Stirling formula for large } N \text{ values}$$

$$\approx \frac{2^{2N}}{\sqrt{\pi N}} = \frac{e^{2N \ln 2}}{\sqrt{\pi N}}$$

$$N_{\rm det.} \approx rac{e^{2N\ln 2}}{\sqrt{\pi N}}$$

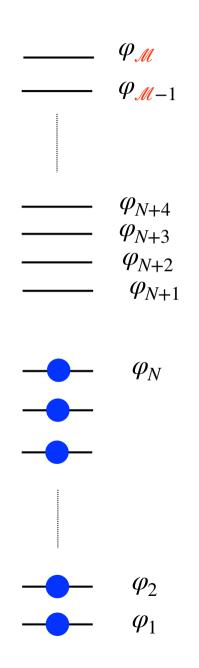
"Exponential wall"

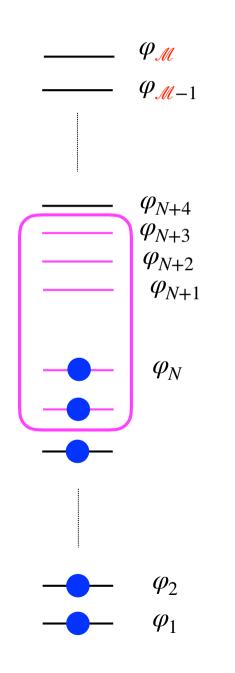
$$N_{\rm det.} \approx \frac{e^{2N\ln 2}}{\sqrt{\pi N}}$$

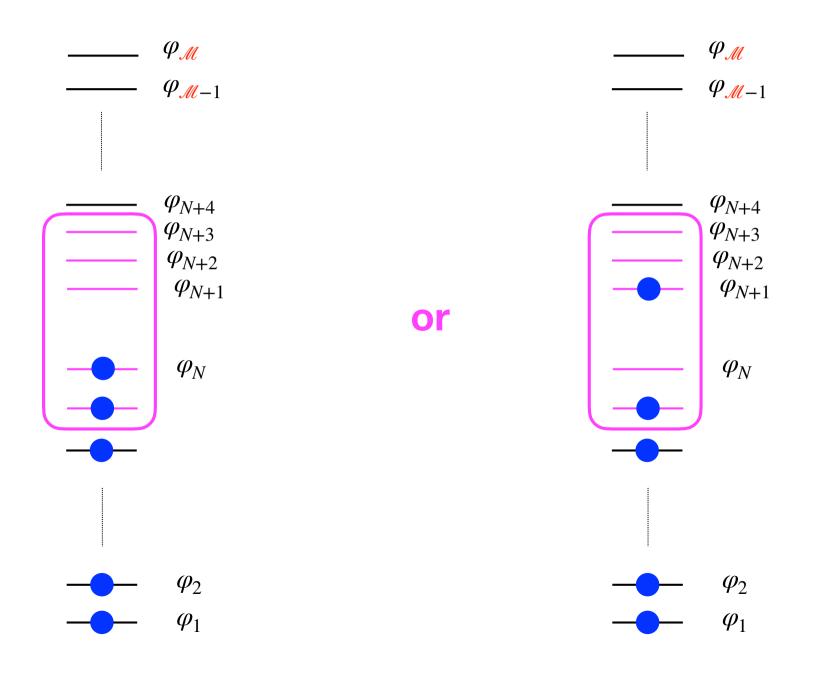
$$\approx^{N=50} 10^{29}$$

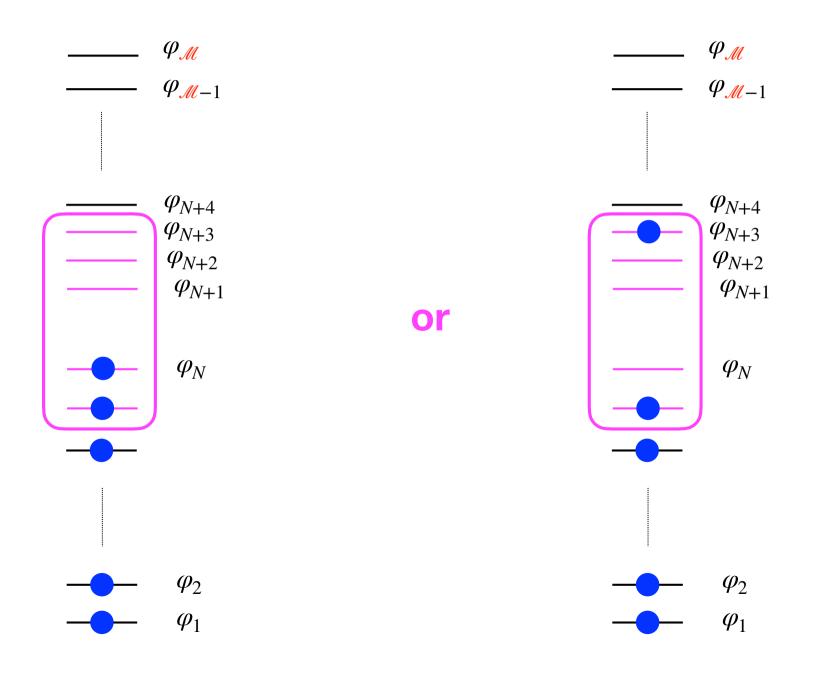
$$N_{\rm det.} \approx \frac{e^{2N\ln 2}}{\sqrt{\pi N}}$$

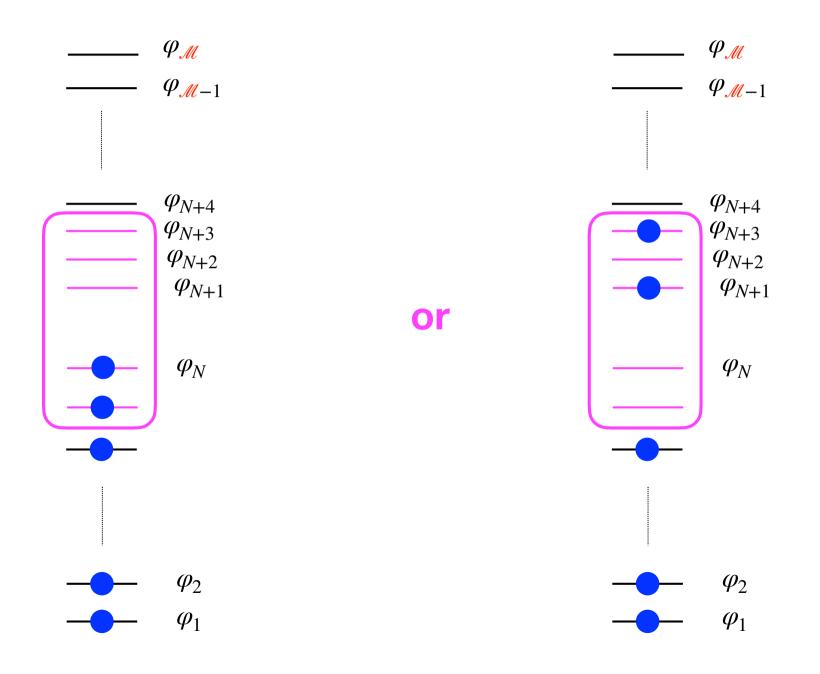
$$\approx 1.88 \times 10^{239}$$

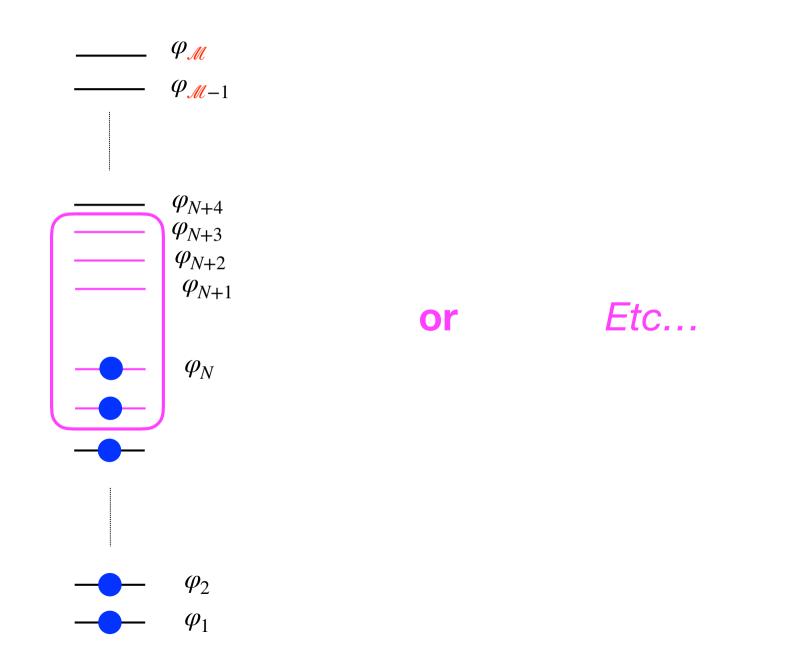




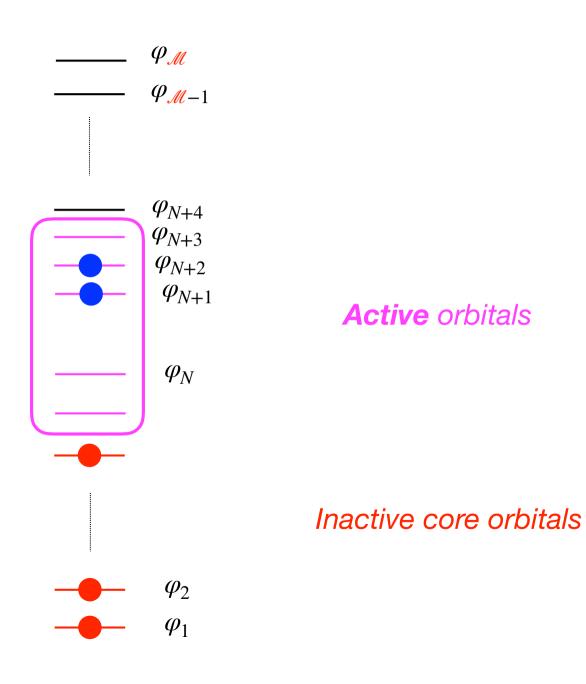




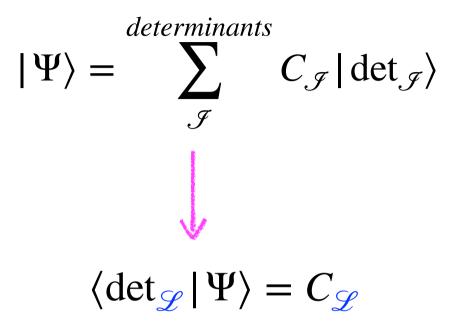


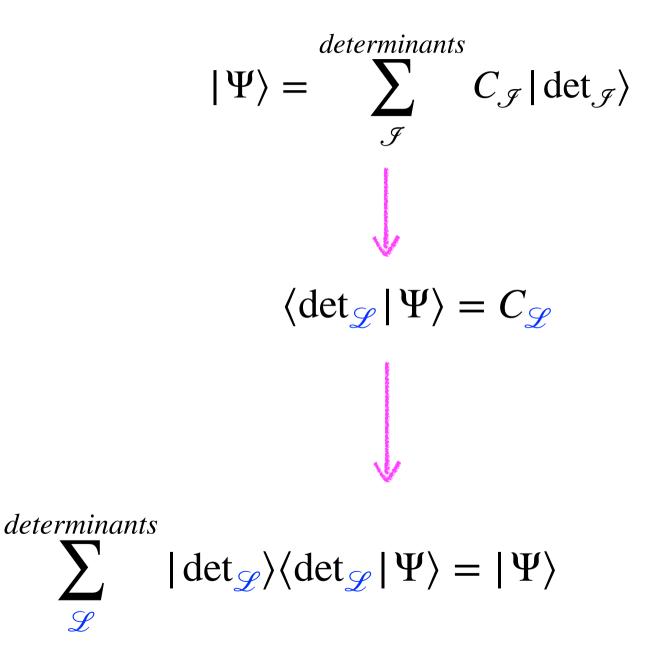


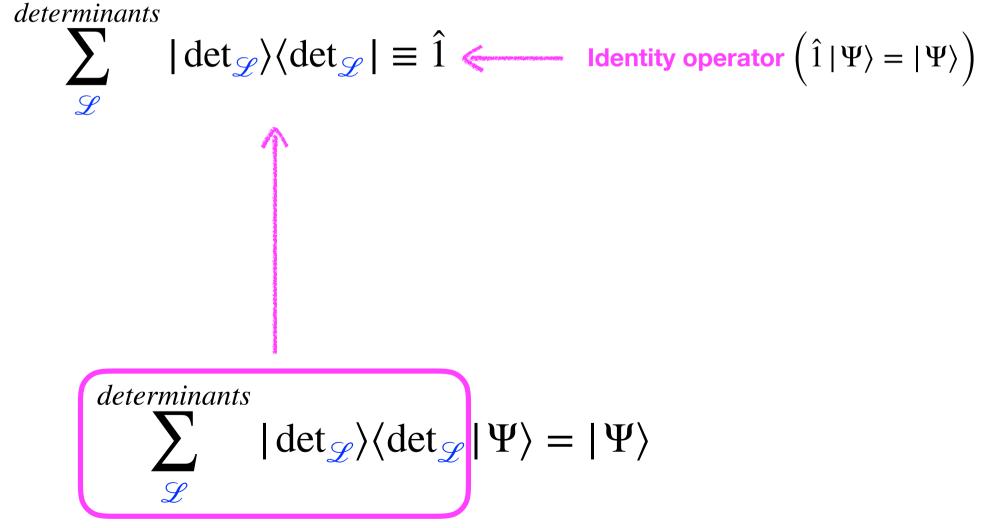
Complete active space CI (CAS-CI) method



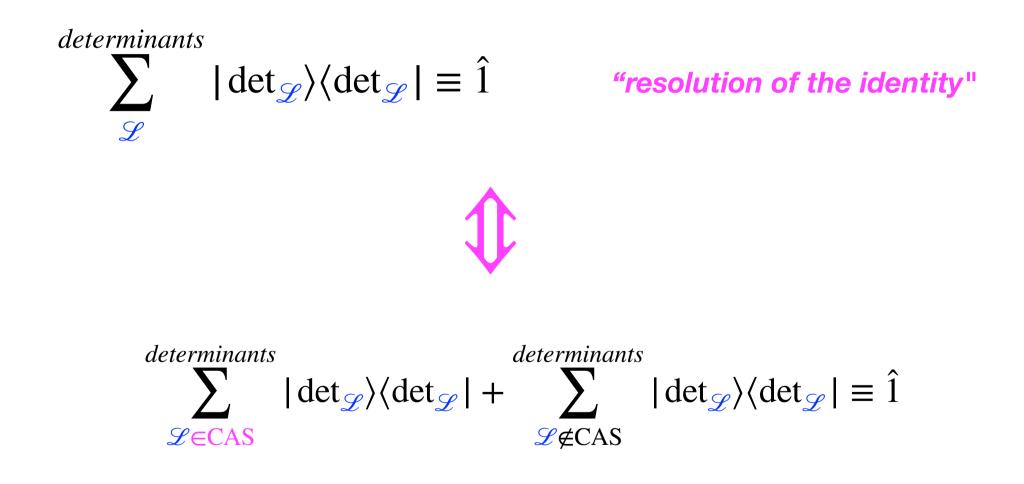
$$|\Psi\rangle = \sum_{\mathcal{J}}^{determinants} C_{\mathcal{J}} |\det_{\mathcal{J}}\rangle$$

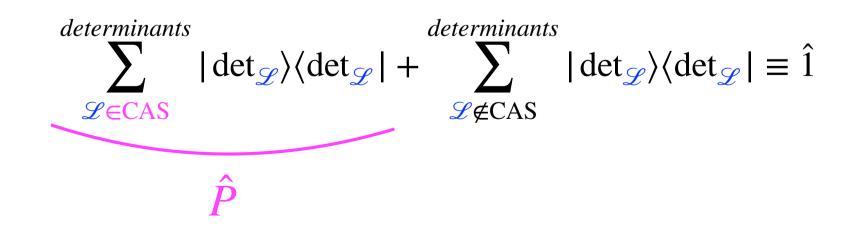




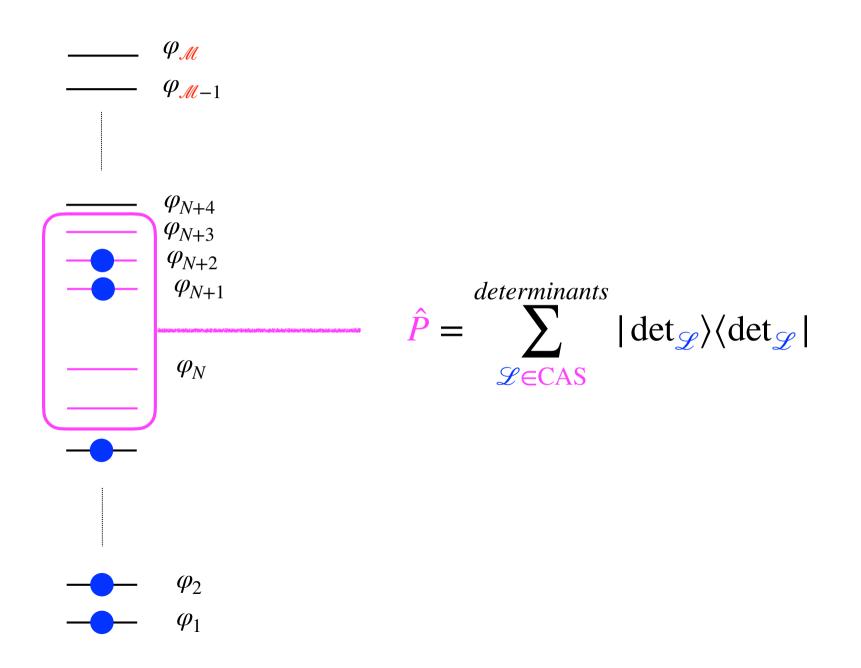


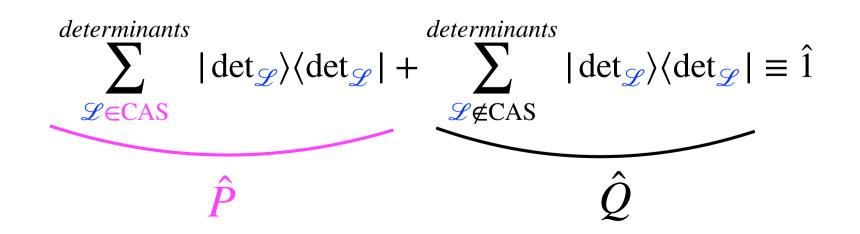
"resolution of the identity"





Complete active space (CAS) and effective Hamiltonian





$$\hat{H} | \Psi \rangle = \underline{E} | \Psi \rangle$$

$$\hat{H}|\Psi\rangle = \underline{E}|\Psi\rangle$$

$$|\Psi\rangle = \left(\hat{P} + \hat{Q}\right)|\Psi\rangle = \hat{P}|\Psi\rangle + \hat{Q}|\Psi\rangle$$

 $\hat{H} | \Psi \rangle = \underline{E} | \Psi \rangle$

$$|\Psi\rangle = \left(\hat{P} + \hat{Q}\right)|\Psi\rangle = \hat{P}|\Psi\rangle + \hat{Q}|\Psi\rangle$$

To-be-embedded part of the *N*-electron wave function

 $\hat{H} | \Psi \rangle = \underline{E} | \Psi \rangle$

$$|\Psi\rangle = \left(\hat{P} + \hat{Q}\right)|\Psi\rangle = \hat{P}|\Psi\rangle + \hat{Q}|\Psi\rangle$$

Can be determined
from $\hat{P}|\Psi\rangle$

$$\hat{H} | \Psi \rangle = E | \Psi \rangle$$

$$\hat{Q}\hat{H} | \Psi \rangle = E\hat{Q} | \Psi \rangle$$

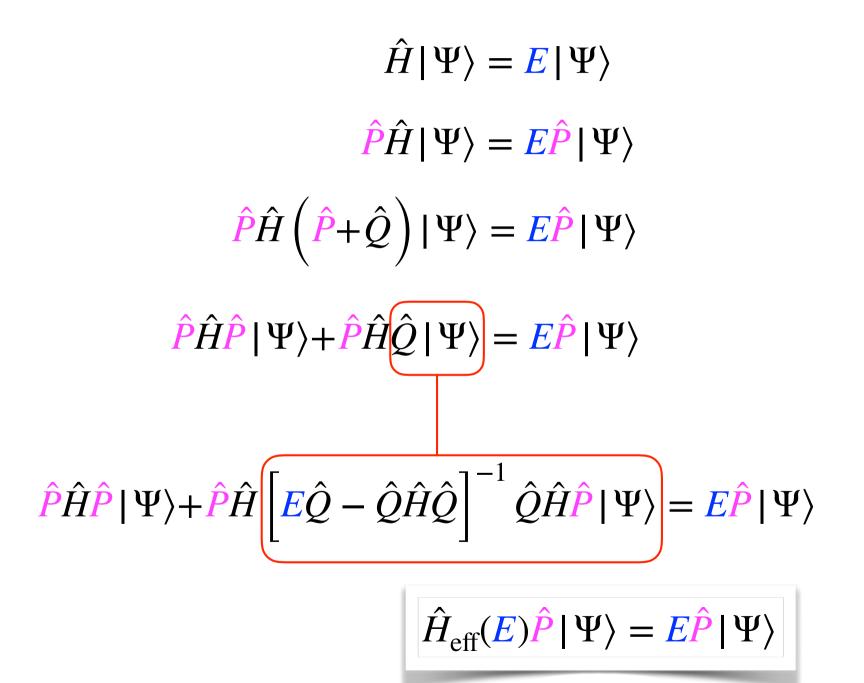
$$\hat{Q}\hat{H} \left(\hat{P} + \hat{Q}\right) | \Psi \rangle = E\hat{Q} | \Psi \rangle$$

$$\hat{Q}\hat{H}\hat{P} | \Psi \rangle + \hat{Q}\hat{H}\hat{Q} | \Psi \rangle = E\hat{Q} | \Psi \rangle$$

$$\hat{Q}\hat{H}\hat{P} | \Psi \rangle + \hat{Q}\hat{H}\hat{Q} | \Psi \rangle = \left(E\hat{Q} - \hat{Q}\hat{H}\hat{Q}\right)\hat{Q} | \Psi \rangle$$

$$\hat{Q}^{2} = \hat{Q}$$

$$\hat{Q} | \hat{\Psi} \rangle = \left(E\hat{Q} - \hat{Q}\hat{H}\hat{Q}\right)^{-1}\hat{Q}\hat{H}\hat{P} | \Psi \rangle$$



$$\hat{H}_{\text{eff}}(\boldsymbol{E})\hat{\boldsymbol{P}} |\Psi\rangle = \boldsymbol{E} \hat{\boldsymbol{P}} |\Psi\rangle$$
$$\hat{H}_{\text{eff}}(\boldsymbol{E}) = \hat{\boldsymbol{P}}\hat{H}\hat{\boldsymbol{P}} + \hat{\boldsymbol{P}}\hat{H} \left[\boldsymbol{E}\hat{\boldsymbol{Q}} - \hat{\boldsymbol{Q}}\hat{H}\hat{\boldsymbol{Q}}\right]^{-1} \hat{\boldsymbol{Q}}\hat{H}\hat{\boldsymbol{P}}$$

$$\hat{H}_{\rm eff}(\boldsymbol{E})\hat{\boldsymbol{P}}|\Psi\rangle = \boldsymbol{E}\hat{\boldsymbol{P}}|\Psi\rangle$$

Embedded wave function

$$\hat{H}_{\text{eff}}(\boldsymbol{E}) = \hat{\boldsymbol{P}}\hat{H}\hat{\boldsymbol{P}} + \hat{\boldsymbol{P}}\hat{H}\left[\boldsymbol{E}\hat{Q} - \hat{Q}\hat{H}\hat{Q}\right]^{-1}\hat{Q}\hat{H}\hat{\boldsymbol{P}}$$

$$\hat{H}_{eff}(E)\hat{P}|\Psi\rangle = E\hat{P}|\Psi\rangle$$

"Embedding Hamiltonian"

$$\hat{H}_{\text{eff}}(\boldsymbol{E}) = \hat{\boldsymbol{P}}\hat{H}\hat{\boldsymbol{P}} + \hat{\boldsymbol{P}}\hat{H}\left[\boldsymbol{E}\hat{Q} - \hat{Q}\hat{H}\hat{Q}\right]^{-1}\hat{Q}\hat{H}\hat{\boldsymbol{P}}$$

$$\hat{H}_{\rm eff}(E)\hat{P}|\Psi\rangle = E\hat{P}|\Psi\rangle$$

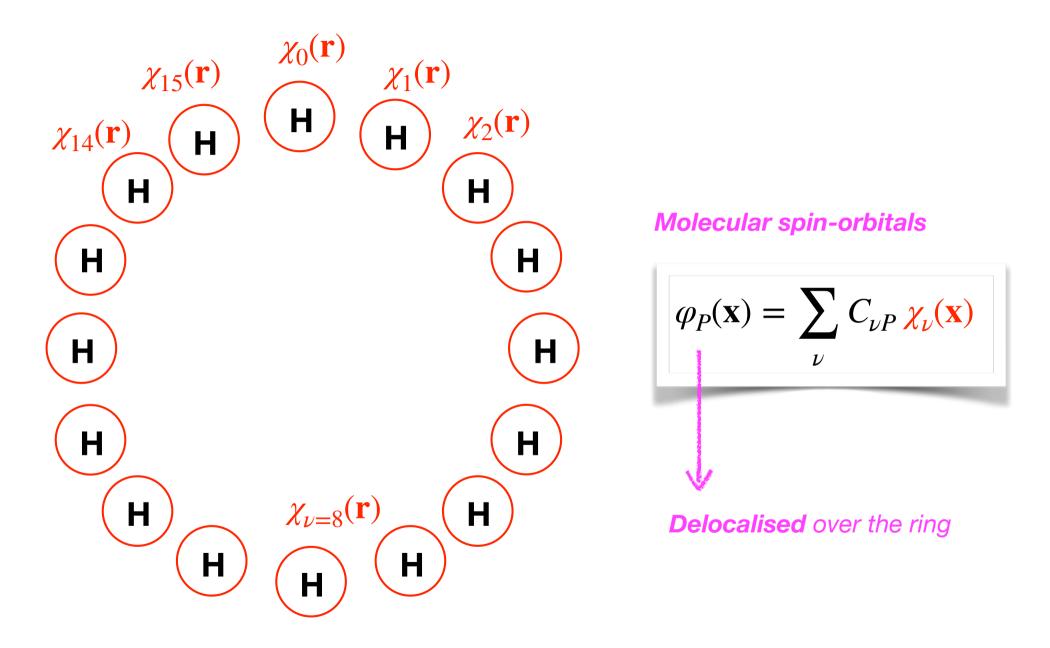
Energy (i.e frequency- or time-) dependent

$$\hat{H}_{\text{eff}}(\boldsymbol{E}) = \hat{\boldsymbol{P}}\hat{H}\hat{\boldsymbol{P}} + \hat{\boldsymbol{P}}\hat{H}\left[\boldsymbol{E}\hat{Q} - \hat{Q}\hat{H}\hat{Q}\right]^{-1}\hat{Q}\hat{H}\hat{\boldsymbol{P}}$$

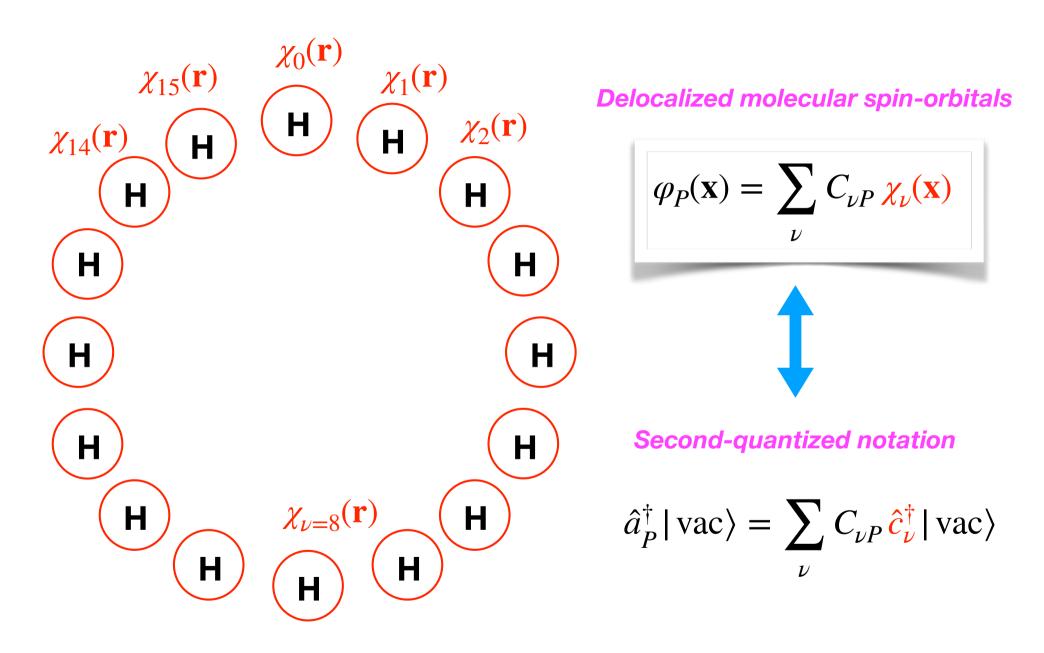
Strategy 3: Quantum embedding of localized orbitals

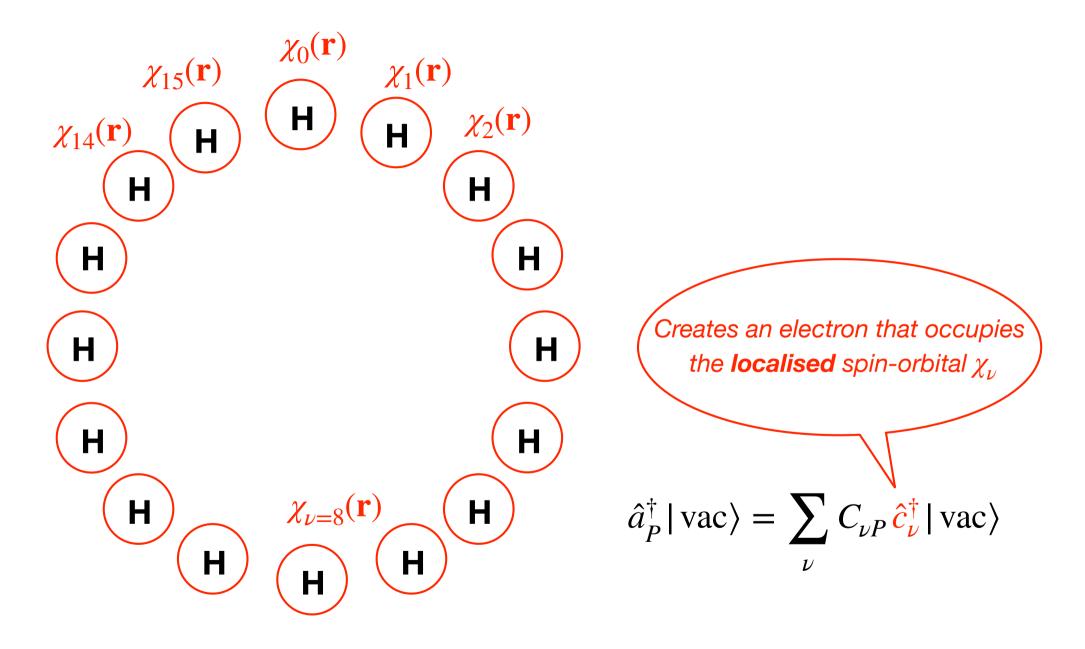
Strategy 3: Quantum embedding of localized orbitals

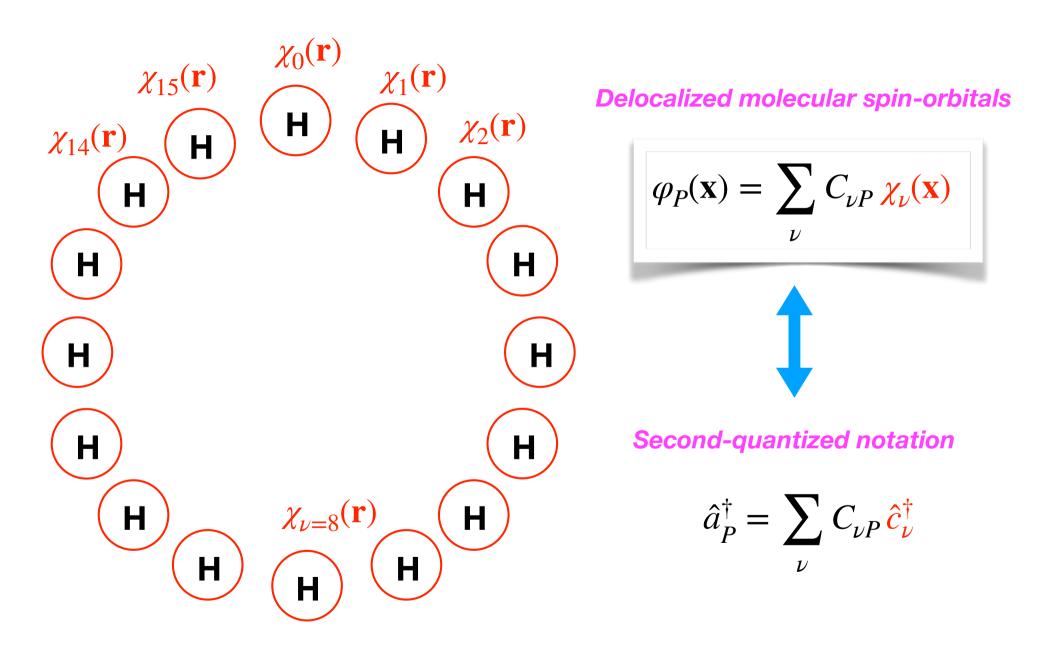
In this third approach we will proceed with a **fragmentation** of the **electronic Hamiltonian** (written in a **localised** orbital basis) and the design of embedding orbitals





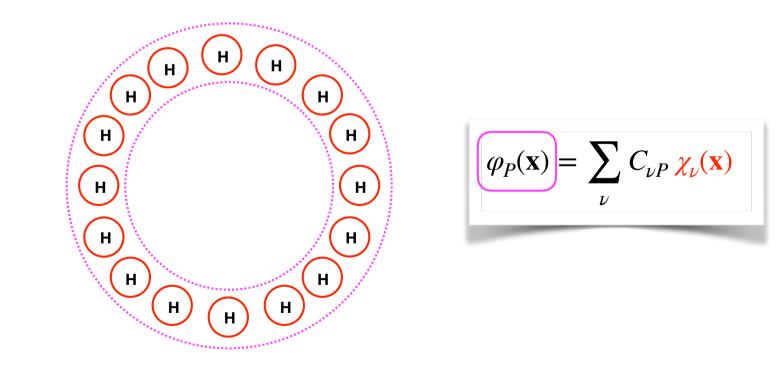




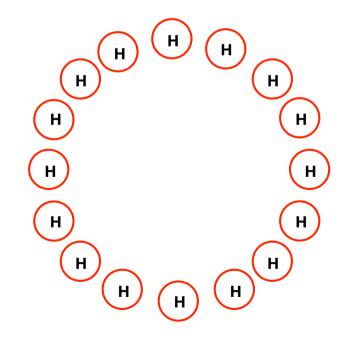


$$\hat{a}_P^{\dagger} = \sum_{\nu} C_{\nu P} \, \hat{c}_{\nu}^{\dagger}$$

Chemist's delocalized representation $\hat{a}_P^{\dagger} = \sum_{\nu} C_{\nu P} \hat{c}_{\nu}^{\dagger}$

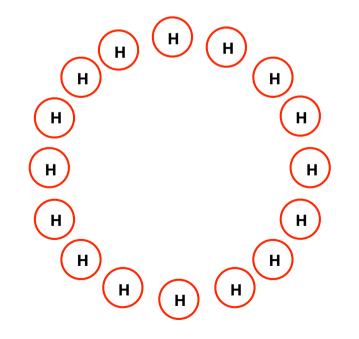


$$\hat{a}_{P}^{\dagger} = \sum_{\nu} C_{\nu P} \hat{c}_{\nu}^{\dagger} \xrightarrow{} Physicist's \text{ localized} representation}$$

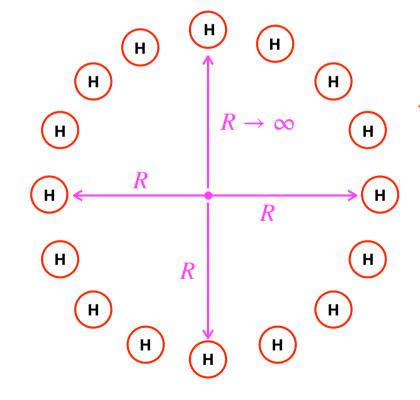


$$\hat{a}_{P}^{\dagger} = \sum_{\nu} C_{\nu P} \widehat{c}_{\nu}^{\dagger} \xrightarrow{} Physicist's \text{ localized}}_{representation}$$

Allows for a **fragmentation** of the molecule in the orbital space!



$$\hat{a}_{P}^{\dagger} = \sum_{\nu} C_{\nu P} \hat{c}_{\nu}^{\dagger} \xrightarrow{} Physicist's \text{ localized} representation}$$



Allows for a **fragmentation** of the molecule in the orbital space!

This is a relevant strategy for describing strong (local) electron correlation effects.

$$\hat{H} \equiv \sum_{PQ} \langle \varphi_P | \hat{h} | \varphi_Q \rangle \, \hat{a}_P^{\dagger} \hat{a}_Q \, + \frac{1}{2} \sum_{PQRS} \langle \varphi_P \varphi_Q | \hat{g} | \varphi_R \varphi_S \rangle \, \hat{a}_P^{\dagger} \hat{a}_Q^{\dagger} \hat{a}_S \hat{a}_R$$

$$\hat{H} \equiv \sum_{PQ} \langle \varphi_P | \hat{h} | \varphi_Q \rangle \hat{a}_P^{\dagger} \hat{a}_Q + \frac{1}{2} \sum_{PQRS} \langle \varphi_P \varphi_Q | \hat{g} | \varphi_R \varphi_S \rangle \hat{a}_P^{\dagger} \hat{a}_Q^{\dagger} \hat{a}_S \hat{a}_R$$
$$\hat{a}_P^{\dagger} = \sum_{\mu} C_{\mu P} \hat{c}_{\mu}^{\dagger}$$

$$\hat{H} \equiv \sum_{PQ} \langle \varphi_P | \hat{h} | \varphi_Q \rangle \hat{a}_P^{\dagger} \hat{a}_Q + \frac{1}{2} \sum_{PQRS} \langle \varphi_P \varphi_Q | \hat{g} | \varphi_R \varphi_S \rangle \hat{a}_P^{\dagger} \hat{a}_Q^{\dagger} \hat{a}_S \hat{a}_R$$
$$\hat{a}_P^{\dagger} = \sum_{\mu} C_{\mu P} \hat{c}_{\mu}^{\dagger} \qquad \hat{a}_Q = \sum_{\nu} C_{\nu Q} \hat{c}_{\nu}$$

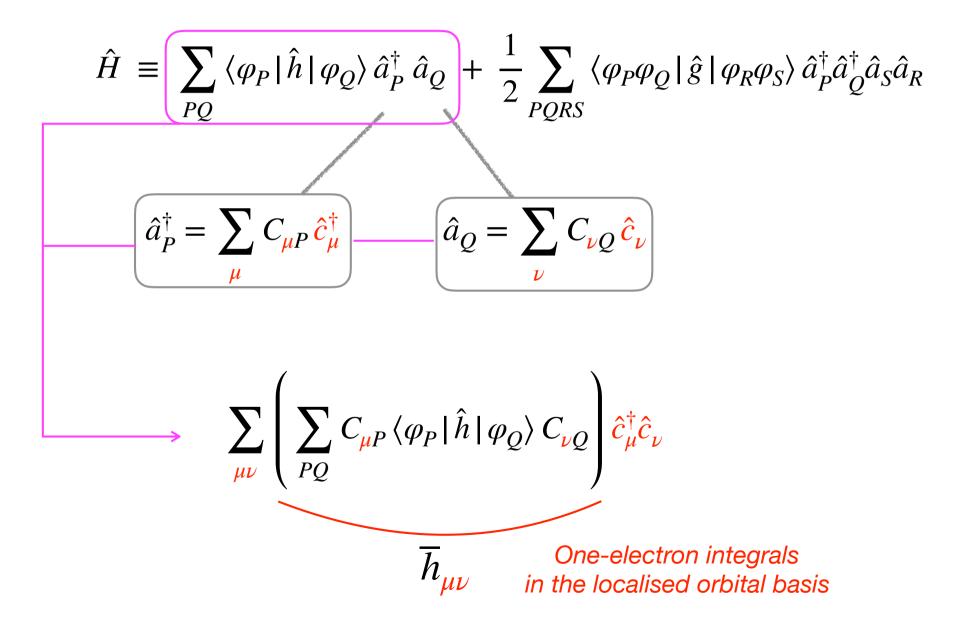
$$\hat{H} \equiv \sum_{PQ} \langle \varphi_{P} | \hat{h} | \varphi_{Q} \rangle \hat{a}_{P}^{\dagger} \hat{a}_{Q} + \frac{1}{2} \sum_{PQRS} \langle \varphi_{P} \varphi_{Q} | \hat{g} | \varphi_{R} \varphi_{S} \rangle \hat{a}_{P}^{\dagger} \hat{a}_{Q}^{\dagger} \hat{a}_{S} \hat{a}_{R}$$

$$\hat{a}_{P}^{\dagger} = \sum_{\mu} C_{\mu P} \hat{c}_{\mu}^{\dagger} \qquad \hat{a}_{Q} = \sum_{\nu} C_{\nu Q} \hat{c}_{\nu}$$

$$\sum_{\mu \nu} \left(\sum_{PQ} C_{\mu P} \langle \varphi_{P} | \hat{h} | \varphi_{Q} \rangle C_{\nu Q} \right) \hat{c}_{\mu}^{\dagger} \hat{c}_{\nu}$$

$$\overline{h}_{\mu \nu}$$

Delocalized representation



Delocalized representation

$$\hat{H} \equiv \sum_{PQ} \langle \varphi_P | \hat{h} | \varphi_Q \rangle \, \hat{a}_P^{\dagger} \hat{a}_Q \, + \, \frac{1}{2} \sum_{PQRS} \langle \varphi_P \varphi_Q | \hat{g} | \varphi_R \varphi_S \rangle \, \hat{a}_P^{\dagger} \hat{a}_Q^{\dagger} \hat{a}_S \hat{a}_R$$

Ш

Localized representation

Delocalized representation

$$\hat{H} \equiv \sum_{PQ} \langle \varphi_P | \hat{h} | \varphi_Q \rangle \, \hat{a}_P^{\dagger} \hat{a}_Q \, + \frac{1}{2} \sum_{PQRS} \langle \varphi_P \varphi_Q | \hat{g} | \varphi_R \varphi_S \rangle \, \hat{a}_P^{\dagger} \hat{a}_Q^{\dagger} \hat{a}_S \hat{a}_R$$

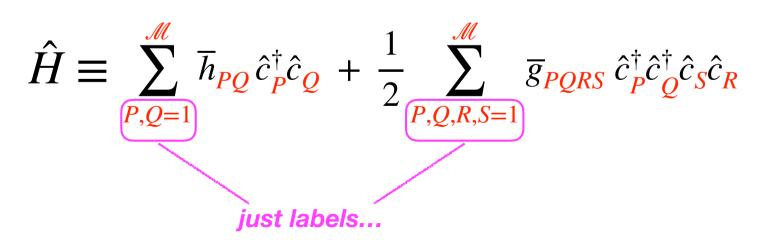
Ш

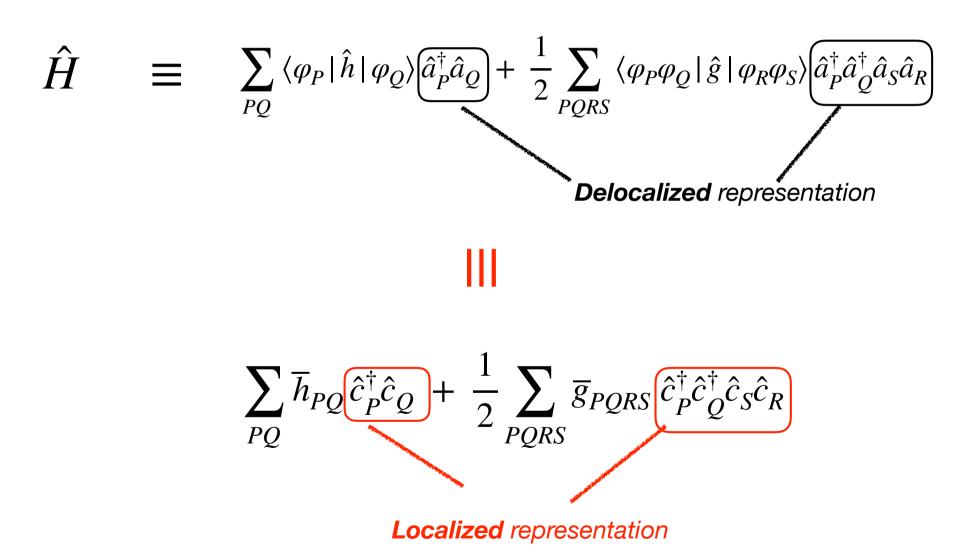
Delocalized representation

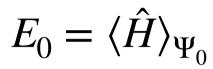
Localized representation

$$\sum_{\mu\nu} \overline{h}_{\mu\nu} \, \hat{c}^{\dagger}_{\mu} \hat{c}_{\nu} \,\, + \,\, \frac{1}{2} \sum_{\mu\nu\lambda\tau} \overline{g}_{\mu\nu\tau\lambda} \,\, \hat{c}^{\dagger}_{\mu} \hat{c}^{\dagger}_{\nu} \hat{c}_{\lambda} \hat{c}_{\tau}$$

 $\hat{H} \equiv \sum_{\mu,\nu=1}^{\mathscr{M}} \overline{h}_{\mu\nu} \, \hat{c}^{\dagger}_{\mu} \hat{c}_{\nu} \, + \frac{1}{2} \sum_{\mu,\nu,\lambda,\tau=1}^{\mathscr{M}} \overline{g}_{\mu\nu\tau\lambda} \, \hat{c}^{\dagger}_{\mu} \hat{c}^{\dagger}_{\nu} \hat{c}_{\lambda} \hat{c}_{\tau}$







 $E_0 = \langle \hat{H} \rangle_{\Psi_0}$

$$\hat{H} \equiv \sum_{PQ} \overline{h}_{PQ} \hat{c}_{P}^{\dagger} \hat{c}_{Q} + \frac{1}{2} \sum_{PQRS} \overline{g}_{PQRS} \hat{c}_{P}^{\dagger} \hat{c}_{Q}^{\dagger} \hat{c}_{S} \hat{c}_{R}$$

$$E_{0} = \langle \hat{H} \rangle_{\Psi_{0}}$$
$$= \sum_{PQ} \overline{h}_{PQ} \langle \hat{c}_{P}^{\dagger} \hat{c}_{Q} \rangle_{\Psi_{0}} + \frac{1}{2} \sum_{PQRS} \overline{g}_{PQRS} \langle \hat{c}_{P}^{\dagger} \hat{c}_{Q}^{\dagger} \hat{c}_{S} \hat{c}_{R} \rangle_{\Psi_{0}}$$

$$E_{0} = \langle \hat{H} \rangle_{\Psi_{0}}$$

$$= \sum_{PQ} \overline{h}_{PQ} \langle \hat{c}_{P}^{\dagger} \hat{c}_{Q} \rangle_{\Psi_{0}} + \frac{1}{2} \sum_{PQRS} \overline{g}_{PQRS} \langle \hat{c}_{P}^{\dagger} \hat{c}_{Q}^{\dagger} \hat{c}_{S} \hat{c}_{R} \rangle_{\Psi_{0}}$$

One-electron reduced density matrix (1RDM)

$$\gamma_{\underline{PQ}} = \langle \hat{c}_{\underline{P}}^{\dagger} \hat{c}_{\underline{Q}} \rangle_{\Psi_0}$$

$$E_{0} = \langle \hat{H} \rangle_{\Psi_{0}}$$

$$= \sum_{PQ} \overline{h}_{PQ} \langle \hat{c}_{P}^{\dagger} \hat{c}_{Q} \rangle_{\Psi_{0}} + \frac{1}{2} \sum_{PQRS} \overline{g}_{PQRS} \langle \hat{c}_{P}^{\dagger} \hat{c}_{Q}^{\dagger} \hat{c}_{S} \hat{c}_{R} \rangle_{\Psi_{0}}$$

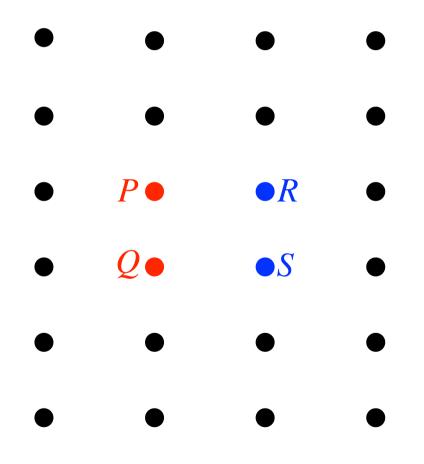
One-electron reduced density matrix (1RDM)

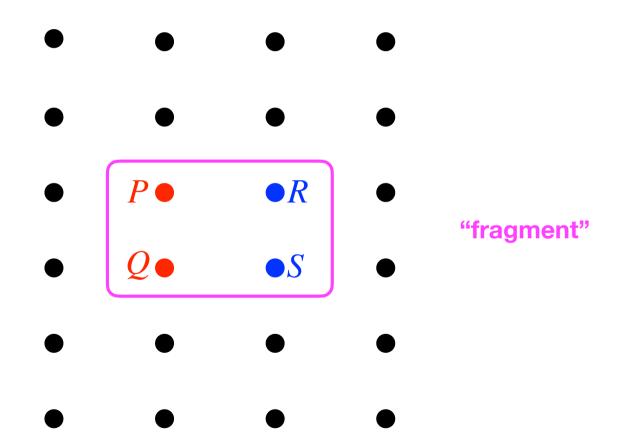
$$\gamma_{\underline{PQ}} = \langle \hat{c}_{\underline{P}}^{\dagger} \hat{c}_{\underline{Q}} \rangle_{\Psi_0}$$

Two-electron reduced density matrix (2RDM)

$$\Gamma_{\underline{PQSR}} = \langle \hat{c}_{\underline{P}}^{\dagger} \hat{c}_{\underline{Q}}^{\dagger} \hat{c}_{\underline{S}} \hat{c}_{\underline{R}} \rangle_{\Psi_0}$$

Let's consider a 2D lattice of localised spin-orbitals





$$\gamma_{PQ} = \langle \Psi_0 | \hat{c}_P^{\dagger} \hat{c}_Q | \Psi_0 \rangle$$

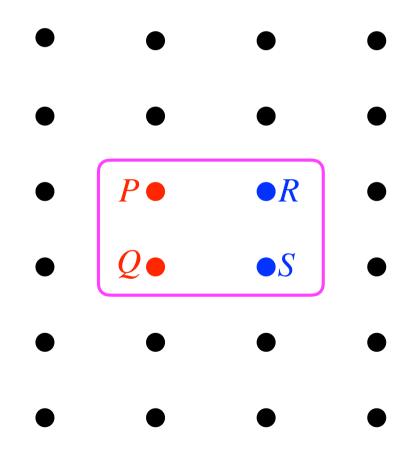
$$\bullet \quad \bullet \quad \bullet$$

$$\Gamma_{PQSR} = \langle \Psi_0 | \hat{c}_P^{\dagger} \hat{c}_S^{\dagger} \hat{c}_S \hat{c}_R | \Psi_0 \rangle$$

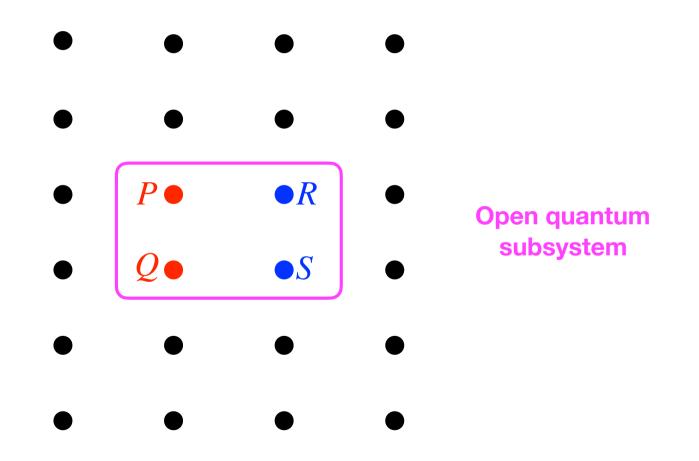
$$\bullet \quad \bullet \quad \bullet \quad \bullet$$

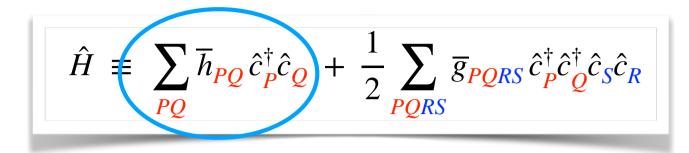
$$\Gamma_{PQSR} = \langle \Psi_0 | \hat{c}_P^{\dagger} \hat{c}_S^{\dagger} \hat{c}_S \hat{c}_R | \Psi_0 \rangle$$

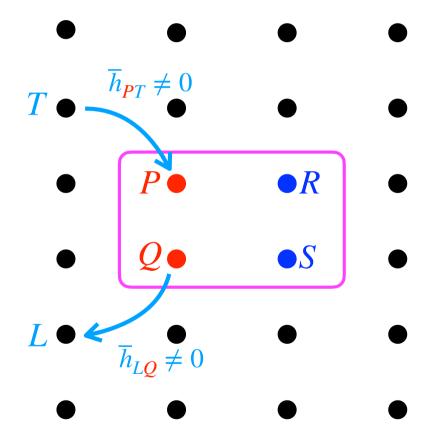
The *PQRS* orbital fragment is **NOT disconnected** from the other orbitals



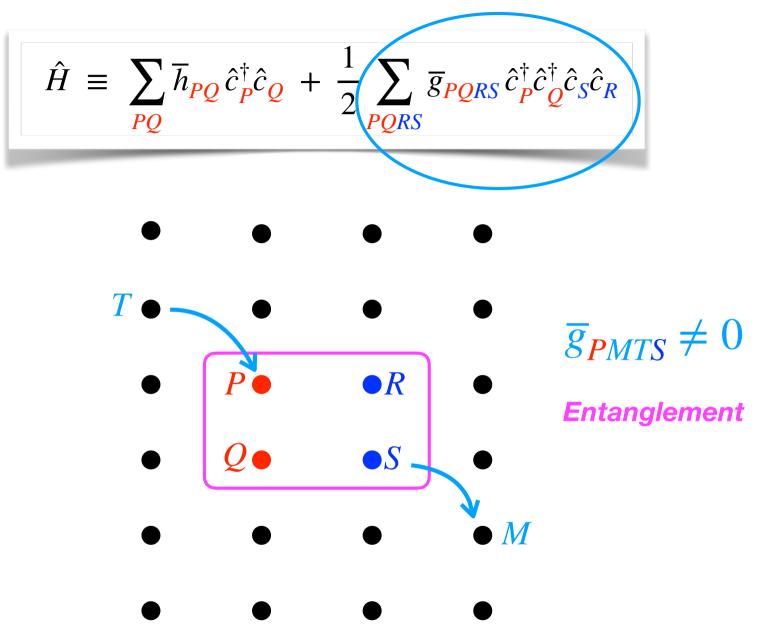
The *PQRS* orbital fragment is **NOT disconnected** from the other orbitals



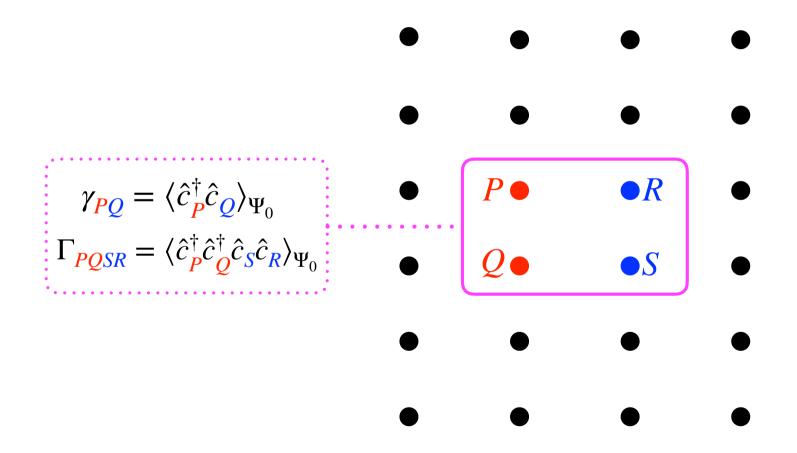


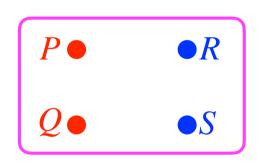


Entanglement

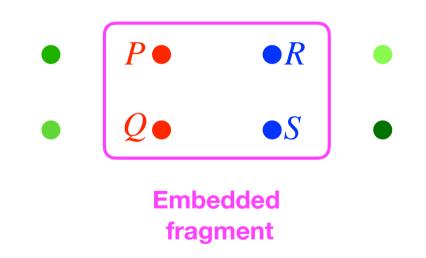


The evaluation of the RDMs requires, in principle, the full wave function Ψ_0

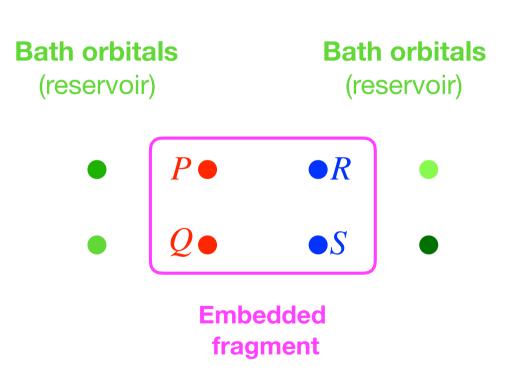




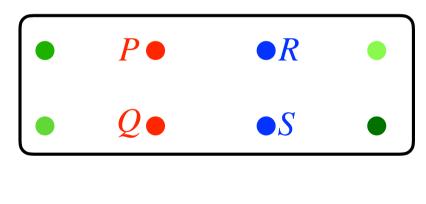
G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012).



G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012).

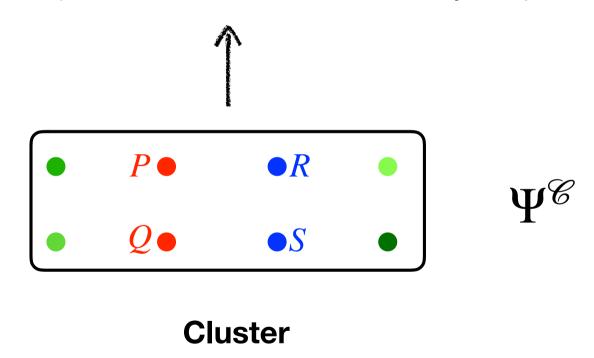


G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012).



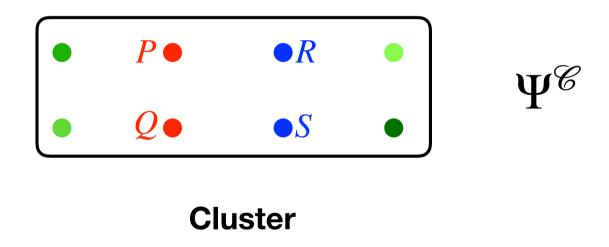
Cluster

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012).



$$\gamma_{\underline{PQ}} = \langle \Psi_0 | \hat{c}_{\underline{P}}^{\dagger} \hat{c}_{\underline{Q}} | \Psi_0 \rangle \approx \langle \Psi^{\mathscr{C}} | \hat{c}_{\underline{P}}^{\dagger} \hat{c}_{\underline{Q}} | \Psi^{\mathscr{C}} \rangle$$

 $\Gamma_{\underline{PQSR}} = \langle \Psi_0 | \hat{c}_{\underline{P}}^{\dagger} \hat{c}_{\underline{Q}}^{\dagger} \hat{c}_{\underline{S}} \hat{c}_{\underline{R}} | \Psi_0 \rangle \approx \langle \Psi^{\mathscr{C}} | \hat{c}_{\underline{P}}^{\dagger} \hat{c}_{\underline{Q}}^{\dagger} \hat{c}_{\underline{S}} \hat{c}_{\underline{R}} | \Psi^{\mathscr{C}} \rangle$



G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012).