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Time-dependent linear response regime

Time-dependent Schrödinger equation:

(
Ĥ + 2ε cos(ωt)

N∑
i=1

V(ri)×

)
Ψ(t) = i

∂Ψ(t)

∂t

Perturbation expansion through first order in ε (electric field strength, for example):

Ψ(t) ≡ Ψ(ε, ω, t)

= Ψ(ε = 0, ω, t) + ε
∂Ψ(ε, ω, t)

∂ε

∣∣∣∣
ε=0

+O(ε2)

= e−iE0tΨ0

−ε
∑
J>0

e−iEJ tΨJ

[
ei(ω+ωJ )t − 1

ω + ωJ
+
e−i(ω−ωJ )t − 1

−ω + ωJ

]

×

〈
ΨJ

∣∣∣∣∣
N∑
i=1

V(ri)×

∣∣∣∣∣Ψ0

〉
+O(ε2)

where ωJ = EJ − E0.
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Linear response of the density

Time-dependent density:

n(r, t) = N
∑
σ=± 1

2

∫
dx2 . . .

∫
dxN |Ψ(r, σ,x2, . . . ,xN , t)|2

≡ n(r, t, ω, ε).

The perturbation expansion of the density,

n(r, t, ω, ε) = nΨ0(r) + ε
∂n(r, t, ω, ε)

∂ε

∣∣∣∣
ε=0

+O(ε2),

is obtained by expanding Ψ∗(t)×Ψ(t) in ε and integrating over σ,x2, . . . ,xN .

The exact excitation energies are poles of the time-dependent electron density.
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Time-dependent DFT

Let us consider the time-dependent Hamiltonian

Ĥ(t) = T̂ + Ŵee +

N∑
i=1

v(ri, t)×

and a fixed initial electronic wavefunction Ψ(t = 0).

For a given time-dependent potential v(r, t) we can solve the Schrödinger equation:

Ĥ(t)Ψ(t) = i
∂Ψ(t)

∂t
.

By varying the time-dependent local potential v(r, t) we obtain a map of
time-dependent densities nΨ[v](t)(r) where Ψ[v](t) is the solution to the
time-dependent Schrödinger equation with potential v(r, t) and
Ψ[v](t = 0) = Ψ(t = 0).

If two potentials v(r, t) and v′(r, t) differ by a time-dependent function, then
Ψ[v](t) and Ψ[v′](t) will have the same density at any time.
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Runge–Gross theorem

According to the Runge–Gross theorem∗, the map of time-dependent densities can
be inverted (up to an additive time-dependent function in the potential).

This is nothing but the extension of the Hohenberg–Kohn theorem to the
time-dependent regime.

In the following, we will use the (already mentioned) potential

v(r, t) = vne(r) + 2ε cos(ωt)V(r).

The potential V(r) ≡ V(x, y, z) = z describes the interaction with a uniform
electric field along the z axis.

We will assume that the system is in the ground state at time t = 0.

∗E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
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Time-dependent KS equations
Like in the static case, the non-interacting N -electron time-dependent Schrödinger
equation can be simplified into one-electron equations.

For example, in the case of two electrons, the exact solution can be written as

Φ(r1, r2, t) = ϕ(r1, t)ϕ(r2, t)

where

[
− 1

2
∇2

r + v(r, t)

]
ϕ(r, t) = i

∂

∂t
ϕ(r, t).

The basic idea in standard TD-DFT is to map in the time-dependent regime the
real interacting (and therefore difficult to describe) system with Hamiltonian Ĥ(t)
onto a non-interacting system, in complete analogy with KS-DFT.

Therefore, by solving

[
T̂ +

∑N
i=1 v

KS(r, t)×

]
ΦKS(t) = i

∂

∂t
ΦKS(t),

where ΦKS(t) is a time-dependent Slater determinant, we should be able, in
principle, to reproduce the exact time-dependent electron density n(r, t) of the
molecule.

Therefore, for two electrons, we should have n(r, t) = 2
∣∣ϕKS(r, t)

∣∣2.
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Adiabatic approximation

Consequently, if a time-dependent perturbation is applied to the molecule, the
linear (and higher-order) response of the KS and real densities should be the same.

In particular, the poles of the KS density (which correspond to the poles of the KS
orbitals), should be the exact excitation energies of the true molecule (!).

The exact time-dependent KS potential is in general (i.e. for “real” systems)
unknown and difficult to model (memory effects).

In the standard adiabatic approximation, it is simplified as follows:

vKS(r, t)→ vne(r) + 2ε cos(ωt)V(r) +
δEHxc[nΦKS(t)]

δn(r)
,

where EHxc[n] is the (time-independent) ground-state
Hartree-exchange-correlation (Hxc) functional.

Note that, within the adiabatic approximation, the KS potential is local in time
(no memory effects are taken into account).
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Linear response TD-DFT

The unperturbed problem (ε = 0) is the regular time-independent KS one.

The linear response of the KS system describes explicitly single excitations only:

ϕKS(r1, t, ε)ϕ
KS(r2, t, ε) = e−2iε0tϕ0(r1)ϕ0(r2)

+ε e−iε0tϕ0(r1)
∂ϕKS(r2, t, ε)

∂ε

∣∣∣∣
ε=0

+ε e−iε0tϕ0(r2)
∂ϕKS(r1, t, ε)

∂ε

∣∣∣∣
ε=0

+O(ε2).

If we were considering the true physical time-dependent perturbation only,

2ε cos(ωt)V(r),

when solving the time-dependent KS equation, then the excitation energies (i.e.
the poles) would reduce to

εj − ε0 = ω0→j .
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Linear response TD-DFT

But there is another (important) perturbation in the KS system.

It relates to the update of the time-dependent density in the Hxc potential.

Within the adiabatic approximation, this additional perturbation reads as follows:

δEHxc

[
2
∣∣ϕKS(r, t)

∣∣2]
δn(r)

−
δEHxc

[
2 |ϕ0(r)|2

]
δn(r)

= 2

∫
dr′ fHxc(r′, r)×

(∣∣∣ϕKS(r, t)
∣∣∣2 − |ϕ0(r)|2

)
+O(ε2),

where fHxc(r′, r) is the so-called Hxc kernel.

Note that the perturbation depends on the linear response of the KS orbital which
itself depends on the perturbation... (self-consistent perturbation theory).

The linear response TD-DFT equation (including the kernel) is referred to as
Casida’s equation∗.

∗M. Casida in Recent Advances in Density Functional Methods, edited by D. P. Chong (World Scientific, Singapore, 1995).
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Mathematical interlude on functional derivatives

Let f : x 7−→ f(x) be a function of x. The derivative of f at x = x0 is obtained
from the Taylor expansion (δx is a small variation of x around x0)

f(x0 + δx) = f(x0) + δx
df(x)

dx

∣∣∣∣
x=x0

+
(δx)2

2

d2f(x)

dx2

∣∣∣∣
x=x0

+ . . .

Let S : n 7−→ S[n] be a functional of the density n. The functional derivative of

S at n = n0 is by definition a function of r that is denoted
δS[n0]

δn(r)
. The latter is

obtained from the Taylor expansion [δn is a small deviation in density from n0]:

S[n0+δn] = S[n0]+

∫
dr

δS[n0]

δn(r)
×δn(r)+

1

2

∫ ∫
drdr′

δ2S[n0]

δn(r′)δn(r)
×δn(r′)δn(r)+. . .

Example: for the Hartree (or Coulomb) functional EH[n] =
1

2

∫ ∫
drdr′

n(r)n(r′)

| r− r′ |
,

δEH[n0]

δn(r)
=

∫
dr′

n0(r′)

| r− r′ |
and fH(r′, r) =

δ2EH[n0]

δn(r′)δn(r)
=

1

| r− r′ |
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Multiple-electron excitations in TD-DFT

Casida’s equation is similar to an eigenvalue equation.

The size of the matrix to diagonalize is essentially given by the number of single
excitations.

Reducing size without losing information:

[
A B
B C

] [
x
y

]
= ω

[
x
y

]
⇔

{
Ax+By = ωx

(C − ω)y = −Bx

⇔


A(ω)x = ωx

A(ω) = A− B2

C − ω

⇔ A(ω) = ω

⇔ (A− ω)(C − ω)−B2 = 0 → two solutions!

Multiple excitations can be described in principle in TD-DFT with a
frequency-dependent Hxc kernel (i.e. beyond the adiabatic approximation).
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