
Introduction to density-functional theory

Introduction to density-functional theory

Emmanuel Fromager

Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique -
Université de Strasbourg /CNRS

Cours RFCT, pôle Est et Nord-Est, Strasbourg, France.

Institut de Chimie, Strasbourg, France Page 1



Introduction to density-functional theory

Electronic Hamiltonian

N -electron Hamiltonian (in atomic units) within the Born-Oppenheimer approximation:

Ĥ = T̂ + V̂ + Ŵee

T̂ =

N∑
i=1

t̂(i) where t̂(i) ≡ −
1

2
∇2

ri
→ kinetic energy

V̂ =
N∑
i=1

v̂(i) where v̂(i) ≡ v(ri)× ≡ −
nuclei∑
A

ZA

|ri −RA|
× → electron-nuclei attraction

Ŵee =
1

2

N∑
i 6=j

ŵee(i, j) where ŵee(i, j) ≡
1

|ri − rj |
× → electron-electron repulsion

A physical N -electron wavefunction Ψ(r1, r2, . . . , rN ) depends on the positions of each electron (spin

will be introduced later on) and fulfils the Schrödinger equation ĤΨ = EΨ .
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Introduction to density-functional theory

Rayleigh–Ritz variational principle for the ground state

• Let {ΨI}I=0,1,2,... denote the exact orthonormal electronic ground-state (I = 0) and excited-state
(I > 0) wavefunctions:

Ĥ|ΨI〉 = EI |ΨI〉, 〈ΨI |ΨJ 〉 = δIJ

• We assume for clarity that the ground state is non-degenerate: EI > E0 when I > 0.

• We will use real algebra in the following (non-relativistic quantum chemistry):

〈Ψ|Φ〉 = 〈Φ|Ψ〉∗ = 〈Φ|Ψ〉

• The exact ground-state energy can be expressed as E0 = min
Ψ
〈Ψ|Ĥ|Ψ〉 = 〈Ψ0|Ĥ|Ψ0〉

where the minimization is restricted to normalized wavefunctions Ψ.

Proof: ∀Ψ, |Ψ〉 =
∑
I

CI |ΨI〉 and 〈Ψ|Ĥ|Ψ〉 − E0〈Ψ|Ψ〉 =
∑
I

C2
I

(
EI − E0

)
≥ 0.
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Introduction to density-functional theory

Rayleigh–Ritz variational principle for the ground state

• Note that, if Ψ 6= Ψ0, then 〈Ψ|Ĥ|Ψ〉 > E0 .

Proof:

Since Ψ 6= Ψ0, we can find a non-zero integer K such that CK 6= 0,
otherwise C2

0 = 〈Ψ|Ψ〉 = 1 −→ Ψ = Ψ0 (!).

Consequently,

〈Ψ|Ĥ|Ψ〉 − E0 =
∑
I 6=0

C2
I

(
EI − E0

)
= C2

K︸︷︷︸
(
EK − E0

)
︸ ︷︷ ︸+

∑
I 6=0,K

C2
I︸︷︷︸
(
EI − E0

)
︸ ︷︷ ︸ > 0

> 0 > 0 ≥ 0 > 0
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Introduction to density-functional theory

Rayleigh–Ritz variational principle for the excited states

• Note also that the first excited-state energy E1 can be obtained variationally under normalization
(〈Ψ|Ψ〉 = 1) and orthogonality (〈Ψ|Ψ0〉 = 0) constraints:

E1 = min
Ψ⊥Ψ0

〈Ψ|Ĥ|Ψ〉 = 〈Ψ1|Ĥ|Ψ1〉

Proof:

Since 〈Ψ|Ψ0〉 = 0 = C0, |Ψ〉 =
∑
I>0

CI |ΨI〉 and

〈Ψ|Ĥ|Ψ〉 − E1〈Ψ|Ψ〉 =
∑
I>0

C2
I

(
EI − E1

)
≥ 0.

• Additional orthogonality constraints (〈Ψ|Ψ1〉 = 0, ...) enable to reach second and higher
excited-state energies.
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Introduction to density-functional theory

Stationarity condition

• Let us consider a function f : x 7→ f(x) and the Taylor expansion around x0 through first order
in δx = x− x0:

f(x) = f(x0 + δx) = f(x0) +
df(x)

dx

∣∣∣∣
x=x0

× δx + . . .

• We denote δf(x0) the expansion of f(x0 + δx)− f(x0) through first order in δx:

δf(x0) =
df(x)

dx

∣∣∣∣
x=x0

× δx .

• x0 is a stationary point for f if δf(x0) = 0 for any value of δx.

• In this example, where f is a function, the stationarity condition reads
df(x)

dx

∣∣∣∣
x=x0

= 0.

• Extrema of f (minima or maxima) are, for example, stationary points.
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Introduction to density-functional theory

• Let us now consider the energy functional E : Ψ 7→ E[Ψ] = 〈Ψ|Ĥ|Ψ〉which is, for our purpose,
defined on the domain of normalized wavefunctions Ψ.

• Note that the electronic wavefunction Ψ is a function of the electron coordinates. The energy is a
"function" of Ψ,

E[Ψ] =

∫
dr1 . . .

∫
drN Ψ∗(r1, . . . , rN )ĤΨ(r1, . . . , rN ),

hence the name functional.

• The normalization condition 〈Ψ|Ψ〉 = 1 implies 〈Ψ|Ĥ − E[Ψ]|Ψ〉 = 0 .

• If we consider infinitesimal variations Ψ→ Ψ + δΨ around Ψ that preserve normalization, we have
δ〈Ψ|Ĥ − E[Ψ]|Ψ〉 = 0, thus leading to δE[Ψ] = 2〈δΨ|Ĥ − E[Ψ]|Ψ〉. Therefore

δE[Ψ] = 0 ⇔ Ĥ|Ψ〉 = E[Ψ]|Ψ〉

• Important conclusion: both ground- and excited-state wavefunctions are stationary points for the
energy functional.
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Introduction to density-functional theory

Mathematical interlude: Lagrangian

• Rather than taking into account the normalization constraint 1− 〈Ψ|Ψ〉 = 0 explicitly in the
derivation of the stationarity condition, it is more convenient to introduce the so-called Lagrangian
functional (also referred to as Lagrangian),

L[Ψ, E] = E[Ψ] + E
(
1− 〈Ψ|Ψ〉

)
,

where E , which is referred to as Lagrange multiplier, is a number that has to be determined.

• The stationarity condition can then be rewritten as

∂L[Ψ, E]

∂E
= 0 → 1− 〈Ψ|Ψ〉 = 0 normalization condition !

AND

δL[Ψ, E] = 0 → 2〈δΨ|Ĥ − E|Ψ〉 = 0 for any δΨ (no constraint)

• Note that, when Ψ is stationary, E = E[Ψ].
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Introduction to density-functional theory

Spin, many-body wavefunction and Pauli principle

• The N -electron wavefunction Ψ (also referred to as many-body wavefunction) should take into
account the fact that electrons move in real space, hence the variables r1, r2, . . . , rN in Ψ, but it
should also describe their intrinsic angular momentum (the spin).

• The spin quantum state of an electron is usually denoted σ.

• It can be equal to α or β (i.e. ↑ or ↓).

• Consequently, the additional N variables σ1, σ2, . . ., σN should be taken into account in Ψ with
σi = α or β for i = 1, 2, . . . , N .

• Note that, even though the spin does not appear explicitly in the (non relativistic) Hamiltonian, it
plays a crucial role in the calculation of the energy spectrum. Indeed, because of the spin, two
electrons can occupy the same orbital without violating the Pauli principle.

• For convenience, we will denote Xi ≡ (ri, σi) so that the N -electron wavefunction reads

Ψ(X1, X2, . . . , XN ).
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Introduction to density-functional theory

Spin, many-body wavefunction and Pauli principle

• Consequently, the expectation value for the energy reads

〈Ψ|Ĥ|Ψ〉 =

∫
dX1

∫
dX2 . . .

∫
dXN Ψ∗(X1, X2, . . . , XN )ĤΨ(X1, X2, . . . , XN )

where
∫

dXi =

∫
R3

dri
∑

σi=α,β

for i = 1, 2, . . . , N .

• A physical N -electron wavefunction should be antisymmetric with respect to the permutation
Xi ←→ Xj :

Ψ(X1, . . . , Xi, . . . , Xj , . . . , XN ) = −Ψ(X1, . . . , Xj , . . . , Xi, . . . , XN )

which can be written in a more compact form as Ψ(X) = −Ψ (Xi↔j). Consequently,

Ψ(X) =
1

2

(
Ψ(X)−Ψ (Xi↔j)

)
→ Ψ(X) = 0 if Xi = Xj ,

thus preventing two electrons from being at the same position with the same spin (Pauli principle).
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Introduction to density-functional theory

Density-functional theory (DFT)

• The exact ground-state energy E0 can be obtained by calculating the associated ground-state
wavefunction Ψ0(X1, X2, . . . , XN ) explicitly. For that purpose, one should solve the Schrödinger
equation or apply the variational principle.

• FCI is applicable only to very (very) small molecular systems since it is computationally expensive.

• Note that the nuclear-electron attraction contribution to E0 can be expressed in terms of a much
simpler quantity n0 than the wavefunction, which is called the ground-state electron density:

E0 = 〈Ψ0|T̂ + Ŵee|Ψ0〉+

∫
R3

dr v(r)n0(r)︸ ︷︷ ︸
(v|n0)

where
n0(r) = N

∑
σ1

∫
dX2

∫
dX3 . . .

∫
dXN

∣∣∣Ψ0(rσ1, X2, X3, . . . , XN )
∣∣∣2

• Note that both kinetic and two-electron repulsion contributions to the energy cannot be expressed
explicitly in terms of n0.
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Introduction to density-functional theory

Expectation value of any one-electron potential interaction energy
• The following expression for the expectation value of the one-electron potential energy in terms of

the electron density will be used intensively in the rest of this lecture:〈
Ψ

∣∣∣∣∣
N∑
i=1

v(ri)×

∣∣∣∣∣Ψ
〉

=

∫
R3

dr v(r)nΨ(r) = (v|nΨ)

where
nΨ(r) = N

∑
σ1

∫
dX2

∫
dX3 . . .

∫
dXN

∣∣∣Ψ(rσ1, X2, X3, . . . , XN )
∣∣∣2.

• In the following we will write the electronic Hamiltonian as Ĥ ≡ T̂ + Ŵee +

N∑
i=1

v(ri)× where

T̂ and Ŵee are universal contributions (i.e. they do not depend on the nuclei) while the local
potential energy v(r) is molecule-dependent.

• Note that if Ψ is an N -electron eigenfunction of Ĥ with energy E, it remains eigenfunction when the
local potential is shifted by a constant i.e. v(r)→ v(r)− µ:(

T̂ + Ŵee +

N∑
i=1

(
v(ri)− µ

)
×
)

Ψ =
(
ĤΨ

)
−Nµ×Ψ =

(
E−Nµ

)
Ψ.
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Introduction to density-functional theory

electron density and density operator
• It is sometimes convenient to introduce the so-called density operator

n̂(r) ≡
N∑
i=1

δ(r− ri)× ← Dirac distribution !

for calculating the electron density.

• Since, by definition,
∫
R3

dri f(ri)δ(r− ri) = f(r) =

∫
R3

dri f(ri)δ(ri − r), we obtain

nΨ(r) = 〈Ψ|n̂(r)|Ψ〉

• Consequently, the local potential operator can be rewritten as

N∑
i=1

v(ri)× =

N∑
i=1

∫
R3

dr v(r)δ(r− ri)× =

∫
R3

dr v(r)n̂(r)

• Thus, we recover the following useful result

〈
Ψ

∣∣∣∣∣
N∑
i=1

v(ri)×

∣∣∣∣∣Ψ
〉

=

∫
R3

dr v(r)nΨ(r) .
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Introduction to density-functional theory

First Hohenberg–Kohn theorem

• Note that v → Ψ0 → E0

→ n0

• HK1: Hohenberg and Kohn∗ have shown that, in fact, the ground-state electron density fully
determines (up to a constant) the local potential v. Therefore

n0 → v → Ψ0 → E0

• In other words, the ground-state energy is a functional of the ground-state density: E0 = E[n0].

Proof (part 1):

Let us consider two potentials v and v′ that differ by more than a constant, which means that v(r)− v′(r)

varies with r. In the following, we denote Ψ0 and Ψ′0 the associated ground-state wavefunctions with
energies E0 and E′0, respectively.

∗P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
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Introduction to density-functional theory

First Hohenberg–Kohn theorem

If Ψ0 = Ψ′0 then

N∑
i=1

(
v(ri)− v′(ri)

)
×Ψ0 =

N∑
i=1

v(ri)×Ψ0 − v′(ri)×Ψ′0

=

(
T̂ + Ŵee +

N∑
i=1

v(ri)×
)

Ψ0 −
(
T̂ + Ŵee +

N∑
i=1

v′(ri)×
)

Ψ′0

= E0Ψ0 − E′0Ψ′0

=
(
E0 − E′0

)
×Ψ0

so that, in the particular case r1 = r2 = . . . = rN = r, we obtain

v(r)− v′(r) =
(
E0 − E′0

)
/N −→ constant (absurd !)

Therefore Ψ0 and Ψ′0 cannot be equal.
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Introduction to density-functional theory

First Hohenberg–Kohn theorem

Proof (part 2): Let us now assume that Ψ0 and Ψ′0 have the same electron density n0.

According to the variational principle

E0 <

〈
Ψ′0

∣∣∣∣∣T̂ + Ŵee +

N∑
i=1

v(ri)×

∣∣∣∣∣Ψ′0
〉

︸ ︷︷ ︸ and E′0 <

〈
Ψ0

∣∣∣∣∣T̂ + Ŵee +

N∑
i=1

v′(ri)×

∣∣∣∣∣Ψ0

〉
︸ ︷︷ ︸

E′0 + (v − v′|n0) E0 − (v − v′|n0)

thus leading to

0 < E0 − E′0 − (v − v′|n0) < 0 absurd !

∗P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
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Introduction to density-functional theory

Second Hohenberg–Kohn theorem

HK2: The exact ground-state density n0(r) of the electronic Hamiltonian

Ĥ[vne] ≡ T̂ + Ŵee +
N∑
i=1

vne(ri)×

minimizes the energy density functional E[n] = F [n] +

∫
R3
dr vne(r)n(r),

where the Hohenberg–Kohn universal functional F [n] is defined as

F [n] = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉,

and the minimum equals the exact ground-state energy E0:

min
n
E[n] = E[n0] = E0

Comment: we know from HK1 that n(r) → v[n](r) → Ψ[v[n]] = Ψ[n]︸ ︷︷ ︸
ground-state wavefunction with density n.

Institut de Chimie, Strasbourg, France Page 17



Introduction to density-functional theory

Second Hohenberg and Kohn theorem

Proof:

• for any density n(r), Ψ[n] is well defined according to HK1 and

〈Ψ[n]|Ĥ[vne]|Ψ[n]〉 ≥ E0

〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉︸ ︷︷ ︸+

∫
R3
dr vne(r)nΨ[n](r)︸ ︷︷ ︸ ≥ E0

F [n] n(r)

thus leading to E[n] ≥ E0

• When n(r) equals the exact ground-state density n0(r):

n0(r) → vne(r) → Ψ[n0] = Ψ[vne] = Ψ0

E[n0] = 〈Ψ0|T̂ + Ŵee|Ψ0〉+

∫
R3
dr vne(r)n0(r) = 〈Ψ0|T̂ + Ŵee + V̂ne|Ψ0〉 = E0
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Introduction to density-functional theory

Using auxiliary non-interacting electrons to reach the exact density !

• The energy density functional

E[n] = F [n] +

∫
R3
dr vne(r)n(r)

is fully known from the HK functional F [n], for which the explicit expression is unknown (!). Still,

unknown = unknown but somehow simpler +
(
unknown− unknown but somehow simpler

)

• HK1 was formulated for "fully-interacting" electrons described by the Hamiltonian

T̂ + Ŵee +

N∑
i=1

v(ri)× : n(r) → Ψ[n] → F [n] = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉

• HK1 is actually also valid for non-interacting (Kohn–Sham) electrons described by the Hamiltonian

T̂ +
N∑
i=1

v(ri)× : n(r) → ΦKS[n] → Ts[n] = 〈ΦKS[n]|T̂ |ΦKS[n]〉
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Introduction to density-functional theory

Non-interacting electrons

• Once the non-interacting local potential v(r) corresponding to the density of interest n is determined
(this is not trivial), Ts[n] is easily obtained since ΦKS[n] is a single Slater determinant.

• Two-electron case: let ϕ be the normalized solution to the one-electron Schrödinger equation

−
1

2
∇2

rϕ(r) + v(r)ϕ(r) = εϕ(r)

with lowest energy ε. Then ΦKS[n] ≡ |ϕαϕβ | which gives

ΦKS[n](r1, σ1, r2, σ2) =
1
√

2
ϕ(r1)ϕ(r2)

(
δσ1αδσ2β − δσ2αδσ1β

)
.

Indeed,

(
T̂ +

2∑
i=1

v(ri)×
)
ϕ(r1)ϕ(r2) = 2εϕ(r1)ϕ(r2) −→

(
T̂ +

2∑
i=1

v(ri)×
)

ΦKS[n] = 2εΦKS[n]
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Introduction to density-functional theory

Non-interacting electrons

• The density is simply expressed in terms of the orbital ϕ as follows

n(r) = nΦKS[n](r) = 2
∑

σ1,σ2=α,β

∫
R3

dr2

(
ΦKS[n](r, σ1, r2, σ2)

)2

= 2ϕ2(r)

and the non-interacting kinetic energy equals

Ts[n] = 〈ΦKS[n]|T̂ |ΦKS[n]〉 = 2 ε−
∫
R3

dr v(r)n(r) = 2 ε− 2

∫
R3

dr v(r)ϕ2(r)

which finally gives Ts[n] = 2×−
1

2

∫
R3

drϕ(r)∇2
rϕ(r)
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Non-interacting electrons

• For an even number N of electrons the KS determinant with density n can be formally written as

ΦKS[n] ≡ |ϕ2
1ϕ

2
2 . . . ϕ

2
N
2

|

where the KS orbitals ϕi fulfill

−
1

2
∇2

rϕi(r) + vKS[n](r)ϕi(r) = εiϕi(r) i = 1, . . . , N/2.

Note that the local potential vKS[n](r) is an implicit functional of n ensuring that

n(r) = nΦKS[n](r) = 2

N/2∑
i=1

ϕ2
i (r).

• Once this potential is obtained, the "non-interacting" kinetic energy simply equals

Ts[n] = 〈ΦKS[n]|T̂ |ΦKS[n]〉 = 2×

N
2∑
i=1

−
1

2

∫
R3
dr ϕi(r)∇2

rϕi(r)
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Kohn–Sham DFT (KS-DFT)

• The non-interacting kinetic energy density functional Ts[n] being unknown but somehow simpler,
Kohn and Sham proposed the following decomposition:

F [n] = Ts[n] +

(
F [n]− Ts[n]︸ ︷︷ ︸

)
?

• What are the physical effects contained in F [n]− Ts[n] ?

Let us have a look at the MP2 energy expression for analysis purposes ...

E0 = 〈ΦHF|T̂+V̂ne|ΦHF〉+
N/2∑
i,j=1

2〈ij|ij〉

︸ ︷︷ ︸
−

N/2∑
i,j=1

〈ij|ji〉

︸ ︷︷ ︸
+
∑
a,b,i,j

〈ab|ij〉
(

2〈ab|ij〉 − 〈ab|ji〉
)

εi + εj − εa − εb
+ . . .

︸ ︷︷ ︸
EH Ex Ec
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Kohn–Sham DFT (KS-DFT)

• Hartree–exchange–correlation energy functional: EHxc[n] = F [n]− Ts[n]

• Hartree (or Coulomb) energy in Hartree–Fock (HF): EH =
1

2

∫
R3

∫
R3

drdr′
nΦHF (r)nΦHF (r′)

|r− r′|

−→ universal Hartree functional EH[n] =
1

2

∫
R3

∫
R3

drdr′
n(r)n(r′)

|r− r′|

• Exchange energy in HF:

Ex = −
∫
R3

∫
R3

drdr′
∑N/2
i=1 ϕi(r)ϕi(r

′)
∑N/2
j=1 ϕj(r)ϕj(r

′)

|r− r′|
= 〈ΦHF|Ŵee|ΦHF〉 − EH

−→ universal (implicit) exchange functional

Ex[n] = 〈ΦKS[n]|Ŵee|ΦKS[n]〉 − EH[n]
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Kohn–Sham DFT (KS-DFT)

• Universal correlation functional: Ec[n] = EHxc[n]− EH[n]− Ex[n]

• According to HK2 the exact ground-state energy equals

E0 = F [n0] +

∫
R3

dr vne(r)n0(r)

= Ts[n0] + EHxc[n0] +

∫
R3

dr vne(r)n0(r)

= 〈ΦKS|T̂ |ΦKS〉+ EHxc[n0] +

∫
R3

dr vne(r)n0(r)

where ΦKS = ΦKS[n0] is the KS determinant with the exact physical (fully-interacting) density n0.

• Important conclusion: the exact energy is obtained with one single determinant in KS-DFT !

• How do we find ΦKS ? All we need to know is actually the Hxc functional EHxc[n]

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965)

Institut de Chimie, Strasbourg, France Page 25



Introduction to density-functional theory

Levy–Lieb constrained search formalism

• For a given density n there is a unique potential vKS[n](r), if it exists ..., such that ΦKS[n] is the

ground state of T̂ +

N∑
i=1

vKS[n](ri)× with density n.

• For all normalized wavefunctions Ψ with density n the following inequality is fulfilled:〈
ΦKS[n]

∣∣∣∣∣
(
T̂ +

N∑
i=1

vKS[n](ri)×
)∣∣∣∣∣ΦKS[n]

〉
≤
〈

Ψ

∣∣∣∣∣
(
T̂ +

N∑
i=1

vKS[n](ri)×
)∣∣∣∣∣Ψ

〉

−→ Ts[n] ≤ 〈Ψ|T̂ |Ψ〉 −→ Ts[n] = min
Ψ→n

〈Ψ|T̂ |Ψ〉

• Therefore 〈ΦKS|T̂ |ΦKS〉 = Ts[n0] = min
Ψ→n0

〈Ψ|T̂ |Ψ〉 but we do not know n0 ...

• Note that, as a consequence of the previous equality, Ts[n0] ≤ 〈Ψ0|T̂ |Ψ0〉 !
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Kohn–Sham DFT (KS-DFT)
• For any normalized wavefunction Ψ,

〈Ψ|T̂ |Ψ〉 ≥ Ts[nΨ]

〈Ψ|T̂ + V̂ne|Ψ〉 ≥ Ts[nΨ] +

∫
R3

dr vne(r)nΨ(r)

〈Ψ|T̂ + V̂ne|Ψ〉+ EHxc[nΨ] ≥ Ts[nΨ] + EHxc[nΨ] +

∫
R3

dr vne(r)nΨ(r)︸ ︷︷ ︸
E[nΨ] ≥ E0

where V̂ne ≡
N∑
i=1

vne(ri)×.

• The exact ground-state energy E0 is recovered when Ψ = ΦKS thus leading to

E0 = min
Ψ

{
〈Ψ|T̂ + V̂ne|Ψ〉+ EHxc[nΨ]

}

• Note that the minimization can be restricted to single determinantal wavefunctions Φ.
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Mathematical interlude: functional derivative

• Let f : x 7−→ f(x) be a function of x. The derivative of f at x = x0 is obtained from the Taylor
expansion (δx is a small variation of x around x0)

f(x0 + δx) = f(x0) +
df

dx

∣∣∣∣
x=x0

× δx+
1

2

d2f

dx2

∣∣∣∣
x=x0

× δx2 + . . .

• Let S : n 7−→ S[n] be a functional of the density n. The functional derivative of S at n = n0 is by

definition a function of r that is denoted
δS

δn(r)
[n0]. The latter is obtained from the Taylor expansion

(δn(r) is a small variation of the density around n0):

S[n0+δn] = S[n0]+

∫
R3

dr
δS

δn(r)
[n0]×δn(r)+

1

2

∫
R3

∫
R3

drdr′
δ2S

δn(r)δn(r′)
[n0]×δn(r)δn(r′)+. . .

• Example: S[n] =

∫
R3

drn2(r) −→
δS

δn(r)
[n0] = 2n0(r)
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Self-consistent KS equations
• The minimization of the KS-DFT-based energy expression must be performed under wavefunction

normalization constraint, thus leading to the following Lagrangian,

L[Ψ] = 〈Ψ|T̂ + V̂ne|Ψ〉+ EHxc[nΨ] + EKS
(

1− 〈Ψ|Ψ〉
)
.

• Using the expression nΨ(r) = 〈Ψ|n̂(r)|Ψ〉 and the stationarity condition δL[ΦKS] = 0 leads to(
T̂ +

N∑
i=1

[
vne(ri) +

δEHxc[nΦKS ]

δn(ri)

]
×
)

ΦKS = EKSΦKS ,

or, equivalently, ΦKS ≡
∣∣∣∣(ϕKS

1

)2 (
ϕKS

2

)2
. . .
(
ϕKS
N/2

)2
∣∣∣∣, where the KS orbitals ϕKS

i (r) fulfill the

following self-consistent equations,

−
1

2
∇2

rϕ
KS
i (r) +

(
vne(r) +

δEHxc[nΦKS ]

δn(r)

)
ϕKS
i (r) = εKS

i ϕKS
i (r) i = 1, . . . , N/2,

with nΦKS (r) = 2

N/2∑
i=1

∣∣∣ϕKS
i (r)

∣∣∣2 and EKS = 2

N/2∑
i=1

εKS
i .
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The Nobel Prize in Chemistry 1998

This website uses cookies to improve user experience. By using our website you consent to all cookies in
accordance with our Cookie Policy.

I UNDERSTAND

Share this: 6

The Nobel Prize in Chemistry 1998

Walter Kohn, John Pople

Walter Kohn - Facts

Work
The structures of molecules and the way they react with one another depends on the movement of electrons and their

distribution in space, which is determined by the laws of quantum mechanics. However, quantum mechanics requires

very complicated calculations for complex systems such as molecules. In 1964 Walter Kohn laid the foundation for a

theory that stated it was not necessary to account for every electron's movement. Instead, one could look at the

average density of electrons in the space. This presented new opportunities for calculations involving chemical

structures and reactions.

Walter Kohn

Born: 9 March 1923, Vienna, Austria

Died: 19 April 2016, Santa Barbara, CA, USA

Affiliation at the time of the award: University of California, Santa Barbara, CA, USA

Prize motivation: "for his development of the density-functional theory"

Field: theoretical chemistry

Prize share: 1/2

Walter Kohn - Facts https://www.nobelprize.org/nobel_prizes/chemistry/laureates/...

1 of 2 23/02/2017, 10:24
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Comparing wavefunction theory with KS-DFT
• E0 = min

Ψ

{
〈Ψ|T̂ + V̂ne + Ŵee|Ψ〉

}
= min

Φ

{
〈Φ|T̂ + V̂ne|Φ〉+ EHxc[nΦ]

}
↓ ↓

Ψ = ΦHF +
∑
k

Ckdetk︸ ︷︷ ︸
Φ = |ϕ2

1ϕ
2
2 . . . ϕ

2
N
2

|︸ ︷︷ ︸
multideterminantal wave function single determinant

• Standard approximations to Exc[n]:

ELDA
xc [n] =

∫
R3

dr f
(
n(r)

)
−→ local density approximation (LDA)

EGGA
xc [n] =

∫
R3

dr f
(
n(r), |∇n(r)|

)
−→ generalized gradient approximation

Emeta−GGA
xc [n] =

∫
R3

dr f
(
n(r), |∇n(r)|,∇2n(r),

N/2∑
i=1

|∇ϕi(r)|2
)
−→ meta-GGA

where f denotes a function.
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The uniform electron gas as a model system
Basic idea:

• Let us first consider a single free particle in a box with volume L× L× L and L→ +∞. The
Schrödinger equation is

−
1

2
∇2

rϕk(r) = εkϕk(r)

and the solutions are ϕk(r) =
1
√
L3

eik.r and εk = k2/2 with k ≡ (kx, ky , kz).

• Note that the wavefunction is complex

• In this case the electron density equals n(r) = |ϕk(r)|2 =
1

L3
←− constant !

• A large number of electrons N is then introduced into the box. The electron density n(r) = N/L3

is held constant as N → +∞ and L→ +∞

• The KS system is simply obtained when neglecting the electron-electron repulsions

• Analytical expression for the exchange energy: ELDA
x [n] = −

3

4

(
3

π

)1/3 ∫
R3

dr n4/3(r)

• Numerical calculation of the correlation energy (Coupled Cluster, Quantum Monte Carlo)
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Linear adiabatic connection
(
T̂ + Ŵee +

N∑
i=1

v1(ri)×
)

Ψ = EΨ λ = 1

↖

(
T̂ + λŴee +

N∑
i=1

vλ(ri)×
)

Ψλ = EλΨλ 0 < λ < 1

↖

(
T̂ +

N∑
i=1

v0(ri)×
)

ΦKS = E0ΦKS λ = 0

∀λ ∈ [0, 1] nΨ = nΨλ = nΦKS = n ←− density constraint !
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• Partially-interacting Levy–Lieb functional: Fλ[n] = min
Ψ→n

〈Ψ|T̂ + λŴee|Ψ〉 = 〈Ψλ|T̂ + λŴee|Ψλ〉

• Exact expression for the correlation energy density functional:

EHxc[n] =

∫ 1

0
dλ

dFλ[n]

dλ
=

∫ 1

0
dλ 〈Ψλ|Ŵee|Ψλ〉

−→ Ec[n] =

∫ 1

0
dλ

(
〈Ψλ|Ŵee|Ψλ〉 − 〈ΦKS|Ŵee|ΦKS〉

)
︸ ︷︷ ︸

correlation integrand Wλ
c [n]

• Scaling relation∗:

Eλc [n] =

∫ λ

0
dν

(
〈Ψν |Ŵee|Ψν〉 − 〈ΦKS|Ŵee|ΦKS〉

)
= λ2Ec[n1/λ]

where n1/λ is the density obtained by uniform coordinate scaling: n1/λ(r) = (1/λ)3n(r/λ)

• Correlation integrand written as a density functional: Wλ
c [n] =

∂Eλc [n]

∂λ
∗M. Levy and J. P. Perdew, Phys. Rev. B 48, 11638 (1993).
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Legendre–Fenchel transform
• According to the variational principle, for any trial potential v(r), the following inequality is

fulfilled,

〈
Ψλ

∣∣∣∣∣T̂ + λŴee +

N∑
i=1

v(ri)×

∣∣∣∣∣Ψλ
〉
≥ Eλ[v]

where Eλ[v] is the ground-state energy of T̂ + λŴee +

N∑
i=1

v(ri)×, thus leading to

Fλ[n] = sup
v

{
Eλ[v]−

∫
dr v(r)n(r)

}

• Note that the maximizing potential is vλ.

• In the particular case λ = 0, the Legendre–Fenchel transform enables to calculate the exact KS
potential.

• By varying λ in the range 0 ≤ λ ≤ 1 we can fully construct the adiabatic connection.
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For the ab initio calculation (CCSD) of the adiabatic connection see

A.M. Teale, S. Coriani and T. Helgaker, J. Chem. Phys. 130, 104111 (2009).

A.M. Teale, S. Coriani and T. Helgaker, J. Chem. Phys. 132, 164115 (2010).

A.M. Teale, S. Coriani and T. Helgaker, J. Chem. Phys. 133, 164112 (2010).
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