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Introduction to density-functional theory: discussion on the choice of basic variables in
electronic structure theory

Electronic Hamiltonian, SI and atomic units

• We work within the Born–Oppenheimer approximation (the nuclei are fixed)

• The Hamiltonian describing a N -electron molecule can be written as

Ĥ = T̂ + Ŵee + V̂ne

T̂ ≡
N∑
i=1

−
~2

2me
∇2

ri
=

N∑
i=1

−
~2

2me

(
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

)
→ kinetic energy

Ŵee =
1

2

N∑
i 6=j

ŵee(i, j) with ŵee(i, j) ≡
e2

4πε0rij
× → electron-electron repulsion

V̂ne =

N∑
i=1

v̂ne(i) with v̂ne(i) ≡ −
nuclei∑
A

ZAe
2

4πε0|ri −RA|
× → electron-nuclei attraction

• A physical N -electron wavefunction Ψ(r1, r2, . . . , rN ) depends on the positions of each electron

(spin will be introduced later on) and fulfills the Schrödinger equation ĤΨ = EΨ .
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electronic structure theory

Electronic Hamiltonian, SI and atomic units

• Hydrogen atom (N = 1):

Ĥ → −
~2

2me

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
−

e2

4πε0
√
x2 + y2 + z2

× ,

E → En = −
EI

n2
where the ionization energy equals EI =

mee4

2(4πε0)2~2
≈ 13.6 eV.

The ground-state wavefunction (n = 1) equals Ψ1s(x, y, z) =
1

√
πa

3/2
0

e−
√
x2+y2+z2/a0 where

the Bohr radius equals a0 =
4πε0~2

mee2
≈ 0.529 Å.

• Working with so-called "atomic units" simply consists in using unitless energy Ẽ = E/2EI and
coordinates x̃ = x/a0, ỹ = y/a0, z̃ = z/a0.

• The ground-state energy of the hydrogen atom is therefore −0.5 in atomic units.

• Returning to the general N -electron problem, the Schrödinger equation in atomic units is obtained

from
ĤΨ

2EI
= ẼΨ
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Electronic Hamiltonian, SI and atomic units

• Change of variables in the wavefunction:

Ψ(r1, r2, . . . , rN ) = Ψ(a0r̃1, a0r̃2, . . . , a0r̃N ) = Ψ̃(r̃1, r̃2, . . . , r̃N ) = Ψ̃

(
r1

a0
,
r2

a0
, . . . ,

rN

a0

)

Using Ψ̃ rather than Ψ and the relations 2EI =
~2

mea2
0

=
e2

4πε0a0
leads to

T̂ /2EI ≡
N∑
i=1

−
a2

0

2

(
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

)
≡

N∑
i=1

−
1

2

(
∂2

∂x̃2
i

+
∂2

∂ỹ2
i

+
∂2

∂z̃2
i

)
,

Ŵee/2EI ≡
1

2

N∑
i 6=j

a0

rij
× =

1

2

N∑
i 6=j

1

r̃ij
×,

V̂ne/2EI ≡
N∑
i=1

−
ZAa0

|ri −RA|
× =

N∑
i=1

−
ZA

|̃ri − R̃A|
×

• In the following we will simply drop the "tilde" symbol and denote T̂ /2EI as T̂ , Ŵee/2EI as Ŵee,
V̂ne/2EI as V̂ne, and Ĥ/2EI as Ĥ .
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Variational principle for the ground state
• Let {ΨI}I=0,1,2,... denote the exact orthonormal electronic ground-state (I = 0) and excited-state

(I > 0) wavefunctions:
Ĥ|ΨI〉 = EI |ΨI〉, 〈ΨI |ΨJ 〉 = δIJ

• We assume for clarity that the ground state is non-degenerate: EI > E0 when I > 0.

• We will use real algebra in the following (non-relativistic quantum chemistry)

• The exact ground-state energy can be expressed as E0 = min
Ψ
〈Ψ|Ĥ|Ψ〉 = 〈Ψ0|Ĥ|Ψ0〉

where the minimization is restricted to normalized wavefunctions Ψ.

Proof: ∀Ψ, |Ψ〉 =
∑
I

CI |ΨI〉 and 〈Ψ|Ĥ|Ψ〉 − E0〈Ψ|Ψ〉 =
∑
I>0

C2
I

(
EI − E0

)
≥ 0.

• Note that, if Ψ 6= Ψ0, then 〈Ψ|Ĥ|Ψ〉>E0 ← important result that will be used later on !

• The basic variable is here the electronic wavefunction −→wavefunction theory

• Once the exact wavefunction Ψ0 is obtained, the electronic structure is completely known (any
observable related to electrons can be described)
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One-electron wavefunction

• Schrödinger theory: the quantum state of a single electron is written as

|Ψ〉 =

∫
R3

drΨ(r)|r〉

where Ψ(r) is the one-electron wavefunction (orbital) and |r〉 denotes the quantum state "the
electron is at position r".

• Pauli theory: the spin of the electron is now considered as an additional degree of freedom. The
quantum state of a single electron is then written as

|Ψ〉 =

∫
R3

dr
∑
σ=α,β

Ψ(r, σ)|r, σ〉

where |r, α〉 denotes the quantum state "electron at position r with spin up" and |r, β〉 corresponds
to the state "electron at position r with spin down"

• In the non-relativistic case, a single electron will have a spin σ0 which is either up or down. The
corresponding wavefunction Ψσ0 can then be written as a spin-orbital Ψσ0 (r, σ) = Ψ(r)δσσ0 .
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electronic structure theory

Two-electron wavefunction

• With the notations X = (r, σ) and
∫

dX =

∫
R3

dr
∑
σ=α,β

,

the one-electron quantum state in Pauli theory is simply written as

|Ψ〉 =

∫
dX Ψ(X)|X〉

• Two-electron case:
|Ψ〉 =

∫ ∫
dX1dX2 Ψ(X1, X2)|1: X1, 2: X2〉

where the two-electron quantum state |1: X1, 2: X2〉 corresponds to "electron 1 in state |X1〉 and
electron 2 in state |X2〉"

• Since electrons cannot be distinguished, the states

|1: X1, 2: X2〉 and |1: X2, 2: X1〉

are equivalent from the experimental point of view.
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Two-electron wavefunction

• According to the Pauli principle, electron 1 and electron 2 cannot occupy the same state |X〉. In other
words, the two-electron quantum state |1: X, 2: X〉 is not physical.

• The latter is automatically removed from the theory when working in the basis of anti-symmetrized
two-electron states:

|1: X1, 2: X2〉 = |1: X1, 2: X2〉A + |1: X1, 2: X2〉S

where

|1: X1, 2: X2〉A =
1

2

(
|1: X1 , 2: X2〉 − |1: X2, 2: X1 〉

)
−→ anti-symmetric (physical !)

and

|1: X1, 2: X2〉S =
1

2

(
|1: X1 , 2: X2〉+ |1: X2, 2: X1 〉

)
−→ symmetric (not physical !)
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Two-electron wavefunction

• Physical two-electron state:

|Ψ〉 → |ΨA〉 =

∫ ∫
dX1dX2 Ψ(X1, X2)|1: X1, 2: X2〉A

=

∫ ∫
dX1dX2 ΨA(X1, X2)|1: X1, 2: X2〉

where the anti-symmetrized wavefunction equals

ΨA(X1, X2) =
1

2

(
Ψ(X1, X2)−Ψ(X2, X1)

)

• Anti-symmetrization condition: ΨA(X1, X2) = −ΨA(X2, X1)

• Note that Slater determinants fulfill this condition. Consequently a linear combination of Slater
determinants (as used in wavefunction theory) will also fulfill this condition.
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wavefunction and densities: two-electron case
• A physical two-electron wavefunction should fulfill Ψ(X1, X2) = −Ψ(X2, X1). In addition we

want it to be normalized,

〈Ψ|Ψ〉 =

∫ ∫
dX1dX2 Ψ2(X1, X2) = 1

• Expectation value for the kinetic energy:

〈Ψ|T̂ |Ψ〉 = −
1

2

∫
R3

dr ∇2
r′

[
n1(r, r′)

]∣∣∣
r=r′

where the spin-summed one-electron density matrix equals

n1(r, r′) = 2
∑

σ1=α,β

∫
dX2 Ψ(r, σ1, X2)Ψ(r′, σ1, X2)

• Expectation value for the nuclear-electron interaction energy:

〈Ψ|V̂ne|Ψ〉 =

∫
R3

dr vne(r)n(r)

where the electron density equals n(r) = n1(r, r) ←− key quantity in DFT ...
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• Expectation value for the electron-electron interaction energy:

〈Ψ|Ŵee|Ψ〉 =

∫
R3

∫
R3

dr1dr2
n2(r1, r2)

r12

where r12 = |r1 − r2| and the spin-summed pair density equals

n2(r1, r2) =
∑

σ1,σ2=α,β

Ψ2(r1, σ1, r2, σ2)

• Generalization to an arbitrary number N of electrons: a physical electronic quantum state should
fulfill for 1 ≤ i < j ≤ N ,

|Ψ〉 =

∫
. . .

∫
dX1 . . . dXN Ψ(X1, . . . , Xi, . . . , Xj , . . . , XN )|1 : X1, . . . , i : Xi, . . . , j : Xj , . . . , N : XN 〉

=

∫
. . .

∫
dX1 . . . dXN

1

2
×Ψ(X1, . . . , Xi, . . . , Xj , . . . , XN )

×
(
|1 : X1, . . . , i : Xi, . . . , j : Xj , . . . , N : XN 〉 − |1 : X1, . . . , i : Xj , . . . , j : Xi, . . . , N : XN 〉

)

Institut de Chimie, Strasbourg, France Page 11



Introduction to density-functional theory: discussion on the choice of basic variables in
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thus leading to

|Ψ〉 =

∫
. . .

∫
dX1 . . . dXN ΨA(X1, . . . , Xi, . . . , Xj , . . . , XN )|1 : X1, . . . , i : Xi, . . . , j : Xj , . . . , N : XN 〉

where the anti-symmetrized wavefunction ΨA(X1, . . . , Xi, . . . , Xj , . . . , XN ) is equal to
1

2

(
Ψ(X1, . . . , Xi, . . . , Xj , . . . , XN )−Ψ(X1, . . . , Xj , . . . , Xi, . . . , XN )

)

• Therefore, for a physical N -electron wavefunction, the so-called "antisymmetry condition"
associated with the permutation Xi ←→ Xj should be fulfilled:

ΨA(X1, . . . , Xi, . . . , Xj , . . . , XN ) = Ψ(X1, . . . , Xi, . . . , Xj , . . . , XN )

that is equivalent to, ∀ X1, . . . , Xi, . . . , Xj , . . . , XN ,

Ψ(X1, . . . , Xi, . . . , Xj , . . . , XN ) = −Ψ(X1, . . . , Xj , . . . , Xi, . . . , XN )
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• Using the antisymmetry condition leads to

〈Ψ|T̂ |Ψ〉 = −
N

2

∫
. . .

∫
dX1 . . . dXN Ψ(X1, . . . , XN )∇2

r1
Ψ(X1, . . . , XN )

〈Ψ|V̂ne|Ψ〉 = N

∫
. . .

∫
dX1 . . . dXN vne(r1)×Ψ2(X1, . . . , XN )

〈Ψ|Ŵee|Ψ〉 =

N∑
1≤i<j

∫
. . .

∫
dX1 . . . dXN

1

r12
×Ψ2(X1, . . . , XN )

• Consequently, all expectation values can be written exactly like for two electrons, only the
expressions for the densities and the density matrix change:

n2(r1, r2) =
N(N − 1)

2

∑
σ1,σ2=α,β

∫
. . .

∫
dX3 . . . dXN Ψ2(r1, σ1, r2, σ2, X3, . . . , XN )

n1(r, r′) = N
∑

σ1=α,β

∫
. . .

∫
dX2 . . . dXN Ψ(r, σ1, X2, . . . , XN )Ψ(r′, σ1, X2, . . . , XN )

n(r) = N
∑

σ1=α,β

∫
. . .

∫
dX2 . . . dXN Ψ2(r, σ1, X2, . . . , XN )

• Important conclusion: the expectation value for the energy is a functional of the one-electron
density matrix and the pair density.
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electron density and density operator
• It is sometimes convenient to introduce the so-called density operator

n̂(r) ≡
N∑
i=1

δ(r− ri)× ← Dirac distribution !

for calculating the electron density.

• Since, by definition,
∫
R3

dri f(ri)δ(r− ri) = f(r), we obtain

n(r) = 〈Ψ|n̂(r)|Ψ〉

• Consequently, the nuclear potential operator can be rewritten as

N∑
i=1

vne(ri)× =

∫
R3

dr vne(r)n̂(r)

• Thus, we recover the following useful result

〈
Ψ

∣∣∣∣∣
N∑
i=1

vne(ri)×

∣∣∣∣∣Ψ
〉

=

∫
R3

dr vne(r)n(r)
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Density functions as basic variables

• What about using density functions rather than the wavefunction as basic variables ?

• If so, how can we reach the exact ground-state energy ? Is there a variational formulation ?

• If so, a constrained minimization is required in order to obtain physical density functions:

∫
R3

∫
R3

dr1dr2 n2(r1, r2) =
N(N − 1)

2

∫
R3

drn1(r, r) =

∫
R3

drn(r) = N

• We will show in the following that the exact ground-state energy E0 is a functional of the exact
ground-state density n0(r), i.e. the one that is obtained from the exact ground-state wavefunction
Ψ0 (first Hohenberg–Kohn theorem). Moreover, the electron density can be used as basic variable in
order to reach n0 variationally (second Hohenberg–Kohn theorem).
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Hohenberg and Kohn theorems

HK1: There is a one to one correspondence between the local potential v(r), up to a constant, and the
non-degenerate ground-state density n(r) of the electronic Hamiltonian [Phys. Rev. 136, B864 (1964)]

Ĥ[v] ≡ T̂ + Ŵee +

N∑
i=1

v(ri)×

Proof:

• v(r) → Ψ[v] ground state of Ĥ[v] → nΨ[v](r)

• n(r) → unique v(r) (up to a constant) so that the density of Ψ[v] equals n(r) ?

Let us assume that we can find two local potentials v(r) and v′(r) that differ by more than a
constant and lead to the same ground-state density:

nΨ[v](r) = nΨ[v′](r) = n(r)
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electronic structure theory

Hohenberg and Kohn theorems

• Ψ[v] cannot be equal to Ψ[v′] otherwise for any values of X1, . . . , XN :

Ĥ[v]Ψ[v](X1, . . . , XN ) = E[v]Ψ[v](X1, . . . , XN ) and

Ĥ[v′]Ψ[v′](X1, . . . , XN ) = E[v′]Ψ[v′](X1, . . . , XN )

thus leading to(
Ĥ[v]− Ĥ[v′]

)
Ψ[v](X1, . . . , XN ) =

(
N∑
i=1

v(ri)− v′(ri)
)
×Ψ[v](X1, . . . , XN )

=
(
E[v]− E[v′]

)
×Ψ[v](X1, . . . , XN )

In the particular case where r1 = r2 = . . . = rN = r we obtain for any r

v(r)− v′(r) =
(
E[v]− E[v′]

)
/N −→ constant (absurd!)
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Hohenberg and Kohn theorems

• Non-degeneracy implies

〈Ψ[v′]|Ĥ[v]|Ψ[v′]〉 > E[v] and 〈Ψ[v]|Ĥ[v′]|Ψ[v]〉 > E[v′]

〈Ψ[v′]|T̂ + Ŵee|Ψ[v′]〉 − 〈Ψ[v]|T̂ + Ŵee|Ψ[v]〉 >
∫
R3
dr v(r)

(
nΨ[v](r)− nΨ[v′](r)

)
= 0

〈Ψ[v′]|T̂ + Ŵee|Ψ[v′]〉 − 〈Ψ[v]|T̂ + Ŵee|Ψ[v]〉 <
∫
R3
dr v′(r)

(
nΨ[v](r)− nΨ[v′](r)

)
= 0 (!)

• Conclusion: nΨ[v](r) → v(r) → Ψ[v] → E[v]

the ground-state energy E[v] is a functional of the ground-state density nΨ[v](r)

E[v] = E[nΨ[v]]
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Hohenberg and Kohn theorems

HK2: The exact ground-state density n0(r) of the electronic Hamiltonian

Ĥ[vne] ≡ T̂ + Ŵee +

N∑
i=1

vne(ri)×

minimizes the energy density functional E[n] = F [n] +

∫
R3
dr vne(r)n(r),

where the Hohenberg–Kohn universal functional F [n] is defined as

F [n] = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉,

and the minimum equals the exact ground-state energy E0:

min
n
E[n] = E[n0] = E0

Comment: we know from HK1 that n(r) → v[n](r) → Ψ[v[n]] = Ψ[n]
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Hohenberg and Kohn theorems

Proof:

• for any density n(r), Ψ[n] is well defined according to HK1 and

〈Ψ[n]|Ĥ[vne]|Ψ[n]〉 ≥ E0

〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉︸ ︷︷ ︸+

∫
R3
dr vne(r)nΨ[n](r)︸ ︷︷ ︸ ≥ E0

F [n] n(r)

thus leading to E[n] ≥ E0

• When n(r) equals the exact ground-state density n0(r):

n0(r) → vne(r) → Ψ[n0] = Ψ[vne] = Ψ0

E[n0] = 〈Ψ0|T̂ + Ŵee|Ψ0〉+

∫
R3
dr vne(r)n0(r) = 〈Ψ0|T̂ + Ŵee + V̂ne|Ψ0〉 = E0
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