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Electronic Hamiltonian, SI and atomic units

e We work within the Born—-Oppenheimer approximation (the nuclei are fixed)

e The Hamiltonian describing a N-electron molecule can be written as
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with  Wee(,7) = X — electron-electron repulsion
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with Ope(i) = — E X — electron-nuclei attraction
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e A physical N-electron wavefunction ¥(ry,r2,...,ry) depends on the positions of each electron

(spin will be introduced later on) and fulfills the Schrodinger equation| HU = EW |,




Electronic Hamiltonian, SI and atomic units

e Hydrogen atom (N = 1):
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The ground-state wavefunction (n = 1) equals V¥is(z,y,2) =
Ta
0

4regh? ;
the Bohr radius equals ag = e0 - ~ 0.529 A.
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e Working with so-called "atomic units" simply consists in using unitless energy E = E/2F; and
coordinates & = x/ag, ¥ =y/ao, Z = z/ao.
The ground-state energy of the hydrogen atom is therefore —0.5 in atomic units.

Returning to the general N-electron problem, the Schrodinger equation in atomic units is obtained
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Electronic Hamiltonian, SI and atomic units

e Change of variables in the wavefunction:

\Il(rl,rg,.. .,I'N) = \D(aofl,aof'g,. . .,a,of‘N) = \if(f‘l,f‘g, .. .,f‘N) =V

_ h2 2
Using W rather than ¥ and the relations 2E7 = = leads to
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e In the following we will simply drop the "tilde" symbol and denote 7'/2E; as T, Wee /2Er as Wee,
Ve /2FE1 as Ve, and H/2E; as H.




Variational principle for the ground state

Let {Us}r—0.1,2,... denote the exact orthonormal electronic ground-state (I = 0) and excited-state
(I > 0) wavefunctions:
H|Vr) = E[|¥r), (Yr|¥;) =461,

We assume for clarity that the ground state is non-degenerate: E; > Eg when I > 0.

We will use real algebra in the following (non-relativistic quantum chemistry)

The exact ground-state energy can be expressed as | Eg = m‘liln<\ll|ﬁ |U) = (Wg|H| o)

where the minimization is restricted to normalized wavefunctions W.

Proof: VW, |¥) =Y C;|¥;) and (V|H|¥) - Eo(¥|¥) = C? (EI - EO) > 0.
1 I1>0

Note that, if ¥ # Wy, then (U|H|U)>FE <« important result that will be used later on !
The basic variable is here the electronic wavefunction — wavefunction theory

Once the exact wavefunction Wy is obtained, the electronic structure is completely known (any
observable related to electrons can be described)




One-electron wavefunction

e Schrodinger theory: the quantum state of a single electron is written as

W) = [ dr v

where U(r) is the one-electron wavefunction (orbital) and |r) denotes the quantum state "the
electron is at position r".

Pauli theory: the spin of the electron is now considered as an additional degree of freedom. The
quantum state of a single electron is then written as

|¢>:/RB dr > ¥(r,o)lr,0)

o=a,p
where |r, o) denotes the quantum state "electron at position r with spin up" and |r, 8) corresponds
to the state "electron at position r with spin down"

In the non-relativistic case, a single electron will have a spin og which is either up or down. The
corresponding wavefunction W70 can then be written as a spin-orbital W70 (r,o) = ¥U(r)dsoy-




Two-electron wavefunction

e With the notations X = (r,0) and/dX :/ dr Z ,
R3

oc=aua,

the one-electron quantum state in Pauli theory is simply written as
w) = [ ax wx)x)

e Two-electron case:

|\If>://dX1dX2 (X1, X2)|1: X1,2: Xo)

where the two-electron quantum state |1: X1, 2: X2) corresponds to "electron 1 in state | X;) and

"

electron 2 in state | X2)

e Since electrons cannot be distinguished, the states

‘1: X1,2: X2> and ‘1: X2,2: X1>

are equivalent from the experimental point of view.




Two-electron wavefunction

e According to the Pauli principle, electron 1 and electron 2 cannot occupy the same state | X). In other
words, the two-electron quantum state |1: X, 2: X)) is not physical.

The latter is automatically removed from the theory when working in the basis of anti-symmetrized
two-electron states:

11: X1,2: Xo) = |1: X1,2: Xo)a +|1: X1,2: Xo)s

where

>> — anti-symmetric (physical !)

,2: Xo) 4+ |1: Xo,2: >) — symmetric (not physical !)




Two-electron wavefunction

Physical two-electron state:

|\If> — |\IJA>://XmdXQ\IJ(Xl,XQ)H:Xl,Q: X2>_A

://XmdX2 U A (X1, Xo)|1: X1,2: X2)

where the anti-symmetrized wavefunction equals

U A (X1, Xo) = % (\IJ(Xl, X5) — U(Xo, Xl))

Anti-symmetrization condition: | ¥ 4(X1, X2) = -V 4(X2, X1)

Note that Slater determinants fulfill this condition. Consequently a linear combination of Slater
determinants (as used in wavefunction theory) will also fulfill this condition.




wavefunction and densities: two-electron case

e A physical two-electron wavefunction should fulfill ¥ (X, X2) = —¥ (X2, X1). In addition we
want it to be normalized,

(U|T) ://XmdXQ T2 (X1, X0) =1

e Expectation value for the kinetic energy:

(U|T W) = —% /RB dr V2, [nl(r,r’)}

r=r’

where the spin-summed one-electron density matrix equals

nl(r,r’) = 2 Z /dX2 \If(r,al,Xg)\IJ(r/,al,Xg)
O']_:Oé,ﬁ

e Expectation value for the nuclear-electron interaction energy:

(U | Vo | W) :/ dr vpe(r) n(r)

R3

where the electron density equals n(r) = ni(r,r) +— key quantity in DFT ...




e Expectation value for the electron-electron interaction energy:

(0 Weo| W) = / / drydr, "2E1T2)
R3 JR3 12

where r12 = |r1 — r2| and the spin-summed pair density equals

na(ri,ra2) = Z U2 (ry,01,12,02)

01,02=a,p

e Generalization to an arbitrary number N of electrons: a physical electronic quantum state should
fulfillfor1 <: < j < N,

|\If>://dX1dXN \I/(Xl,...,XZ',...,XJ',...,XN)H:Xl,...,’i:XrL',...,j:Xj,...,N:XN>

1
:/.../Xm...dXN5><\If(Xl,...,Xi,...,Xj,...,XN)

><(|1:Xl,...,i:Xi,...,j:Xj,...,N:XN>—|1:Xl,...,i:Xj,...,j:XZ-,...,N:XN>)




thus leading to

|\IJ>:/,,,/Xm...dXN\IJ_A(Xl,...,XZ',...,Xj,...,XN)|1:Xl,...,i:Xi,...,j:Xj,...,N:

where the anti-symmetrized wavefunction ¥ 4 (X1,...,X;,..., X;,..., XN) isequal to

1
5<\IJ(X1,...,Xi,...,Xj,...,XN)—\If(Xl,...,Xj,...,XZ-,...,XN)>

e Therefore, for a physical /N-electron wavefunction, the so-called "antisymmetry condition”
associated with the permutation X; +— X; should be fulfilled:

Ua(X1, s Xiyeo s Xy XN) = U( X, ., X,

that is equivalent to, V Xq,...,X;,...

U(X1,..., X, ...




e Using the antisymmetry condition leads to

(U|T|W ———/ /dX1 AXN (X1, XN)VE (X, .., XN)

(U] Ve | P) :N/.../Xm...dXN Vne(r1) X ¥2(X1,..., XN)

(U|Wee|T) = Z / /Xm AXy — x U3(Xy,..., XN)
1<i<y r12

Consequently, all expectation values can be written exactly like for two electrons, only the
expressions for the densities and the density matrix change:

N(N —1
( ) Z / /dX3 dXN\IJ (r170'17r2,0'2,X3,... XN )

2
01,02= O‘aﬁ

na(ri,re) =

=N Z / /ng AXNU(r,01,Xa,..., XN)U(@ 01, X2,..., XN)
ol1=«

=N Z/ /dXQ AXN 92(r,01,X2,..., XN)

oc1=a,3
Important conclusion: the expectation value for the energy is a functional of the one-electron
density matrix and the pair density.




electron density and density operator

It is sometimes convenient to introduce the so-called density operator

N
n(r) = Z o(r —r;)Xx <+ Dirac distribution !
i=1

for calculating the electron density.

Since, by definition, / dr; f(r;)0(r —r;) = f(r), we obtain
R3

n(r) = (|a(r)|¥)

Consequently, the nuclear potential operator can be rewritten as

N
;vne(ri)x = /]1%3 dr vpe(r)n(r)

N
Thus, we recover the following useful result <\IJ Z Une (1r;) X > = / dr vpe(r)n(r)
i=1 R?




Density functions as basic variables

e What about using density functions rather than the wavefunction as basic variables ?
e If so, how can we reach the exact ground-state energy ? Is there a variational formulation ?

e If so, a constrained minimization is required in order to obtain physical density functions:

N(N —1
/ / dI'ldI'Q ng(rl,rg) = ( )
R3 JR3 2

/R3 drni(r,r) :/Rg drn(r) =N

e We will show in the following that the exact ground-state energy Ej is a functional of the exact
ground-state density ng(r), i.e. the one that is obtained from the exact ground-state wavefunction
Uy (first Hohenberg—Kohn theorem). Moreover, the electron density can be used as basic variable in
order to reach ng variationally (second Hohenberg—Kohn theorem).




Hohenberg and Kohn theorems

HK1: There is a one to one correspondence between the local potential v(r), up to a constant, and the
non-degenerate ground-state density n(r) of the electronic Hamiltonian [Phys. Rev. 136, B864 (1964)]

N
Hp] =T + Wee + Y _v(r;)x
=1

Proof:
e v(r) — W[v] ground state of H[v] — N [y] (T)

e n(r) — unique v(r) (up to a constant) so that the density of ¥[v] equals n(r) ?

Let us assume that we can find two local potentials v(r) and v’ (r) that differ by more than a
constant and lead to the same ground-state density:

Ny (o] (I‘) = Nwv/] (I') — n(r)




Hohenberg and Kohn theorems

e U[v] cannot be equal to W[v’] otherwise for any values of X1,..., Xn:
H[V]P[v](X1,...,XN) = EP]U[](X1,...,Xny) and
HW O (X1,...,XN) = EW]¥](X1,..., XN)

thus leading to

N
<I:I[v] — I:I[U/]>\IJ[U](X1, ooy XN) <Zv(rz) — v’(ri)> X Uvl(X1,...,XnN)

=1

(E[v] - E[U’]) X W](X1, ..., Xn)
In the particular case where ri =r2 =... =ry =r weobtainforanyr

v(r) —v'(r) = <E[v] — E[v’])/N — constant (absurd!)




Hohenberg and Kohn theorems
e Non-degeneracy implies

(O[] H[v][¥[v']) > E[v] and (P[o]|H[v'][¥[s]) > Elv']

(O[T + Wee|[¥[v']) — (C[0]|T + Wee|¥[v]) > /R3 dr v(r) (R, (r) — nyp(r)) =0

(O[T + Wee|[¥[v']) — (C[0]|T + Wee| ¥[v]) < / dr v'(r) (ngp(r) —ngp(r)) =0 (1)

R3

e Conclusion: ngp(r) — v(r) — Y] — Ey

the ground-state energy E[v] is a functional of the ground-state density ny,)(r)




Hohenberg and Kohn theorems

HK?2: The exact ground-state density ng(r) of the electronic Hamiltonian

N
I:I['Une] = T + Wee + Z'Une(ri)x
1=1

minimizes the energy density functional FE[n]| = F[n] + / dr vpe(r)n(r),

R3
where the Hohenberg—Kohn universal functional F'[n] is defined as

Fln] = (O[n]|T + Wee|¥[n]),

and the minimum equals the exact ground-state energy Ejy:

min E[n| = E[ng] = Ey

n

Comment: we know from HK1 that n(r) — vn|(r) — VYv[n]]




Hohenberg and Kohn theorems

Proof:

e for any density n(r), ¥[n] is well defined according to HK1 and

(U[n]|Hlvne][¥[n]) > Eo

(W[n][T+ Wee W [n]) + /R3 dr vne(r) gy (£) > Fo

7

~~

N —
Fn] n(r)

thus leading to| E[n] > Eq

e When n(r) equals the exact ground-state density no(r):
no(r) — ovne(r) — VY[ng] = Y]vne] = Yo

Eno] = (Uo|T + Wee o) + /

5 dr 'Une(r)nO(r) — <\IJO|T + Wee + Vne|\IJO> = Eo
R




