RFCT Pôle Est et Nord-Est

Examen : théorie de la fonctionnelle de la densité

28 janvier 2015

Durée de l'épreuve : 30 minutes

Tous les documents ainsi que les calculatrices sont interdits.

Le barème proposé est uniquement indicatif (l'examen est noté sur 10 points) .

On considère une molécule à N électrons dont la fonction d'onde électronique normée Ψ_0 décrivant l'état fondamental exact vérifie l'équation de Schrödinger

$$\left(\hat{T} + \hat{W}_{ee} + \sum_{i=1}^{N} v_{ne}(\mathbf{r}_i) \times \right) \Psi_0 = E_0 \Psi_0, \tag{1}$$

où E_0 est l'énergie exacte de l'état fondamental et $v_{\rm ne}(\mathbf{r})$ désigne le potentiel nucléaire local. On note $n_0 = n_{\Psi_0}$ la densité exacte de l'état fondamental. On considère parallèlement un système de N électrons en interaction partielle, dans l'état fondamental et décrit par la fonction d'onde normée $\Psi^{\lambda}[v]$, qui vérifie

$$\left(\hat{T} + \lambda \hat{W}_{ee} + \sum_{i=1}^{N} v(\mathbf{r}_i) \times \right) \Psi^{\lambda}[v] = \mathcal{E}^{\lambda}[v] \Psi^{\lambda}[v], \tag{2}$$

où $v(\mathbf{r})$ est un potentiel local quelconque. L'objectif du problème est de déterminer le potentiel local $v^{\lambda}(\mathbf{r})$ tel que $\Psi^{\lambda}[v^{\lambda}]$, que l'on notera simplement Ψ^{λ} , a pour densité n_0 .

- a) [2 pts] Le potentiel $v^{\lambda}(\mathbf{r})$ est-il unique ? Justifiez brièvement votre réponse. Donner, dans le cas particulier $\lambda = 0$, son expression formelle exacte en faisant intervenir le potentiel nucléaire et la fonctionnelle de Hartree-échange-corrélation standard.
- b) [2 pts] Soit la fonctionnelle de Hohenberg–Kohn en interaction partielle calculée pour la densité n_0 , $F^{\lambda}[n_0] = \langle \Psi^{\lambda} | \hat{T} + \lambda \hat{W}_{ee} | \Psi^{\lambda} \rangle$. Expliquer pourquoi l'inégalité suivante est vérifiée pour n'importe quel potentiel local $v(\mathbf{r})$: $\langle \Psi^{\lambda} | \hat{T} + \lambda \hat{W}_{ee} + \sum_{i=1}^{N} v(\mathbf{r}_i) \times | \Psi^{\lambda} \rangle \geq \mathcal{E}^{\lambda}[v]$.
- c) [2 pts] Déduire de la question b) que $F^{\lambda}[n_0] = \max_{v} \left\{ \mathcal{E}^{\lambda}[v] \int_{\mathbb{R}^3} d\mathbf{r} \ v(\mathbf{r}) n_0(\mathbf{r}) \right\}$. Montrer que le maximum est atteint lorsque $v = v^{\lambda}$.
- d) [2 pts] Expliquer alors comment le potentiel $v^{\lambda}(\mathbf{r})$ peut être approché par des méthodes basées sur le calcul de la fonction d'onde.
- e) [2 pts] Quelle(s) information(s) précieuse(s) obtient-on en calculant $v^{\lambda}(\mathbf{r})$ pour $0 \le \lambda \le 1$?

a. The local potential val(is unique, up to a constant, according to the Hohenberg Kohy theorem that is also valid for a partially interesting system.

b_ \(\var{v}\), \(\var{v}\) is the ground state of \(\hat{T} + \lambda \weet = \var{v}\) \(\var{v}\) is the ground state of \(\hat{T} + \lambda \weet = \var{v}\) is the energy \(\hat{V}\) [v].

Flerefore, according to the variational principle,

If $N = \sigma^{\lambda}$ then $2^{\lambda} [\sigma^{\lambda}] = \int d\vec{r} \, \sigma^{\lambda}(\vec{r}) \, m_{\sigma}(\vec{r}) = \langle \Psi^{\lambda} | \hat{T} + \lambda \hat{N} \hat{\omega}_{\alpha} + \sum_{i=1}^{N} \sigma^{\lambda}(\vec{r}_{i}) \times |\Psi^{\lambda}\rangle - \int d\vec{r} \, \sigma^{\lambda}(\vec{r}_{i}) \, m_{\sigma}(\vec{r}_{i}) \, m_{\sigma}(\vec{r}_{i$

d. Wave-function methods can be used to comporte accurate approximations to the ground-state density $m_0(\vec{n})$ as well as approximations to the energy $2^{\lambda} [U]$ when varying. the local patential $U(\vec{n})$. In provide, it is convenient to decompose the latter in a basis set (for example the atomic basis set). $U(\vec{n}) = U_{ref}(\vec{n}) + U_{ref}(\vec{n})$ gaussian function.

reference potential $U(\vec{n})$ coefficient to be optimized.

The coefficients {bt}t are obtained by maximiting the quantity

{2\ [(bt)_t] - \div [vref(\vec{n}) + \ \ \ \ \ \ \ \ \ \ \ \ \ \]

[\R3]

fixed in the ophimitalism.

e-bbtaining or (n) for any & bacically consists in constructing the adiabatic connection for the density mo. With 4th at hand (or at least a good approximation) it is possible to compute the Corelation integrand of [no] = (4th New 14th) = (4th New 14th).

The latter can be used for analyzing the deficiencies of approximate correlation functionals. It also provides quidelines for developing better functionals,